
Citation: Ji, W.; Cao, Z.; Li, X.

Multi-Task Learning and

Temporal-Fusion-Transformer-Based

Forecasting of Building Power

Consumption. Electronics 2023, 12,

4656. https://doi.org/10.3390/

electronics12224656

Academic Editors: Katia Lida

Kermanidis, Phivos Mylonas and

Manolis Maragoudakis

Received: 6 October 2023

Revised: 13 November 2023

Accepted: 14 November 2023

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Multi-Task Learning and Temporal-Fusion-Transformer-Based
Forecasting of Building Power Consumption
Wenxian Ji 1, Zeyu Cao 2 and Xiaorun Li 1,*

1 College of Electrical Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, China;
11910094@zju.edu.cn

2 School of Spatial Planning and Design, Hangzhou City University, 51 Huzhou Street,
Hangzhou 310015, China; caozy@hzcu.edu.cn

* Correspondence: lxr@zju.edu.cn

Abstract: Improving the accuracy of the forecasting of building power consumption is helpful in
reducing commercial expenses and carbon emissions. However, challenges such as the shortage of
training data and the absence of efficient models are the main obstacles in this field. To address these
issues, this work introduces a model named MTLTFT, combining multi-task learning (MTL) with the
temporal fusion transformer (TFT). The MTL approach is utilized to maximize the effectiveness of
the limited data by introducing multiple related forecasting tasks. This method enhances the learning
process by enabling the model to learn shared representations across different tasks, although the
physical number of data remains unchanged. The TFT component, which is optimized for feature
learning, is integrated to further improve the model’s performance. Based on a dataset from a
large exposition building in Hangzhou, we conducted several forecasting experiments. The results
demonstrate that MTLTFT outperforms most baseline methods (such as LSTM, GRU, N-HiTS) in
terms of Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE), suggesting
that MTLTFT is a promising approach for the forecasting of building power consumption and other
similar tasks.

Keywords: power consumption forecasting; multi-task learning; deep learning; time series analysis;
intelligent building

1. Introduction

In order to slow down the trend of global warming and protect the Earth’s ecologi-
cal environment, more and more countries and regions are committed to mitigating the
greenhouse effect by reducing carbon emissions. A significant portion of carbon emis-
sions is produced through the use of fossil fuels, which provide electricity for commercial
and domestic needs. As the primary consumers of electricity, commercial buildings hold
great potential for reducing carbon emissions and alleviating global warming [1]. If the
power consumption of commercial buildings can be accurately predicted without affect-
ing normal commercial demand, building operators can purchase electricity according to
actual demand [2] and reduce the cost of electricity while enabling power suppliers to
allocate electricity more efficiently, reducing waste. Thus, the accurate prediction of power
consumption in commercial buildings has garnered increasing attention from researchers.

The task of forecasting power consumption can be considered as a subfield of time
series analysis, which has been extensively studied by researchers. Time series analysis
aims to understand the underlying structure and patterns within sequential data points,
making it a vital tool in various applications, from finance to meteorology. Statistical
methods such as Auto-Regressive (AR) and Auto-Regressive Integrated Moving Average
(ARIMA) have been successfully used by Box and Jenkins [3] in the economic sphere. The
AR and ARIMA models, in particular, leverage the correlation between successive data
points in a time series to make predictions. Their popularity in economic forecasting is
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attributed to their ability to capture and model seasonality, trends, and other patterns in the
data. These methods usually have a complete theoretical derivation process and modeling
steps that are suitable for data with a priori knowledge or empirical assumptions. However,
these methods may not be suitable for complex nonlinear data. The nonlinearity in data
can arise from various factors such as abrupt changes, external influences, or inherent
complexities in the underlying system. Traditional statistical methods might struggle to
capture these nonlinearities, leading to suboptimal forecasting performance. Hence, the
need for alternative methodologies that can handle such complexities becomes evident.

To better predict complex nonlinear time series, many machine learning (ML) meth-
ods have been used in the forecasting of building energy consumption, such as artificial
neural networks (ANNs) [4], gene expression programming (GEP) [5], and support vector
regression (SVR) [6]. With the help of ML, more complex distributions can be modeled,
resulting in increased accuracy in the forecasting of power consumption. In recent years,
the rise of deep learning [7,8] has further improved the accuracy of time series forecasting.
Various neural network modules have been introduced for time series analysis, including
convolutional neural networks (CNsN) [9], recurrent neural networks (RNNs) [10], and
long-short term memory (LSTM) networks [11]. These different neural network models
have various advantages for feature extraction and pattern recognition. As a result, some
methods have utilized several modules for the forecasting of power consumption, such as
CNN-LSTM [12] and RNN-LSTM [13]. These hybrid models take advantage of different
modules and have achieved impressive prediction results.

In recent years, a novel module named Transformer [14] has garnered significant
attention for its prowess in handling time series data. Unlike traditional methods, the
Transformer is built upon a unique architecture that leverages an attention mechanism.
This attention mechanism is pivotal in understanding the importance of different features
within a dataset. It works by dynamically allocating varying weights to different features
based on their relevance in a given context. As a result, the Transformer can discern and
emphasize critical patterns while de-emphasizing less relevant ones. This capability not
only enhances the accuracy of time series predictions but also provides insights into the
underlying structure of the data. With its ability to assign different weights to distinct
features, the Transformer has exhibited remarkable feature-learning ability, setting it apart
from many conventional models.

Many Transformer-based algorithms have been proposed for time series forecasting,
such as [15], which used Transformer for influenza prevalence analysis [16], which ad-
dressed the memory bottleneck of the Transformer for time series forecasting; and [17],
which improved the Transformer for long sequence time series forecasting. For the forecast-
ing of power consumption, some works have adopted the Transformer, such as [18], which
proposed a Transformer-based model for power consumption prediction and anomaly
detection, and [19], which combined Transformer and Light Gradient-Boosting Machine
(Light-GBM) [20] for medium-term power consumption forecasting.

While deep learning approaches have shown remarkable outcomes, they are widely
recognized for their extensive data demands [21–23]. Nevertheless, in practical settings,
energy consumption behaviors tend to be distinct among various buildings. Such distinctions
suggest that data might be somewhat limited when designing a prediction model specific to a
single structure. Therefore, it can be challenging to directly utilize deep learning models for
building power consumption forecasting [24]. To solve the data-deficiency problem in deep
learning algorithms, multi-task learning (MTL) [25] has been considered as a promising area.
MTL aims to improve the performance of multiple related learning tasks by leveraging useful
information among them. By learning multiple tasks, models can capture more important
information for the main task, especially when data are limited. Several works have been
performed to adopt MTL in deep learning for time series forecasting. For instance, [26]
adopted MTL for univariate time series forecasting, [27] improved the time series forecasting
results by fusing near and distant future visions, and [28] used old data to transfer useful
knowledge to current prediction for better time series prediction results.
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Motivated by the challenges of forecasting building power consumption with con-
strained data, we identified a gap in existing methodologies. While there are techniques
that perform adequately, they often do not fully harness the potential of limited datasets,
especially when faced with complex nonlinear consumption patterns specific to individual
buildings. To address this, we introduced a novel approach: multi-task learning-based
temporal fusion transformers (MTLTFTs). Drawing inspiration from both the Transformer
and MTL methods, MTLTFT assigns forecasting tasks that span from immediate to distant
future predictions to the temporal fusion transformers. This strategy ensures the optimal
utilization of the available data. Coupled with the efficiency of the transformer model, the
MTLTFT method offers enhanced precision in forecasting building power consumption,
presenting a significant advancement over traditional methods.

The paper is organized into six sections: introduction, related works, dataset, method-
ology, experiments and analysis, and conclusion. We introduce the background and the
motivation of our method in the introduction section. The original methods and related
works are briefly introduced in the related works section. We show an original dataset in
the dataset section. The details of MTLTFT are shown in the methodology section. The
details of experiments and corresponding analysis are contained in the experiments and
analysis section. Lastly, the summary of our method is given in the conclusion section.

2. Related Works
2.1. Multi-Task Learning

Multi-task learning (MTL) aims to train multiple tasks in parallel, enhancing the
performance of the main task through the incorporation of training signals from other
related tasks [29]. By introducing auxiliary tasks, models can learn from both the main and
auxiliary tasks, yielding improved forecasting results. The selection of auxiliary tasks is a
critical aspect of MTL.

For time series forecasting, various approaches have been explored. The Multi-Level
Construal Neural Network (MLCNN) [27] posits that near and distant future forecasting
can serve as beneficial auxiliary tasks. Reference [30] employed a deep multi-task learning
framework to forecast air quality by integrating data from different but related tasks. In
another study, ref. [31] utilized MTL for electricity load forecasting, while the auxiliary
task was to predict the outdoor temperature. The authors of [32] provide a comprehensive
survey of MTL methodologies, underlining their effectiveness across different domains,
including time series forecasting.

By leveraging information from auxiliary tasks, MTL is demonstrated to enhance prediction
accuracy and model robustness, which is particularly valuable in time series forecasting.

2.2. Temporal Fusion Transformer

The temporal fusion transformer (TFT) is an attention-based deep neural network
designed for multi-horizon time series forecasting [33]. While many attention-based models
exist for time series forecasting, few of them are both highly accurate and interpretable.
TFT addresses this issue by modifying the architecture of the original transformer and
introducing interpretable multi-head attention. Additionally, TFT uses gating mechanisms
to skip over unused components and implements a variable selection network to identify
relevant input variables, resulting in improved forecasting accuracy. TFT also empha-
sizes the need to treat different input variables separately, including static and dynamic
variables. The effectiveness of TFT for time series forecasting has been demonstrated in
experiments [21,34], and as such, we have chosen to incorporate TFT into our MTLTFT
model for forecasts of building power consumption.

3. Dataset

For the experiment, we obtained a dataset on building power consumption from the
Hangzhou International Expo Center (HIEC) in China. HIEC covers a total floor area
of 850,000 square meters, and by the end of December 2022, HIEC had witnessed more
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than 7400 conferences and more than 260 exhibitions. Hangzhou, where HIEC is located,
experiences a humid subtropical climate characterized by four distinct seasons: a warm
and humid spring, a hot and humid summer with frequent rainfalls, a cool and clear
autumn, and a cold and cloudy winter. This climate information is crucial as weather
variations significantly influence building power consumption patterns. As a building
with great power consumption, HIEC is a good research object for the forecasting of
power consumption. Specifically, we collected the day-level electricity load information
for HIEC for nearly three years (1 September 2019–30 December 2022). The center consists
of three parts: conference, hotel, and exhibition areas. These areas are used for different
purposes, so their electricity load patterns may vary. However, we found similar patterns
of power consumption on air conditioners in different areas. It is important to note that
in our analysis, we focused primarily on the consumption patterns of air conditioners,
excluding other electricity consumption patterns. Furthermore, it was observed that the
consumption of air conditioners accounted for approximately 40% of the total electricity
usage across these areas. This significant proportion highlights the relevance of our focus
on air conditioning systems in understanding the overall energy consumption at the center.
So we recorded the air conditioning power consumption in these three areas as part of
the dataset. We also recorded weather history information from China Meteorological
Data Service Center because knowing the temperature range in the future can be helpful
in forecasting the power consumption of air conditioners. Specifically, we recorded the
maximum and minimum temperatures for each day in the dataset.

A sample display of the dataset can be found in Table 1. Different areas were cate-
gorically encoded, such that 0 means conference area, 1 means hotel area, and 2 means
exhibition area. In the dataset, every record can be identified by the Date and Area columns.
The Consumption (kWh) column is the consumption of air conditioners, which is the
target value to forecast. The Max_temperature (°C) and Min_temperature (°C) columns are
auxiliary input variables to help forecasting.

We also show part of the dataset in Figure 1. In the hotel area, the consumption of air
conditioners is obviously higher in summer than in other months. This pattern is similar in
the other two areas. This implies that temperature is an important variable that influences
the power consumption of air conditioners. Also, some anomaly points (zero values) in
the dataset are shown in Figure 1, so we cleaned the data before building the training and
testing set. For those points with zero values, we replaced them with the mean of the
neighboring normal values within a 15-day range. In our observations of the data, we have
not come across a situation where there are zero values persisting for a consecutive span of
fifteen days. Thus, this filling method is feasible and does not pose any issues.

Figure 1. Daily consumption of the air conditioners in the hotel area.
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Table 1. Daily samples of the dataset used in the paper.

Date Consumption (kWh) Max_Temperature (°C) Min_Temperature (°C) Area

5 January 2022 59.39 11 6 1
16 November 2021 667.93 19 10 2

4 May 2020 2366.46 36 20 1
15 November 2021 584.63 19 9 2

3 October 2021 5894.18 34 21 0

4. Methodology

We adopted a temporal fusion transformer and multi-task learning to deal with the
real data for building power consumption. We divided the datasets into two primary parts:
the training set and the testing set. Specifically, the proportion allocated for the training set
was 80%, while the testing set constituted 20% of the total data. It is essential to note that
we utilized 20% of the training set specifically as a validation set. This segmentation was
pivotal as it ensured that we had a dedicated subset for model evaluation and fine-tuning.
Subsequently, we leveraged these distinct sets to generate the requisite data for the various
tasks inherent to our multi-task learning approach.

4.1. Simplified Temporal Fusion Transformer Model

Considering the feature of our dataset, we used a simplified temporal fusion trans-
former for the forecasting. The structure of our TFT model is shown in Figure 2. The
original TFT model is designed to be good at extracting information from static data. How-
ever, there are no static data in our dataset, so we simplified the TFT model. Suppose we
want to use historical information from the past k days to forecast the power consumption
in the next τ days. Then, the inputs can be divided into past inputs and known future
inputs. Past inputs are the consumption in the past k days. Known future inputs are the
variables that can be known in advance, such as temperature values and time index in the
next τmax days. Generally, τmax can be different from τ, but we set them as the same in our
experiment for convenience.

Past inputs are fed into a series of Long Short-Term Memory (LSTM) encoders [35] for
feature extraction. Similarly, known future inputs are fed into a series of LSTM decoders
for further feature extraction. With these LSTMs, the time-dependent inputs are locally pro-
cessed for temporal self-attention computing. The temporal self-attention mechanism [33]
is a modified multi-head attention in transformer-based architectures designed to enhance
explainability. This module evaluates the importance of each vector in the input features,
that is, the attention, using three variables. Before computing the temporal self-attention,
the hidden states of LSTMs are processed by the Gate and Add&Norm layers. The Gate
layer represents the gating layer, which is based on Gated Linear Units (GLUs) [36]. Gating
layers provide flexibility to suppress any parts of the architecture that are not required
for a given dataset. Equation (1) shows the mathematical expression of GLUs, where X
represents the input of the Gated Linear, W1, W2 are learnable weight matrix parameters,
b1, b2 are corresponding bias parameters, σ(.) is the sigmoid activation function, and � is
the element-wise Hadamard product.

GLU(X) = σ(W1X + b1)� (W2X + b2) (1)
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Figure 2. Structure of simplified temporal fusion transformer. GRN represents gated residual
network blocks that enable efficient information flow with skip connections and gating layers. Time-
dependent processing is based on LSTMs for local processing, and multi-head attention for integrating
information from any time step.

Add&Norm means the combination of residual connection and layer normalization [37].
This layer has proven efficient for feature extraction in various transformer structures. Further-
more, the gated residual network (GRN) was proposed to give the model the flexibility to apply
non-linear processing only where needed. Equations (2)–(4) illustrate the GRN. LayerNorm(.)
is standard layer normalization, a, c are the inputs of the GRN, a is seen as the primary input,
and c is seen as an optional context vector. ELU is the Exponential Linear Unit function [38],
and η1 ∈ Rdmodel , η2 ∈ Rdmodel are intermediate layers. And W3, W4, W5 are weight matrix
parameters, while b3, b4 are the corresponding bias parameters.

GRN(a, c) = LayerNorm(a + GLU(η1)), (2)

η1 = W3η2 + b3 (3)

η2 = ELU(W4a + W5c + b4) (4)

GRN enables efficient information flow with skip connections and gating layers.
Except for the GRN, masked interpretable multi-head attention layers [33] are also special
components in TFT; with the rectified multi-head attention, the attention in the TFT becomes
interpretable and easy to understand. So we used the same multi-head attention layers in
our model; more details can be found in the original TFT. Finally, like the TFT, we adopted
quantile loss [39] as our loss function. With the help of these useful blocks, the simplified
version of TFT model is still good for forecasting tasks.
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The masked interpretable multi-head attention (MIMHA) mechanism enhances the
model’s ability to focus on different parts of the input sequence, allowing for a better
understanding and interpretation of the model’s behavior. This is achieved by incorporating
a masking strategy and making the attention scores interpretable.

The standard multi-head attention is formulated as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V, (5)

where Q, K, and V represent the query, key, and value matrices, respectively, and dk is the
dimension of the keys.

In the MIMHA, a masking matrix M is introduced to the attention mechanism to
control the information flow, making the attention scores more interpretable. The masked
attention is computed as

MaskedAttention(Q, K, V, M) = softmax
(

QKT + M√
dk

)
V. (6)

The masking matrix M is designed such that it contains large negative values where
attention should be masked, forcing the softmax function to output near-zero values at
these positions. This enables the model to focus its attention on the unmasked positions,
making the attention scores more interpretable.

Furthermore, the MIMHA employs a rectification strategy to ensure that the attention
scores are non-negative, which simplifies the interpretation of the attention mechanism.
The rectified attention is computed as

RectifiedAttention(Q, K, V, M) = relu(MaskedAttention(Q, K, V, M)), (7)

where relu is the Rectified Linear Unit function, which zeroes out negative values, ensuring
that all attention scores are non-negative.

Through the incorporation of a masking strategy and rectification, the MIMHA pro-
vides a more interpretable and easily understandable attention mechanism, which is crucial
for analyzing and debugging the model, especially in tasks where understanding the
model’s focus is essential for ensuring correct and reliable predictions.

4.2. Multi-Task Generation Strategy

Though the dataset we used included three years’ data, it is still not enough to train a
good forecasting model. As a result, we proposed a multi-task generation strategy for data
augmentation, as well as model optimization. As previously mentioned in MLCNN [27],
utilizing both near- and distant-future visions enhances the model’s ability to learn salient
features. Building upon this, our multi-task generation strategy is depicted in Figure 3.

Given a time series X = Xt−k+1, . . . Xt where Xi ∈ Rn and n represent the variable
dimension with t− k + 1 ≥ 0, our primary goal is to predict the value of Xt+h, with the
horizon h being determined by specific environmental needs. To further augment our
data and optimize model performance, we extend our predictions to encompass values
at Xt+h−i, . . . Xt+h+i. This approach not only offers a broader view of the time series
progression but also introduces auxiliary tasks that bolster the primary task. The number
of these tasks is contingent on the value of i. As it nears h, the tasks multiply, peaking
at 2i when i < h and then eventually consolidating to the main task at i = 0. This
structure effectively balances the intricacies of multiple auxiliary tasks and the central aim
of forecasting the principal future point.

To be more specific, in MTLTFT, we assign multiple forecasting tasks to the temporal
fusion transformers, including the main task of predicting the next h steps ahead, as well
as auxiliary tasks of predicting the h− i steps ahead and h + i steps ahead (0 < i < h). The
objective function of MTLTFT is to jointly minimize the loss function of all tasks, which
helps the model to learn from all tasks simultaneously. The auxiliary tasks can provide
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additional information and constraints to help the model better capture the patterns and
relationships in the data, thus improving the performance of the main task. Furthermore,
the MTL framework allows the model to share the learned representations among different
tasks, which can also help the model to better generalize to new data. Therefore, MTLTFT
can make the best use of limited data and improve the accuracy of the forecasting of
building power consumption.

Temporal Fusion Transformer

Temporal Fusion Transformer

Temporal Fusion Transformer
·
·
·

·
·
·

·
·
·

·
·
·

Share Parameters

Inputs h ahead outputs

h-i ahead outputs

h+i ahead outputs

Main Task

Auxiliary Task

Auxiliary Task

0<i<hÎN

Figure 3. Illustration of the multi-task learning strategy we used.

Unlike the original MLCNN implementation, we did not design explicitly seperated
parts for the main task and auxiliary tasks in the model. Instead, we shared the model
weight among the auxiliary tasks and the main task, hoping that the multi-task generation
can also act as a data-augmentation method. In the training phase, we directly put all the
data segments together for training. This way, more data can be used for model training,
improving the performance of the model.

4.3. Integration of Multi-Task Learning with Temporal Fusion Transformer

Multi-task learning (MTL) is an approach in which a model is trained on multiple tasks
simultaneously, leveraging shared information among tasks to improve generalization. In
the context of our research on forecasting building power consumption, MTL allows the
model to predict various future lengths, such as 3 days, 5 days, and 7 days.

To integrate MTL with the simplified TFT, we modified the architecture to have
multiple output heads, each dedicated to a specific forecasting task. Each head employs the
quantile loss function, ensuring that the model provides accurate forecasts across different
quantiles. The shared encoder layers, consisting of LSTMs and the temporal self-attention
mechanism, extract common temporal features that are beneficial for all tasks. These shared
features are then fed into task-specific decoders to produce forecasts for each task.

The main advantage of this integration is the regularization effect that MTL brings. By
training on multiple tasks, the model is less likely to overfit the idiosyncrasies of a single task,
leading to better generalization on unseen data. Moreover, leveraging shared temporal patterns
across tasks can potentially improve the forecasting accuracy of the main task.

The combined MTLTFT model’s structure can be visualized as a TFT model with multiple
parallel output branches, each corresponding to a different forecasting task. These branches
share the same encoder layers but have separate decoders tailored to their respective tasks.

Mathematically, the combined MTL-TFT model can be represented as

Yi = TFTdecoderi (TFTencoder(X)) for i = 1, . . . , T (8)
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where Yi is the forecast for the ith task, T is the total number of tasks, and X is the input
data. The shared encoder is represented by TFTencoder, and the task-specific decoders are
represented by TFTdecoderi .

In our experiments, we observed that the integrated MTL-TFT model outperformed
single-task models in terms of forecasting accuracy and robustness, especially when there
were limited data for individual tasks.

5. Experiments and Analysis
5.1. Experiments Setup

To validate the utility of the proposed MTLTFT model, we used four baseline methods for
comparison in the experiments. First, we adopted a simple model that uses the last known target
value to make a prediction, named Baseline. Then, we adopted neural hierarchical interpolation
(N-HiTS) [40], a designed LSTM network [11] and a designed gated recurrent unit (GRU) neural
network [41] for comparison. LSTM and GRU are both types of recurrent neural networks
(RNNs) that have been specifically designed to address the problem of vanishing gradients
in traditional RNNs. They both use gating mechanisms to selectively forget or remember
information from the past, and this helps them to maintain long-term dependencies in the time
series. In contrast, N-HiTS does not use RNNs but instead uses a series of convolutional neural
networks (CNNs) and fully connected layers to extract features from the input data. N-HiTS has
been shown to perform better than LSTM on datasets with multiple time series and complex
dependencies between them. GRU is also capable of capturing long-term dependencies but has
been found to be less effective than LSTM in some cases. These methods are widely recognized
as good deep learning algorithms for time series forecasting, so we used them to illustrate the
advantages of MTLTFT.

In order to provide a comprehensive understanding of the differences between and
similarities among the methods utilized, a comparison has been summarized in Table 2.
This table outlines the type of models, the proportion of training data used, the nature of
features (whether they are based on past inputs or also incorporate future known inputs),
and the level of parameter complexity for each method.

All experiments were implemented on a personal computer with 32 GB RAM and a
RTX 3090ti GPU. The coding environment was Pytorch [42]. We repeated all the experiments
five times and recorded the average results.

Table 2. Comparison of methods used for time series forecasting.

Method Model Type Training % Features Selection Parameters

Baseline - 0 - Minimal

N-HiTS [40] CNN 80 Past and Future known combined Moderate

LSTM [11] RNN 80 Past and Future known combined High

GRU [41] RNN 80 Past and Future known combined High

MTLTFT RNN, Transformer 80 Past and Future known seperated High

The evaluation metrics are Root Mean Squared Error (RMSE) and Mean Absolute
Percentage Error (MAPE). RMSE is a measure of the average deviation of the predicted
values from the actual values. As shown in Equation (9), RMSE is computed with three
variables: yi is the actual value of the i-th observation, ŷi is the predicted value of the i-th
observation, and n is the total number of observations.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (9)
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MAPE is a measure of the percentage difference between the predicted and actual values.
Equation (10) shows how MAPE is computed, yi is the actual value of the i-th observation, ŷi is
the predicted value of the i-th observation, and n is the total number of observations

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (10)

To extend these metrics for relative comparison, Relative RMSE and Relative MAPE
are utilized. Relative RMSE is calculated by comparing the RMSE of the proposed model to
that of a baseline model. It quantifies the improvement in or degradation of the proposed
model over the baseline. The formula for Relative RMSE is given in Equation (11), where
RMSEmodel is the RMSE of the proposed model, and RMSEbaseline is the RMSE of the
baseline model.

Relative RMSE =
RMSEmodel−RMSEbaseline

RMSEbaseline
(11)

Similarly, Relative MAPE is defined as the MAPE of the proposed model in relation to
the MAPE of a baseline model. This metric offers a way to compare the percentage error of
the model against a standard baseline, providing a relative scale of error. The equation for
Relative MAPE is given in Equation (12), with MAPEmodel representing the MAPE of the
proposed model, and MAPEbaseline representing the MAPE of the baseline model.

Relative MAPE =
MAPEmodel−MAPEbaseline

MAPEbaseline
(12)

5.2. Results

The forecasting experimental results are shown in Table 3. Obviously, simply using
the last known value as the prediction value is not good enough in our dataset. So Baseline
obtained the worst results in terms of both two metrics. Four other deep learning models,
including MTLTFT, achieved better results with RMSE lower than 1800. Furthermore,
MTLTFT achieved the smallest RMSE of 1761.15, outperforming all the methods. Although
MTLTFT was the best in terms of RMSE, N-HiTS achieved the smallest MAPE of 1.14. This
shows that N-HiTS is good at minimizing the percentage errors between the actual values
and the forecast values. However, MTLTFT achieved a close MAPE of 1.18, implying that
MTLTFT makes a good trade-off between MAPE and RMSE.

Table 3. A comparison of forecasting results, including RMSE, relative RMSE, MAPE, and relative
MAPE. The best results in each row are shown in bold.

Method Baseline/% N-HiTS/% LSTM/% GRU/% MTLTFT/%

RMSE 2292.52 0% 1777.24 −22% 1796.1 −22% 1783.8 −22% 1761.2 −23%
MAPE 1.84 0% 1.14 −38% 1.46 −21% 1.51 −18% 1.18 −36%

While N-HiTS excels at minimizing percentage errors, MTLTFT demonstrates supe-
rior capability in minimizing larger absolute errors, which, as previously mentioned, is
paramount in our application of reducing building power consumption. It is crucial to
note that RMSE and MAPE have different sensitivities; RMSE is sensitive to larger errors
due to its squaring property, while MAPE focuses on percentage discrepancies. In contexts
like ours, where larger forecast errors have more severe implications, RMSE provides a
more pertinent assessment of model performance. That said, we acknowledge the merit of
N-HiTS, especially in scenarios where percentage error is a focal point of evaluation. Our
goal is to reduce the consumption of the building power, so we should pay more attention
to larger forecast errors. As a result, MTLTFT shows its great potential for building power
consumption forecasting in the experiments.

To further analyze the features of MTLTFT, we recorded the training process of
MTLTFT in Figure 4. In this process, quantile losses [43] were computed on the train-
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ing set and validation set, and thus, we obtained training loss curves and validation loss
curves. According to the curves, the model costs about 200 epochs for convergence. With
the progress of training, training loss and validation loss decreased gradually and they
became close in the end. This means that the distributions of the training set and validated
set are similar and the model may have good generalization.

Figure 4. Training and validation loss over 400 epochs of MTLTFT.

However, the validation loss is a bit smaller than the training loss. This may be
because the model performed better on the unseen validation set. We hold the opinion
that a shortage of data is the reason that the validation loss is lower than the training loss.
Data in the validation set are too similar to the training set, so it is too easy for the model to
forecast on the validation set. As a result, we still need more data or data-augmentation
methods for further exploration.

For further illustration, we show two visualizations of the forecasting results in
Figure 5 (larger error) and Figure 6 (smaller error). In these figures, blue curves are actual
values and orange curves are predicted values. Grey curves represent the attention val-
ues. The attention values are the features generated in Masked Interpretable Multi-head
Attention part in Figure 2, which has the same length as the input variables. Different
shades and colors indicate the probability of the predicted value produced by the model
during the prediction. The deeper the color is, the larger the probability is. According to
the figures, MTLTFT pays more attention to the increase in the input and responds to it in
the prediction. The prediction of the model tends to be in the middle of the actual value
range. This is why MTLTFT can obtain the smallest RMSE value and the best forecasting
accuracy. However, MTLTFT is still not able to fit the actual value perfectly because of the
shortage of data.
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Figure 5. A forecasting example for the testing results of MTLTFT (larger error).

Figure 6. A forecasting example for the testing results of MTLTFT (smaller error).

6. Conclusions

In this research endeavor, we have pioneered the introduction of MTLTFT, a ground-
breaking algorithm combining the robustness of a multi-task learning approach with the
precision of temporal fusion transformers, optimized specifically for forecasting building
power consumption. Our salient contributions encompass the following:

1. Innovating a multi-task learning technique that serves dual purposes: data augmenta-
tion and efficient model training;

2. Customizing temporal fusion transformers to cater specifically to the nuances of
building power consumption forecasting;
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3. Authenticating the efficacy of MTLTFT through rigorous validation on a real-world
dataset, establishing its superiority in the domain.

Furthermore, our endeavors led to the compilation of a distinctive dataset on building
power consumption, sourced from the esteemed Hangzhou International Expo Center.
Empirical assessments revealed that MTLTFT achieved an RMSE of 1761.2 and an MAEPE of
1.18, underscoring its unparalleled potential in this forecasting arena. However, it is worth
noting the challenges posed by data paucity for specific buildings, which inadvertently
impacts the predictive precision. As we chart our future research trajectory, our emphasis
will be on exploring a myriad of data augmentation strategies, aiming to maximize the
utility of scarce datasets.
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