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Abstract: With the rapid development of the Internet of Things (IoT), improving the lifetime of nodes
and networks has become increasingly important. Most existing medium access control protocols are
based on scheduling the standby and active periods of nodes and do not consider the alarm state.
This paper proposes a Q-learning and efficient low-quantity charge (QL-ELQC) method for the smoke
alarm unit of a power system to reduce the average current and to improve the lifetime of the wireless
sensor network (WSN) nodes. Quantity charge models were set up, and the QL-ELQC method is
based on the duty cycle of the standby and active times for the nodes and considers the relationship
between the sensor data condition and the RF module that can be activated and deactivated only
at a certain time. The QL-ELQC method effectively overcomes the continuous state–action space
limitation of Q-learning using the state classification method. The simulation results reveal that the
proposed scheme significantly improves the latency and energy efficiency compared with the existing
QL-Load scheme. Moreover, the experimental results are consistent with the theoretical results. The
proposed QL-ELQC approach can be applied in various scenarios where batteries cannot be replaced
or recharged under harsh environmental conditions.

Keywords: wireless sensor networks; node lifetime; charge consumption; Q-learning

1. Introduction

Internet of Things (IoT) technology enables machines, such as home appliances, medi-
cal equipment, and industrial instruments, to interact with users and other machines via
the Internet [1]. Wireless sensor networks (WSNs) are a broad category of IoT applications.
WSNs can send and receive data via the Internet using a sink node [2,3]. The successful
operation of a power system requires the support of communication networks with massive
node access and latency-critical two-way reliable transmission [4]. However, power man-
agement in WSNs poses a significant challenge when the WSN must operate continuously
for sustained periods without a consistent power source. In such contexts, the nodes have
specific limitations regarding their memory, processing capacity, radio communication
range, and energy supply [5]. One type of node uses batteries that cannot be replaced or
recharged under harsh environmental conditions [6].

Although many complex communication protocols and routing algorithms have been
proposed for WSNs, disadvantages, such as power dissipation, network complexity, and
high costs, must be overcome for hardware and software implementation [7]. For long-term
operation, the power-constrained condition is strict and limited, and a back-end circuit
system is required to obtain the sensor information and to transmit the acquired data [8].
As the network scales up and the number of nodes increases, certain fundamental problems,
such as energy-efficient data transmission, scalability, data gathering, and aggregation,
become concerns [9]. Thus, an effective low-power circuit system is indispensable to
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ensure the long-term operation of WSNs [10–12]. To improve the WSN’s lifetime, the
high-coverage communication of targets must be ensured before performing a sensor-node
duty cycle [13,14]. The Cooperative Medium Access Control (C-MAC) [15] method for
improving the duty cycle-based MAC with idle listening has been proposed. However, an
additional channel is required to synchronize the nodes which consume additional energy.

Recently, reinforcement learning (RL) has been widely employed to address resource
management problems in next-generation wireless networks [16]. The Q-learning tech-
nique is an RL approach in which the algorithm continuously learns by interacting with
the environment, gathering information to take certain actions and to improve a specific
policy [17]. It is based on iterative offline operations that predict the next optimal step based
on obtained experience. Hence, the lifetimes of nodes and WSNs have been extended using
Q-learning [18,19], and low power consumption has been achieved via energy manage-
ment [20,21]. A novel Q-learning-based data-aggregation-aware energy-efficient routing
algorithm was proposed in [22]. A runtime-decentralized self-optimization framework
based on deep RL for configuring the parameters of a multi-hop network was presented
in [23]. This maximizes the performance by determining the optimal result from the en-
vironment [24,25]. However, in using a Q-learning algorithm that has too many actions
or states to control throughout the duty cycle of a WSN, both the storage requirement
and dimensions of the problem become intractable for the end node [26]. Furthermore, a
systematic literature review revealed that energy consumption is the most fundamental
problem in WSNs [27]. However, this has not been sufficiently considered by scholars
and practitioners [28]. Therefore, a low-power-consumption method must be designed to
improve the long-term operation of nodes in WSNs by considering various performance
metrics with relatively few states and actions.

This study proposed a Q-learning, efficient low-quantity charge (QL-ELQC) method
with a small number of states and actions to extend the lifetime of a photoelectric smoke
end node (PSEN) in the WSN of a power system. Mathematical models were established to
describe the relationships between the main parameters and the principal charge consump-
tion. The outcome of the mathematical analysis formed the basis for the measures taken
to optimize the PSEN system and to improve its lifetime. Furthermore, Q-learning-based
ELQC was applied to self-adjust the standby time of the modules to optimize the duty
cycle of the sensor and RF module’s standby time to reduce the average current of the
node system. The proposed method effectively overcomes the limitations of Q-learning by
solving the problem of a continuous state–action space using the state classification method
based on the relationship between the sensor data and the threshold. A lifetime testing
system for a wireless photoelectric smoke sensor end node is introduced.

The remainder of this paper is organized as follows. In Section 2, we describe the
proposed system architecture. In Section 3, we propose an ELQC model. Section 4 presents
the proposed QL-ELQC method. The testing of the modules is provided in Section 5, and
the experiment on the node system is discussed in Section 6. Finally, the conclusions are
presented in Section 7.

2. Architecture
2.1. WSN PSEN-SM System Architecture

As depicted in Figure 1, the WSN smoke and smart meter system has three hierarchy
levels and relationships. The first level comprises the PSENs and SMNs, which monitor
the smoke, humidity, ambient temperature, and electricity consumption and send the
related compressed data to the sink nodes. The PSENs and SMNs receive commands or
acknowledgments from the sink nodes. The second level represents the sink nodes (always
in an active state), which receive the PSEN and SMN data and send acknowledgments
or commands back to them via the radio frequency (RF) module. The sink nodes receive
layer commands from the PC via the Internet and simultaneously send related data to the
PC via the Internet and alarm signals to the mobile device of an operator. The third level
comprises a PC with Internet access and a data server, which receives data from the sink
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nodes and sends commands back via the Internet. The following section introduces how
the PSEN is used. The SMN method is not involved here.

Figure 1. Proposed WSN architecture.

A time-sharing communication protocol is used between the PSENs and the sink
node. Each node and module applies a duty-cycling method to reduce charge consump-
tion. Moreover, the sink node of the WSN has high performance, which can reduce the
communication time with the PSEN. When all PSENs have a long lifetime, the total lifetime
of the WSN can be extended.

2.2. PSEN System Architecture

The PSEN system architecture is illustrated in Figure 2. The system comprises a
microcontroller (MCU), an RF module, a power module, and a sensor module. To reduce
the charge consumption, each module has a quantity charge model associated with the
dominant charge consumer. A component can be regarded as a functional block, and the
operational state of various modules is dynamically adapted to the required performance
level, which can minimize the power wasted by idle or underutilized components [29].
The PSEN integrates temperature and humidity sensors to detect environmental changes
rapidly. For the smoke sensor, we used an ultralow-power photoelectric amplifier with a
low supply voltage.

Figure 2. PSEN system architecture.

The PSEN is set to a low power state after the interrupt is initialized and opened.
When there is an interrupt signal, the MCU wakes up to execute the interrupt events. Since
a node battery’s charge is limited, we define three states for the PSEN, namely, the ordinary,
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warning, and alarm states. The proposed node system can optimize the hardware and
software systems, simplify the protocol, and compress signal data.

3. Proposed ELQC Model

Each node in a WSN consists of multiple modules, which can be abstracted as a series,
such as 1, 2, . . ., m, and each module has multiple states, which can also be seen as a
sequence 1, 2, . . ., n. We can encode them as m × n matrices, as expressed in Equation (1).
Hence, we can determine the charge consumption of each module in each state.

Qtotal =



Q11 Q12 . . . Q1j . . . Q1n
Q21 Q22 . . . Q2j . . . Q2n
· · · · · ·

Qi1 Qi2 . . . Qij . . . Qin
· · · · · ·

Qm1 Qm2 . . . Qmj . . . Qmn

. (1)

The charge consumption Qij of the i-th module in the j-th state is the time integral of the
current, and its average current Iij at quantum time Tij can be represented by the following:

Qij =
∫

iijdt = IijTij, i = 1, 2 . . . m; j = 1, 2 . . . n (2)

The node total charge consumption is the time integral of the current (total sum
method), which is the sum of the time integrals of the current for each component at
different states and can be represented as follows:

Qtotal = ∑m
i=1 ∑n

j=1 Qij = ∑m
i=1 ∑n

j=1

∫
iijdt = ∑m

i=1 ∑n
j=1 IijTij, i = 1, 2 . . . m, j = 1, 2 . . . n (3)

The average current Itotal−aver. and time Ttotal matrices for the nodes in various states
are represented by the following:

Itotal−aver. =



I11 I12 . . . I1j . . . I1n
I21 I22 . . . I2j . . . I2n
· · · · · ·

Ii1 Ii2 . . . Iij . . . Iin
· · · · · ·

Im1 Im2 . . . Imj . . . Imn

, Ttotal =



T11 T12 . . . T1j . . . T1n
T21 T22 . . . T2j . . . T2n
· · · · · ·

Ti1 Ti2 . . . Tij . . . Tin
· · · · · ·

Tm1 Tm2 . . . Tmj . . . Tmn

. (4)

The total charge consumption of the node is the sum of the consumption of each
module, and QMi =

[
Qi1Qi2 . . . Qij . . . Qin

]
denotes the charge consumption of the i-th

module including n states. These are abbreviated as follows:

Qtotal = ∑m
i=1 QMi, i = 1, 2 . . . m (5)

First, we study the calculations of the i-th module. The charge consumption QMi is
the sum of the i-th module in the different n states, which is the sum of the corresponding
item scores of the two matrices in the i-th row in Equation (4), represented as follows:

QMi = ∑n
j=1 Qij = ∑n

j=1

∫
iijdt = ∑n

j=1 IijTij, i = 1, 2 . . . m, j = 1, 2 . . . n (6)

During the period of the i-th module in all states, the average current and period
IMi and TMi for the i-th module of the node is given by the following:

IMi =
QMi
TMi

=
∑n

j=1 IijTij

∑n
j=1 Tij

,TMi = ∑n
j=1 Tij, j = 1, 2 . . . m, j = 1, 2 . . . n, (7)
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Similar to real-world node implementations, we divided the states of the i-th module
into working, idle listening, and standby states. (Iwi, Twi), (Isti, Tsti), and (Ili, Tli) are
the currents and times corresponding to the working, standby, and idle listening states,
respectively. In general, Ili > Isti. In the sleep state, the current is almost zero and consumes
almost no charge; therefore, it is ignored. These can then be represented as follows:

IMi =
IwiTwi + Isti Tsti + IliTli

Twi + Tsti + Tli
= Iwi − (Iwi − Ili)Rli − (Iwi − Isti)Rsti, i = 1, 2 . . . m,

Rsti = Tsti/TMi, Rli = Tli/TMi = 1− (Tsti + Twi)/TMi, TMi = Twi + Tsti + Tli, i = 1, 2 . . . m,
(8)

where Rsti and Rli denote the standby and idle listening time duty cycle of the i-th module.
If Twi and Iwi are fixed, Rsti (1 ≥ Rsti ≥ 0) and Rli (1 ≥ Rli ≥ 0) increase as the standby

time Tsti and idle listening Tli increase. When the other parameters remain unchanged
and the standby time is known, then the idle listening duration can be obtained, and vice
versa. When Rsti and Rsli increase, the average current and the charge consumption of the
i-th module decrease. The average current and period of the module are represented by
the following:

IM =



IM1
IM2
· · ·
IMi
· · ·
IMm

, TM =



TM1
TM2
· · ·
TMi
· · ·

TMm

. (9)

The node’s total average current can be obtained as follows:

Inode−aver = ∑m
i=1 IMi, i = 1, 2 . . . m. (10)

The total node charge consumption during the battery’s lifetime is equal to the avail-
able battery charge. The quantity of charge Qbattery, availability rate η of the battery, and
self-discharge rate Rself-dischage can be obtained from the datasheets of the battery. We can
then obtain the battery life Tbatt.li f e of the WSN node as follows:

Inode−aver.Tbatt.li f e = Qbatteryη
(

1− Rsel f−discharge

)Tbatt.li f e
. (11)

For η of 0.72 and Rself-discharge of 3%, the lifetime graph from 0 to 20 years and charge
consumption from 950 to 2800 mAh are illustrated in Figure 3. It can be seen that as the
current I decreases, the lifetime t of the node increases, as the yellow color in the figure
deepens. As the battery capacity Q increases, the allowable current for node with the same
lifespan increases, and the light yellow parts in the figure become more numerous.

Figure 3. Current of the PSEN for battery charge and lifetime.
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4. Proposed QL-ELQC Method

To minimize the average current and to extend the node’s life, the designed com-
munication distance is greater than the actual distance, so all nodes can communicate
directly with the sink nodes. If other parameters are not changed, when implementing
multi-hops between adjacent nodes to the sink node, one data transmission exchanges
twice the receiving and transmitting data with the upper and next nodes, but when the
node communicates directly with the sink node, it need only exchange once, which can
eliminate the charge consumption according to the ELQC model (8).

In special circumstances, some nodes require multi-hops to communicate with the
sink node. Since a routing table is used for data transfer, Q-table is used for the next idle
listening duration and standby time of a node in WSN. Therefore, this can minimize the
time for changing the radio state to RX. The QL-ELQC scheduling method adaptively
adjusts the idle listening duration and standby times of the nodes according to the alarm
level, which reduces the delay and energy consumption required for data transmission.
Here, the QL-ELQC will mainly focus on standby time.

4.1. Proposed QL-ELQC Block Diagram

QL is based on iterative offline operations that predict the next optimal step based
on obtained experience. To alert the node in time and to extend its lifetime, we used a
QL-ELQC method for duty cycle optimization to determine its operating and propagation
strategy in a dynamic environment.

For the proposed QL-ELQC method, the atmospheric sensor data are defined as
“state”, while the standby time in the entire period is regarded as an “action”. The level of
alarm and the reduction in the average current are the “reward”. In this paper, each node is
regarded as an agent that interacts with the environment, calculates the reward, updates
the Q-value, self-learns, and selects the optimal state and action, as depicted in Figure 4.
Then, the optimal transition between states can send alarm data in time and reduce the
quantity of charge consumed to extend the lifetime of the node.

Figure 4. Proposed QL-ELQC block diagram.

Because the state of the environment is significantly large, the state space is also large.
Concurrently, the different duty cycles of standby time in the entire period are considered
environmental actions. This renders the typical implementation of QL infeasible. To
address this problem, the state classification method adopted in this paper aims to limit
the acceptable computational overhead and to reduce the energy and time consumption
caused by excessive computational complexity. One of its distinctive features compared
with other MAC protocols is that the standby time is modified based on the relationship
between the atmospheric sensor data and the threshold. The data compression method can
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be used when the data are in the same state. Simultaneously, carrier detections exist for
“listening before transmitting” protocols and transmissions are repeated if the data are not
received. This ensures fast point-to-point communication during alarm states.

4.2. Proposed QL-ELQC Model
4.2.1. QL-ELQC of Standby Time Optimization

Owing to the complexity of atmospheric data in WSNs, the duty cycle must be dy-
namically altered based on the variable sensor data. The node determines the transmission
frequency based on state vector S = (s1, s2,. . ., sN) and sends the results to the RF mod-
ule. In this paper, a model with three states and one optimal action was created using a
self-learning process and interaction with the atmosphere to satisfy the rapid alarm and
early warning requirements of the system. This overcomes the problem caused by major
atmospheric conditions and action spaces. Based on the relationship between the monitored
data values V and thresholds Vth, which are set in many experiments, the environmental
states are divided into three categories, alarm, warning, and normal states, which can be
expressed as follows:

S =


s1, V ≥ Vth, continuous 3 times, in alarm state
s2, V ≥ Vth, 1− 2 times, in warning state
s3, V ≤ Vth, in normal state

. (12)

If the measurement data are larger than the threshold by one time, the node enters
the warning state and the sensors immediately increase the monitoring frequency to
continuously determine whether it has exceeded the threshold to lessen the error alarm.
Subsequently, if one of the data points is still larger than the related threshold, the node
system is in an alarm state. The node system then sends the data continuously until the
alarm state is cleared, and the sink node system (always active) sends the alarm data to the
user PC and the mobile phone of the worker on duty. It continuously reduces the latency
through Q-learning training in the alarm state. If the measured data do not exceed the
threshold, the node system is in the normal state and the data are processed using the
QL-ELQC method to optimize the duty cycle of the node.

In general, the data monitored by sensors do not change significantly in a short
period or fluctuate within an allowed range within a certain period. As opposed to
continuous monitoring, this can considerably reduce charge consumption. Meanwhile,
data aggregation substantially reduces energy consumption compared with transmitting
all raw data to the sink node and can reduce traffic and improve the sensing quality for this
type of smoke alarm system. The sensors and RF module duty cycles were then optimized
using the QL-ELQC method to reduce the charge consumption, considering parameters
such as communication distance, operating frequency band, voltage, and current. Therefore,
the PSEN with the QL-ELQC quantity charge function to predict the next duration can
trigger the alarm in time and can minimize charge consumption.

This policy is crucial for handling the priority relationship between alarms in time and
reducing charge consumption. The shorter the standby time, the faster the node system
reacts to an alarm state. However, the greater the standby time, the smaller the charge con-
sumption for the node system. The maximum standby time does not exceed the sensitivity
requirements of the system. Concurrently, the standby times of the sensor and RF module
are not necessarily zero because each module has a minimum time interval. Moreover, in
the alarm state, real-time monitoring and communication are superior to the quantity of
charge consumed by the smoke alarm system. In an ordinary state, data compression and
the duty-cycling algorithm should be prioritized to reduce charge consumption. Based on
the sensor data state and policy, QL-ELQC selects an optimal action from the action set
A = [Tst1, Tst2, Tst3, Tst4]. The duty cycle of standby time Rst can then be calculated using
Rsti = Tsti/TMi, i = 1, 2,. . .m:

Rst = [Rst.al., Rst.war.1, Rst.war.2, Rst.nor.], (13)
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where Rst.al., Rst.war.1, Rst.war.2, and Rst.nor. are the duty cycles for the standby time of the
RF module and sensor module during the alarm, warning 1–2 times, and normal action
states, respectively.

In this model, reductions in the node’s average current and the times that the sensor
data continuously exceed the threshold are used as reward values to guide the next steps.
The more the average current is reduced, the greater the reward in the normal state. The
greater the number of times that the data exceed the threshold, the greater the reward value
for the alarm level and the smaller the standby time. Using linear regression and function
approximation [26], the reward at time t, Rt, can be determined as follows:

Rt = δIt + (1− δ)lt +∅, (14)

where It denotes the average current and lt indicates the level of alarm of the node at time
t and the initialization of t = 0. Furthermore, δ symbolizes the weight of It. The reward
computed by both the average current and alarm levels ensures an alarm in time and
prolongs the lifetime of the node.

The Q function for a node with standby time Tst is represented as Qt(st, Rst), which
represents the real value at time t. It is updated based on a dynamic programming concept.
If the objective value function Qtarget at time t is Qtarget = Rt + βmaxa∈AQt(st+1, Rst+1 ),
then β indicates the discount factor of the node. If A represents a set of actions,
Maxa∈AQt(st+1, Rst+1 ) indicates the largest Q function in the corresponding state st+1 at
standby time Tst+1. The learning rate α is set as the step size for each update to reduce the
difference between the two values; the specific update formula is as follows:

Qt+1(st, Tst) = Qt(st, Tst) + α[Rt + βmaxa∈AQt(st+1, Tst+1 )−Qt(st, Tst)]. (15)

The node adopts the ε—greedy strategy to optimize its standby time, rather than
directly selecting the maximum Q value as the setting. When Q-table converges, select-
ing action a in any state s to maximize Q(s, a) can yield the optimal control strategy
a∗ = argmaxa∈AQ(s, a). An optimization control scheme based on Q-learning is presented
in the algorithm.

The values of parameters α, β, and ε are crucial for the algorithm to work properly.
If α is too small, the convergence speed of the algorithm will slow down; if α is too high,
it may prevent the algorithm from converging or it may experience oscillations. These
parameter values were selected by initialization, dynamic adjustment, and experimental
verification, based on the Algorithm 1’s performance and convergence.

Algorithm 1: Standby time optimization control scheme based on QL-ELQC

1: Initialization ε = 0.1, α = 0.1, β = 0.9, t = 0, Q(s, Rst) = 0;
2: Observation sensor data and status st Equation (12);
3: Select standby time optimization action value control scheme based on the ε—greedy
strategy Tst;
4: Set the standby time according to policy and calculate Rst Equation (13);
5: Obtain the instant reward value Equation (14);
6: Update Qt(st, Tst), Qt(st+1, Tst+1) . according to Equation (15);
7: Determine whether the learning process has ended. If not, set t = t + 1 and return to step 2, else
end the learning procedure.

4.2.2. Simulation Results

To verify the algorithm, ten nodes were deployed at distances of 30 m using a tree
topology. The transmission distance for each node was set to 55 m. One node is a sink
node (always active). The other node sensor modules detect the environment and generate
data at intervals of 10 s in the normal state and 1 s in the alarm state. As analyzed above,
the three different atmospheric states were classified based on the relationship between
the data, threshold, and state set S = [s1, s2, s3]. The different standby time choices of



Electronics 2023, 12, 4676 9 of 16

the RF module and sensor module were considered environmental actions. Action set
A = [a1, a2, a3, a4], initialization at t = 0, the node learning rate α = 0.1, discount factor
β = 0.9, ∅ = 4, δ = 2, and ε = 0.1 were set. The transmitting, receiving, and standby
currents of the RF module were Iw.tr = 16 mA, Iw.rx = 12.5 mA, and Ist = 0.68 µA. Carrier
detection exists for “listen before transmit” protocols, and each node sends data based on
the allocated time slot to reduce collisions.

As shown in Figure 5, using the two methods, the PSEN’s lifetime was compared
in the alarm and normal states. In the alarm state, the PSEN’s lifetime using the two
methods is identical. In the normal state, the PSEN’s lifetime under QL-ELQC is longer
than that for the QL-Load [26]. This indicates that the QL-ELQC scheme is suitable for
the duty cycle of alarm nodes in response to dynamic environmental changes in the WSN.
QL-ELQC makes self-adaptive decisions based on the classification of states, actions, and
function approximations in a dynamic environment and prolongs the lifetime of the node
and the WSN.

Figure 5. The lifetimes of PSENs.

This study used the data compression method for the case when the sensor data were
in the same state. End-to-end latency in packet transmission is occasionally caused by
re-transmissions. Due to the carrier detection measures for “listening before transmitting”
protocols and the alarm channel, the delay is generally less than 1 s, which is much smaller
than that of other QL schemes.

5. Experimentation

According to the ELQC model, when the PSEN is in a different state, the charge
consumption is different. For experimental convenience and to verify that the QL-ELQC
prolongs the lifetimes of PSENs, we divided the mode of the i-th module into two categories,
namely, working mode Iwi, Twi and standby mode Isti, Tsti. Since the current in the sleep
state is almost zero, it was ignored. The operating voltage (VCC) was fixed, and the power
consumption was calculated from the current in the module connection path. Thus, the low
dropout regulator (LDO) fixed the VCC to measure the current of each module circuit using
an oscilloscope (RIGOL DS1074). In the figures, the relation between the Iw values in the
tables and the voltage values registered by the oscilloscope is 10 mV/mA and 1 mV/µA.

5.1. RF Module

The RF module is integrated via an nRF905 Nordic chip, as depicted in Figure 6; the
specifications and measured currents of the RF module are listed in Table 1. TNor.lt. indicates



Electronics 2023, 12, 4676 10 of 16

the maximum time of the RF module in standby mode under normal environmental
conditions, and Tal.lt indicates the minimum value of the RF module in the alarm state. This
means that the range of standby time TRF.st for the RF module is 0.22 ≤ TRF.st ≤ 86, 400 s.
In this experiment, the TX current was 16 mA, and the transmission time was Ttx = 7 ms,
while the RX current was 12.5 mA, and the receiving time was Trx = 10 ms. Thus, the
working time and average current of the RF module were approximately Ttx-rx = 17 ms and
Itx-rx = 13,941 µA, respectively.

Figure 6. RF module current of the PSEN at TX+6 dBm (5 mA/div).

Table 1. RF module parameters of the PSEN in different states.

State Iw
Time

Dist.(m)
TW (ms) TNor-st. (s) Tal.st (ms)

RX 12.5 mA 10 86,400 220
TX +6 dBm 16.0 mA 7 86,400 220 40–55

Standby 0.68 µA All time 0 0

5.2. Sensor Module

Here, we only list the experimental results for the smoke sensors. The varying current
and operating times of the A5303 smoke sensor at different stages were measured in several
experiments, as shown in Figure 7. Table 2 lists the varying currents to the smoke sensors.
With a large value at the starting point, the signals promptly increased to the maximum
value and then gradually slowed down. The average current was 33 µA, which can be
calculated using Equation (7), and the operating time was approximately 410 ms when
it detected the environment once. With values lower than the threshold, the operational
interval is 10 s, and the sensor is in standby mode. When the value exceeds the threshold,
the sensor measures the environment three times repeatedly at 1 s intervals. This means
that the standby time Tsen.st range for the sensor is 1 ≤ Tsen.st ≤ 10 s.

Figure 7. Smoke sensor experimental results (100 µA/div).
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Table 2. Smoke sensor experimental data for different states (power: 3.3 V).

State Iw (µA)
Time

Iw.aver. (µA)
TW (ms)

Smoke sensor
during

one period

Start 300 10

33

signal MAX. 500 0.2

Attenua.
meas.

50 100
25 100
20 100
10 100

Standby 2.6 All time 2.6

5.3. MCU

Microcontrollers are widely used in terminal devices. Therefore, they are listed
separately and discussed herein. The PSEN system used a low-power-consumption
MCUMSP430 from Texas Instruments. The software uses the interrupts of the MCU to
awaken the standby state to execute the QL-ELQC period monitoring, to compress data, to
set the alarm, to transmit data, and to receive commands or acknowledgments from the sink
node. The clock system is specifically designed for battery-powered applications. Table 3
presents the experimental results for the MSP430 when the PSEN was in different states.
Environmental monitoring included monitoring the temperature, humidity, and smoke.

Table 3. MCU experimental data of the PSEN in different states (power: 3.3 V).

State Iw.aver Tw

Low battery detect 420 µA 120 ms
Environment detect 420 µA 120 ms

Environ. detect & RF 500 µA 250 ms
Standby 1.96 µA 10 s

5.4. Power Management

In this study, we used the analog-to-digital converter (ADC) feature of an MCU
MSP430F149 to detect the battery voltage periodically (10 s in the normal state and 1 s in
the alarm state). The reference voltage of the ADC was 2.5 V, and resistors R1 and R2 were
used to distribute the battery voltage. The circuit of the low-battery detector is shown on
the left-hand side of Figure 8.

Figure 8. Low-battery circuit and AD VBAT input buffer.

The new battery’s voltage is slightly higher than the nominal voltage, and the AD
VBAT voltage is greater than the break-over voltage for the clamp diode of the AD VBAT
input buffer, which is the circuit in the MCU. In the experiment, when the AD STROBE was
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set with a high resistance input, the current in decades of µA could be detected through R1.
To solve this problem, a new low-battery circuit was designed, as shown in Figure 9.

Figure 9. Newly designed low-battery circuit.

When the MCU does not detect the battery voltage, AD_STROBE is low and Q3 is off.
Simultaneously, the grid voltage of Q4 becomes high and Q4 is off. When Q3 and Q4 are
in the off state, AD_VBAT is reduced by R2. Thus, the detection circuit does not consume
charge. When the MCU detects the battery voltage, AD_STROBE is high. In this case, Q3 is
turned on, which pulls down the grid voltage of Q4, turning Q4 on. In this instance, R1
and R2 distribute the battery voltage, and the MCU detects the voltage of AD_VBAT to
obtain the battery voltage. Table 4 lists the low-voltage detector experimental current and
operating time of the PSEN. The average current is 0.0083 µA, which can be calculated
using Equation (7).

Table 4. Low-voltage detector experimental data of the PSEN (power: 3.3 V).

Compo. Stage Iw (µA) TW (ms) Iw.aver. (µA)

Low voltage
IR 1980 12

0.0083AD 900 2
MCU 420 10

6. PSEN System Measurements and Discussion

Table 5 lists the experimental average current for each module and the total average
current of the PSEN system. The actual communication time Ttx-rx of the RF module in
Table 1 was 17 ms, and the average current of Itx-rx is 13,941 µA. Note that the redundant
RF module’s operational time (200 ms) and the current (16,000 µA) were calculated for the
average current Itotal-ave. and Ial.ave., considering the collision and retransmitting. The LDO
current has three components, among which 1.54 µA was the standby current, 2.5 µA was
the PSEN’s current for monitoring the environment, and 11 µA was the PSEN’s current
for communicating with the sink node. Based on these currents, as well as Tw and Tst,
the average LDO current under normal and alarm states was determined as 3.14 µA and
5.06 µA using Equation (7), respectively.

From the module measurements, we obtained the average current for different compo-
nents using Equation (7), and then, the total average standby current of all components was
calculated to be 6.92 µA, which is close to the PSEN’s total system standby current of 6.8 µA
obtained from the experiment. As shown in Table 6, the error between the measurements
and calculation with ELQC was 1.73%, which verifies the accuracy of the ELQC model.



Electronics 2023, 12, 4676 13 of 16

Table 5. Experimental data for each module in the normal or alarm state (VCC = 3.3 V).

Module Iw
(µA)

Ist
(µA)

Tw
(s)

Tnorm-st/lt
(s)

Tal.-st
(s)

Itotal-ave.
(µA)

Ial.ave.
(µA)

LDO
11

1.54
0.200 86,400 1

3.14 5.062.5 0.721 10 1
Low-vol. 2488 0 0.012 3600 1 0.0083 29.50

MCU 420 2 0.120 10 1 6.47 46.79
Smoke 33 2.6 0.410 10 1 3.79 11.44
SHT10 386 0.1 0.103 10 1 4.08 36.14

RF-module 16,000 0.68 0.200 86,400 1 0.717 2667.23
Total 6.8 18.65 2796.16

Table 6. Theoretical and experimental data of the PSEN standby current.

Standby Parameters of the Node System I (µA)

Experimental 6.8
Theoretical calculation 6.92

Error (%) 1.73

Meanwhile, the PSEN’s total normal average current was 18.65 µA, and the total
average current was 2.79 mA in the alarm state. As shown in Figure 10, the standby
time (86,400 s) set by the QL-ELQC in the normal state was much longer than that (1 s)
in the alarm state, and the current in the normal state was approximately 1/150 times
lower than that in the alarm state. The advantage is not reflected enough within 10 s, and
the longer the standby time, the more obvious the advantage. When power equipment
operates normally, the probability of smoke occurrence remains extremely low; therefore,
the QL-ELQC method used in the normal state significantly extends the total lifespan of
the PSEN.

Figure 10. Experimental current of the RF module under different states (each experiment was
repeated three times).

The simulation lifetime of the PSEN is 9.2 years for E91 in Figure 5, which is similar
to a theoretical lifetime of 9.29 years but so long that we cannot test it for approximately
10 years, based on a practical system current of 18.65 µA. Using Equation (7), we can vary
the current and change the lifetime of the PSEN to test the low-quantity charge design
method; namely, we can select a small Qbattery and shorten the lifetime for the test. Here, we
used three E92 (not ordinary E91) small batteries, which have an approximately 950-mAh
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charge ranging from 1.6 to 1.2 V. The relevant data for the tested system are presented in
Table 7. By increasing the communication times of the PSEN to every half second with
sensors continuously monitoring the environment, the current of the PSEN can be increased.
Thus, the current of the tested system is 5.48 mA (not 18.65 µA) to shorten the lifetime
of the test, and the calculation lifetime is 173.35 h. When the voltage decreased to 1.2 V,
the practical lifetime of our tested system was 181 h, and the error was 7.64 h, which is
approximately 4%. As our proposed method considers redundancy, the tested system ran
slightly longer than the calculated lifetime. Through practical experiments and algorithms,
we tested the lifetime of a photoelectric smoke node and verified that our method, which is
based on the charge quantity, is reasonable. Our proposed approach is general and can be
applied to alarm scenarios where the node requires long-term operation.

Table 7. Measurement and theoretical lifetime of the PSEN with increasing transmission times.

Battery Type E92

Quantity charge from 1.6 to 1.2 V 950 mAh
Tested practical lifetime (h) 181
Calculation lifetime (h) 173.35
Error (%) 4

7. Conclusions

In this paper, a Q-learning and efficient low-quantity charge (QL-ELQC) method
is presented for the smoke alarm unit of a power system to reduce the average current
and to improve the lifetime of the nodes of wireless sensor networks (WSNs). Analytical
functions were derived to describe the behavior of the parameters versus those with which
they were compared. The Q-learning-based ELQC method was applied to self-adjust the
standby time of the modules to optimize the duty cycle of the sensor and RF modules to
prolong the lifetime of the node system. This could effectively overcome the continuous
state–action space limitations of Q-learning using the state classification method. Methods
were used to extend the lifetime of PSENs in WSNs by reducing the average current in
each module and every state, respectively. The simulation results reveal that the proposed
scheme significantly improves the lifetime compared with the existing QL-Load scheme.
Furthermore, the experimental results are consistent with the theoretical results. The model
appears to be accurate for nodes in WSNs. The experimental results show that the proposed
QL-ELQC method extends the lifetime of the PSEN, which is capable of long-term operation.
We concluded that the QL-ELQC method proposed in this paper can be used for reference
to prolong the lifetime of the node in alarm scenarios where batteries cannot be replaced or
recharged under harsh environmental conditions.
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