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Abstract: The paper introduces a novel consensus algorithm named MRPBFT, which is derived
from the HotStuff consensus protocol and improved upon to address security deficiencies in tra-
ditional consensus algorithms within the domain of digital asset transactions. MRPBFT aims to
enhance security and privacy protection while pursuing higher consensus efficiency. It employs a
multi-primary-node approach and a ring signature mechanism to reinforce security and privacy
preservation features in the consensus system. This algorithm primarily focuses on two main im-
provements: Firstly, it proposes the ed25519LRS signature algorithm and discusses its anonymity for
transaction participants and the non-forgeability of signature information in the identity verification
and message verification processes within the consensus algorithm. Secondly, the paper introduces
MPBFT asynchronous view changes and a multi-primary-node mechanism to enhance consensus
efficiency, allowing for view switching in the absence of global consensus. With the introduction of
the multi-primary-node mechanism, nodes can be flexibly added or removed, supporting parallel
processing of multiple proposals and transactions. Finally, through comparative experiments, the
paper demonstrates that the improved algorithm performs significantly better in terms of throughput
and network latency.

Keywords: MRPBFT consensus algorithm; multi-primary nodes; privacy protection; ring signature

1. Introduction
1.1. Research Background and Motivation

Since the initial release of Bitcoin blockchain technology by Satoshi Nakamoto in
2008 [1], the application and development of this technology have been notable worldwide,
with broad applications in fields, such as finance, supply chain management, healthcare,
and more. Blockchains primarily exist in three types: public, consortium, and private chains.
Public chains, like Bitcoin and Ethereum, are entirely open and decentralized networks.
Consortium chains, on the other hand, are blockchains maintained and transaction-verified
by specific entities. These chains often employ consensus algorithms different from those
used in public chains. Lastly, private chains stringently restrict participant access and
use to ensure high levels of privacy and authority control. However, the considerable
energy consumption of the Proof of Work (POW) consensus algorithm [2] used by Bitcoin
has elicited widespread societal concern. As a result, some blockchain projects, such
as Ethereum, have adopted more eco-friendly consensus algorithms, like Proof of Stake
(POS) [3].

1.2. Limitations of Previous Work

Consensus algorithms, such as Paxos [4], Practical Byzantine Fault Tolerance (PBFT) [5],
and HotStuff [6], have been predominantly adopted in the context of consortium and pri-
vate chains. The Paxos algorithm, proposed by Leslie Lamport in 1990, is a classic consensus
algorithm for distributed systems aimed at ensuring their consistency and security. How-
ever, it has limitations concerning complexity, performance overhead, and single-leader
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issues. The PBFT algorithm, proposed by Miguel Castro and Barbara Liskov in 1999, offers
a solution for the consistency issue in distributed systems. Nevertheless, its performance
loss increases significantly with the addition of nodes. HotStuff, an improved Byzantine
fault-tolerant consensus algorithm, presents considerable advancements compared to PBFT.
However, it still suffers from problems, such as a single primary node issue, insufficient
security of the aggregated signature algorithm, and overall performance deficiency.

1.3. Contributions of This Research

The main contributions of our study are as follows. First, we propose an efficient
consensus algorithm based on multiple primary nodes and ring signatures to address the
shortcomings of the HotStuff consensus algorithm. Our algorithm enhances system liveness
and scalability by introducing a design with multiple primary nodes that can flexibly
add or remove nodes. This model supports parallel processing of multiple proposals
and transactions, adapting better to dynamic system changes. The design of multiple
primary nodes also improves fault tolerance and scalability, thereby further enhancing the
liveness of the consensus system. Second, we enhance the security and privacy protection
of the consensus algorithm by adopting a ring signature algorithm. Ring signatures
allow multiple nodes to jointly sign documents or messages while maintaining anonymity
without disclosing their identity information. The use of ring signatures ensures the validity
and non-forgery of signatures and provides higher security for identity and message
verification in the consensus algorithm. Consequently, the system becomes more resilient to
attacks and tampering. Third, we optimize the view change process to improve consensus
efficiency. Traditional consensus algorithms have a time-consuming view change process,
and view switching can only occur once all nodes have reached consensus. To address
this, we propose a consensus algorithm based on an asynchronous, optimized view change
process. Our algorithm allows nodes to start a new view without requiring global consensus,
reducing waiting time, and improving the system’s throughput and response performance.

1.4. Organization of the Article

The remainder of this paper is organized as follows: Section 2 provides a review of the
related work. Section 3 introduces the principles of the ed25519LRS signature algorithm,
followed by an analysis of its security and analyzes the view changes for the MRPBFT
consensus algorithm. Section 4 presents the experimental evaluations. Finally, Section 5
concludes this paper.

2. Related Work

Current improvements in the performance and security of the PBFT consensus algo-
rithm have been extensively studied. However, these improved algorithms still present
several issues: Firstly, most of these protocols adopt a single master node mechanism,
resulting in poor scalability and inadequate fault tolerance. Secondly, these protocols
cannot satisfy the requirements for anonymity and reliability. The signature algorithms
they adopt are generally BLS12 aggregate signatures [7,8] or ecdsa [9] signatures, failing to
meet security requirements adequately. Lastly, while some algorithms satisfy the above
two points, they cannot meet performance requirements. Existing consensus algorithm
solutions have at least one of these issues.

Single Master Node Failure: In addressing the single master node failure issue, several
significant works exist. For example, Casper [10] and Tendermint [11] provide a simple
leader master node replacement mechanism. However, both protocols have a synchronous
core, meaning replicas in the network must wait for the maximum network latency time
to enter the next round. HotStuff and DiemBFT [12] are two designs aiming to maintain
responsiveness and a simple leader replacement process. Especially in the new version
of DiemBFT, it performs similarly to Fast-HotStuff [13] in the normal phase, adopting
PBFT-based double view change. In our consensus algorithm, however, we propose a
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multi-node mechanism with three nodes, which can effectively avoid single-node failure
and reduce the PBFT master node failure time consumption from O(n3) to O(1) (Table 1).

Anonymity Issue: For the anonymity issue, it generally involves the selection of signa-
ture schemes. For instance, HotStuff and LibraBFT (DiemBFT) use threshold signatures [14]
and aggregate signatures, respectively. However, the cost of signature verification depends
on the type of signature scheme used by the protocol. For example, the verification cost
of aggregate signatures is linearly related to the number of aggregated signatures, while
the verification cost of threshold signatures is constant. In a recent paper [15], the author
proposed a double node fault-tolerant mechanism but made no improvements regarding
the anonymity issue. Our MRPBFT proposes a chained ring signature algorithm [16,17]
based on ed25519 [18] effectively addressing the anonymity problem.

High View Change Delay: In addressing the issue of high view change delay, several
protocols have made contributions. For instance, PBFT has a two-phase message complexity
during normal operation or the happy path. On the other hand, Fast-HotStuff uses a
rotating master node, with linear view changes during normal master node rotation (view
change). A parallel research work, Wendy [19], solves the high latency issue during the
happy path in HotStuff while supporting a rotating master node, avoiding the two-phase
authenticator complexity during view changes. However, if the failed master node or
newly selected master node (when less than 2 f + 1 correct nodes hold locks) is Byzantine,
it can force the protocol to generate additional delay costs during view change. The authors
of NBFT [20] propose using a consistent hashing algorithm to group consensus nodes to
improve network performance.

Table 1. Comparison between BFT algorithms.

Algorithms Leader Failure
(View-Change)

f Leader
Failures

Leader
Paradigm

Optimistic
Responsiveness Anonymity

PBFT O(n3) O( f n3) stable Yes No
Tendermint O(n2) O( f n2) stable No No
DiemBFT O(n) O( f n2) rotating Yes No
HotStuff O(n) O( f n) rotating Yes No

Fast-HotStuff O(n) O( f n) rotating Yes No
MRPBFT O(1) O( f n) stable Yes Yes

3. Materials and Methods
3.1. Design Principle of Ring Signature Algorithm

This section introduces the improvement of the ed25519 signature algorithm in the
HotStuff consensus algorithm to an ed25519-based chained ring signature algorithm, here-
inafter referred to as ed25519LRS. The explanation will be given from three aspects: public
key generation, signature, and verification.

3.1.1. Public Key Generation

(a) The generation of public keys is performed using the function genPubKey(size,
privateKey, index), which has three parameters. The parameter size represents the size
of the generated public key ring, privateKey represents the private key to be inserted into
the ring, and index represents the position of the public key to be inserted in the ring. size
must be smaller than index, as the index cannot exceed the size range of the ring.

(b) A public key ring ring of size size is created, along with a map type variable hashes
used to cache hash values generated by the public key.

(c) The function first uses scalar multiplication to calculate the corresponding public key

publicKey = privateKey ∗ G (1)
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using the private key privateKey and the base point G on the elliptic curve. Then, it inserts
this public key publicKey into the given ring ring at the index position. In this paper, ∗
represents scalar multiplication.

(d) For other positions in the ring, the function calculates publicKey using a randomly
generated privateKey, then inserts it into the ring. Generating a public key with a ran-
domly generated private key can prevent leakage during transmission. Algorithm 1 is a
pseudocode representation of the genPubKey function.

Algorithm 1 genPubKey Function

1: procedure GENPUBKEY(size, privateKey, index)
2: if index ≥ size then
3: return error “index out of bounds”
4: end if
5: ring← create an array of length size
6: publicKey← curve.ScalarBaseMul(privateKey)
7: ringindex←publicKey
8: for i← 1 to size do
9: index ← (i + index) mod size

10: privateKey← curve.NewRandomScalar()
11: ringindex ← curve.ScalarBaseMul(privateKey)
12: end for
13: return ring
14: end procedure

3.1.2. Signature Creation

(a) The signature function ringSign(msg,ring,privateKey, index) carries four pa-
rameters where msg represents the message to be signed. The message msg is first processed
through a hash function H, which results in a fixed-length (32-byte) hash value that will be
used for signing. Ring refers to the public key ring generated by the genPubKey function.
privateKey and index remain consistent with the previous explanation.

(b) Initially, the function validates that the length of the public key ring is at least 2,
and the index falls within the range of the ring. Following this, it confirms whether the
public key, corresponding to the provided index, has been truly generated by the input
private key.

(c) The function initializes a new ring signature object, RingSig, and calculates a key
image keyImage.

keyImage = privateKey ∗ H(publicKey) (2)

keyImage is generated by the signer’s private key, but it cannot be used to reverse-engineer
the private key. A key property of keyImage is that the same private key always generates
the same keyImage, regardless of the ring in which the signature is created. Its primary role
is to prevent double signatures.

(d) The function then traverses each public key in the ring. For each pubicKey, it selects
a random scalar value val and uses this val and pubicKey together to generate a verification
value veri f y. The role of the verification value veri f y is mainly to ensure the security and
non-forgeability of the signature. It is a crucial method of constructing a signature, aimed
at preventing the signer or others from forging signatures without the correct private key.
veri f y is computed based on the public key in the ring and some random values through a
hash function (or other functions). In the signature process, the calculation of the veri f y
value involves information from the previous pubicKey and some randomly chosen values.
Each veri f y value influences the calculation of the next verification value veri f y, thus
forming a closed loop, which is the origin of the ring signature name. Finally, the function
uses the initially chosen random scalar value val and the last veri f y value to close the
loop, thereby generating a complete ring signature RingSig. Algorithm 2 is a pseudocode
representation of the ringSign function.



Electronics 2023, 12, 4632 5 of 17

Algorithm 2 Sign Function

1: procedure SIGN(msg, privateKey, index)
2: size← length of ring.publicKey
3: publicKey← ring.ed25519.ScalarBaseMul(privateKey)
4: H ← hashToCurve(publicKey)
5: veri f y← ed25519.ScalarMul(privateKey, H)
6: ringSing← new RingSign object with ring and veri f y
7: val ← ed25519.NewRandomScalar()
8: l ← ed25519.ScalarBaseMul(val)
9: r ← ed25519.ScalarMul(val, H)

10: idx ← (index + 1) mod size
11: veri f y[idx]← verifyVale(ring.ed25519, msg, l, r)
12: for i← 1 to size do
13: idx ← (index + i) mod size
14: validx ← ed25519.NewRandomScalar()
15: veri f yidx+1 ← verifyVale(ed25519, msg, l, r)
16: end for
17: sindex ← val − veri f y× x
18: ringSing.val ← val
19: ringSing.veri f y← veri f y0
20: return sig
21: end procedure

3.1.3. Signature Verification

(a) The verification function verify(msg) receives a message msg to be verified.
(b) The function is initially set up by retrieving the public key ring from the signature

and its size. It also creates an array arr to store verification values veri f y. These verification
values are used to check the validity of the signature within the ring.

(c) The function enters a loop, where for each public key in the ring, it calculates two
values, L and R. These two values are calculated as follows:

L = val ∗ G + veri f y ∗ publicKey. (3)

This equation is an elliptic curve operation, where val is a part of the RingSig signature
object generated by the signing function above, G is the base point of the elliptic curve,
veri f y is the verification value, and publicKey is the public key.

R = val ∗ H(P) + veri f y ∗ keyImage. (4)

is also an elliptic curve operation, where H(publicKey) is the hash value of the public key,
which is directly fetched from the cache in the code to avoid calculating the hash value
again. keyImage is the key image in the ring signature.

(d) The function calculates the new verification value

val[i + 1] = H(msg, L, R). (5)

using L, R, and message msg. When the calculation reaches the last element of the ring, the
new challenge value will be stored in val0; otherwise, it is stored in vali+1, causing an array
out-of-bounds error.

(e) Finally, the function checks whether the computed challenge value c0 equals the
original verification value RingSig.c in the signature. If c0 = RingSig.c, the signature is
considered valid, and the function returns true. Otherwise, it returns f alse. Algorithm 3 is
a pseudocode representation of the verify function.
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Algorithm 3 Verify Function

1: procedure VERIFY(m)
2: ring← ringSing.ring
3: size← length of ring.pubkeys
4: c0 ← ringSing.verify
5: ed25519← ring.ed25519
6: for i← 0 to size do
7: l ← vali × G + veri f yi × publicKeyi
8: r ← vali × H(publiKeyi) + veri f yi × I
9: if i = size− 1 then

10: veri f y0 ← verifyVale(ed25519, msg, l, r)
11: else
12: veri f yi+1 ← verifyVale(ed25519, msg, l, r)
13: end if
14: end for
15: return ringSing.veri f y is equal to veri f y0
16: end procedure

The improved signature algorithm has several improvements compared to the original
ed25519 signature algorithm:

Anonymity: The Linkable Ring Signature (LRS) algorithm provides stronger protection
for anonymity. In the regular ed25519 signature algorithm, each signature can be explicitly
traced back to its generator. However, in the LRS algorithm, a signature only signifies
that it was generated by one member of a fixed set, but it cannot determine which specific
member generated it.

Linkability: Another advantage of the LRS algorithm is its linkability. This means that
if the same user signs the same message twice, the two signatures can be linked together.
This feature can be very useful in certain situations, such as preventing double-spending in
blockchain systems.

Resistance to Collusion Attacks: The LRS algorithm can also resist collusion attacks.
Even if a portion of users attempt to conspire to disrupt the system, they can not determine
which user generated a given signature.

Trustless Setup: Linkable Ring Signatures do not require a prior trust setup. Anyone
can generate a set of public keys and generate a signature associated with any public key in
the group without obtaining permission from any public key owner.

Lastly, to improve performance, we used caching multiple times. For instance, we
cached the hashToCurve function at the beginning and then directly obtained values during
signing and verification, significantly improving performance. We also took advantage of
the concurrent operation features provided by the Go language.

3.2. Security Analysis

Linkable Ring Signatures (LRSs) are a cryptographic signature technique with excellent
security properties, especially outstanding in maintaining anonymity and immutability.
In the context of the ed25519 elliptic curve encryption standard, these key properties
are preserved.

Anonymity: The main feature of Linkable Ring Signatures lies in their strong capability
to protect anonymity. During the signature process, the signing entity can choose any public
key in a “ring” of public keys to sign without revealing the specific executor of the signature.
This means that even if a third party observes this signature, it is unable to determine which
public key’s corresponding private key owner generated the signature. This anonymity
property remains effective in environments using the ed25519 signature algorithm.

Immutability: Another core advantage of Linkable Ring Signatures is their immutabil-
ity. Once the signature is generated, it cannot be altered. Any tampering with the signature
or associated message will be immediately identified during the verification process since
the signature is calculated from the specific message and corresponding private key. This
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immutability is mainly ensured by the ed25519 signature algorithm, which was designed
with tampering prevention in mind from the outset.

Next, we will demonstrate the security of the ed25519 ring signature algorithm in
detail from both anonymity and immutability perspectives, thus fully elucidating the
reliability and security of this algorithm.

Definition 1 (Anonymity). In the context of Linkable Ring Signatures, as long as the signature
is valid, any third-party verifier cannot determine the specific identity of the signer, i.e., they cannot
ascertain the specific public key corresponding to the signer.

Subsequently, we will proceed to demonstrate the anonymity inherent in this algorithm
by employing a zero-knowledge proof approach grounded in the Schnorr protocol [21] in
the context of the ed25519 Linkable Ring Signature algorithm.

Preliminary Phase: Assume each user (such as Alice) in the Linkable Ring Signature
system has a pair of related private (x) and public keys (P) that satisfy P = x ∗ G, where G
represents the generator of the elliptic curve. When Alice intends to sign a message m, she
selects her public key from a “ring” composed of a set of public keys, subsequently chooses
a random number u, and calculates two values, namely R = u ∗ G and I = u ∗ H(P),
based on u and her public key, where H denotes a hash function and I is the linkable tag
(key image).

Commitment Phase: Alice constructs a new hash function H′, and takes all public
keys, R, I, and message msg as inputs, eventually obtaining a hash value

h0 = H′(P1, P2, . . . , Pn, R, I, msg). (6)

Challenge and Response Phase: In this stage, Alice iterates over each public key Pi in
the ring. For each public key, Alice generates a random number ri (when the public key is
not her own) and calculates the next hash value

hi+1 = H′(Pi, Ri, hi). (7)

where
Ri = ri ∗ G + hi ∗ Pi. (8)

As for her own public key Pj, she calculates

u = rj + hj ∗ x. (9)

Verification Phase: The verifier (like Bob) will first use the same hash function H′ and
recalculate h0 with the same input, then go through the same iteration process, checking
if the final hn equals the original h0. If they are equal, it indicates that the signature is
valid. In addition, he will also check if the linkable tag (I) has been used before to prevent
double-signing [22].

Through the above process, we can see that Alice only used her private key when
dealing with her public key; all other public keys serve to obscure the identity of the real
signer. Only entities who know the private key can generate valid signatures, but due to
the design of the ring signature, outsiders cannot determine which private key associated
with a public key generated the signature, thus achieving the anonymity of the signature.

Definition 2 (Unforgeability). Assume an entity possesses a set of public and private keys (pk,
sk), and the signature is generated by the corresponding private key sk, then unforgeability can be
defined, and unless the entity knows the private key sk and the information of all participants, they
cannot modify the signature or create a forged signature that appears valid.
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In Linkable Ring Signatures, immutability is ensured by the characteristics of its
digital signature and the properties of the hash function. We will illustrate this feature from
three aspects.

Immutability of Signatures: Let Sig represent the signature generated by the private
key sk, and Msg represents the original message. The private key sk is only known to the
message sender. This means that for any attacker, unless they know the private key sk, they
cannot create a valid signature Sig′ such that Sig′ = Sig(Msg). Any attempt to modify the
signature will lead to signature verification failure because Ver(publicKey, Msg, Sig′) = False,
where Ver is the function to verify the signature using the public key pk. The Edwards-
curve Digital Signature Algorithm (EdDSA) is used, and the chosen specific elliptic curve
edwards25519 has good security, which keeps its private key safe. Unless the elliptic curve
encryption is cracked, the private key cannot be obtained.

Collision Resistance of Hash Functions: The hash function H transforms any length of
input x into a fixed length of output, i.e., H(x). One of the key features of H is collision
resistance. This means that for any x 6= y, we have

H(x) 6= H(y). (10)

In this algorithm, we choose the SHA-3 function, which has good security and colli-
sion resistance.

Concealment and Anonymity in Linkable Ring Signatures: Assume we have a set of
signers S = s1, s2, . . . , sn, and each signer si will leave some information Ii on the chain,
but nobody knows which information Ii is left by which signer si, so attackers cannot
determine which part of the information to try to tamper with the signature.

3.3. View Change Analysis

In this section, we will provide a detailed introduction to the consensus algorithm
of MRPBFT (Modified Ring-based Practical Byzantine Fault Tolerance), which is an im-
provement on HotStuff. MRPBFT maintains the efficiency of HotStuff while enhancing its
security and fault tolerance. It is mainly divided into two parts: the consensus algorithm
and the view change process. Due to the introduction of a multi-leader mechanism and ring
signature algorithm, the consensus algorithm and signing process are more complicated
than HotStuff, but it has improved the resistance to malicious leaders and the anonymity
of participants. As asynchronous view change is adopted, the overall performance does
not degrade compared to HotStuff.

3.3.1. Transaction On-Chain Process

This section will exhaustively explicate the details of the MRPBFT algorithm in the
process of transaction on-chain, including all the steps and logic of the process.

Step 1: Creating Transaction:
First, the client builds a transaction according to its digital property transaction needs,

covering key information such as the sender, recipient, transaction data, hash summary,
and timestamp of the transaction.

Step 2: Signing Transaction:
As digital asset transactions involve sensitive customer privacy information, the

client needs to digitally sign the transaction with its private key to ensure the safety of
the information. In the HotStuff protocol, ECDSA is usually used for signing, while in
MRPBFT, we use the chain ring signature technology based on BLS12 to ensure the safety
of user privacy and verify the authenticity and integrity of the transaction.

Step 3: Broadcasting Transaction:
Subsequently, the client broadcasts the signed transaction to the nodes m1, m2, and m3

in the network. Then, the m1 primary node broadcasts the signed message to all secondary
nodes. The transmission mode selected by MRPBFT is the same as PBFT and HotStuff,
which are all broadcast, not the point-to-point transmission based on Gossip protocol [23],
because the Gossip protocol may bring uncertainty and delay to information propagation.
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Step 4: Transaction Verification:
The secondary nodes receiving the signed information will verify it, including verify-

ing the transaction’s signature and the timestamp of the transaction information.
Step 5: Transaction Buffer Pool: Transactions verified will be added to the transaction

buffer pool by the primary nodes m1, m2, and m3. In this pool, transactions are arranged
in the order of timestamps, waiting for subsequent processing.

Step 6: Block Packaging:
The primary node m1 organizes the arranged transaction information, and the selected

transactions are combined into an aggregated transaction. Then, a chain ring signature is
generated for this aggregated transaction, and then the aggregated transaction and chain
ring signature are added to the block, forming a QC Tree (Quorum Certificate Tree) [24].

Step 7: Block Broadcasting:
Node m1 sends the packaged block to other secondary nodes and the other two

primary nodes through broadcasting.
Step 8: Block Verification:
The secondary nodes receiving the new block will verify the block, including verifying

the block’s hash value and the legality of the transactions, etc. The primary nodes m2 and
m3 will also verify and back up after receiving the block.

Step 9: Block Addition:
The block that passes verification will be added to the node’s blockchain, and the block

height of the node will be updated; that is, the height of the blockchain will be increased
by 1, and the local state of the node will be updated.

Step 10: Transaction Confirmation:
Once a block is confirmed and added to their blockchains by the majority of nodes,

the transaction is considered confirmed and irreversible. This transaction on-chain process
can be expressed as a function

T = f (C, S). (11)

where T is the final confirmed transaction, C is the transaction created and signed by the
client, and S is the system composed of nodes in the network. This function represents the
final transaction confirmation process given the client’s transaction and the system.

3.3.2. View Change Process

In this section, we will detail the view change process in the MRPBFT algorithm.
Compared to the view change process in the HotStuff consensus algorithm, our main
difference lies in the introduction of an asynchronous confirmation mechanism. Here is a
detailed description of the view change process in this algorithm.

a. Preparation Phase

1. The primary node m1 collects new view change requests and broadcasts them to each
follower node.

2. Upon receiving a new view change request, the follower nodes verify it to confirm its
validity and legality. If the received request satisfies the condition

Req_Valid = R|H(R) ∈ V. (12)

where R is the new view change request, H is the hash function, and V is the set of
valid hash requests.

b. Proposal Phase

1. The primary node m1 chooses a new view number

VN_new = VN_old + 1. (13)

and generates a view change proposal P based on this.
2. The primary node m1 broadcasts the proposal P to other nodes and then enters a

waiting state, waiting for feedback from follower nodes.
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c. Asynchronous Confirmation Phase
Upon receiving the view change proposal P, the follower nodes perform the follow-

ing steps:

1. Verify the proposal’s validity and legality, i.e.,

Proposal_Valid = (P|H(P) ∈ P_set). (14)

where P_set is the set of valid proposals.
2. If the follower node accepts the proposal and agrees to switch to the new view, it

sends an asynchronous confirmation message Msg_Async_Confirm to the primary
node m1.

3. If the node refuses the proposal or has not yet made a decision, it does not send an
asynchronous confirmation message.

d. View Switching Phase

1. The primary node m1 collects asynchronous confirmation messages and determines
whether a sufficient number of asynchronous confirmations have been reached ac-
cording to the rule

Con f irm_Async >= 2 f + 1. (15)

where f represents the possible number of faulty nodes.
2. If the primary node collects 2 f + 1 asynchronous confirmation messages, i.e., if (15) is

satisfied, it begins the view switch.
3. The view switch includes updating local view information, i.e.,

viewNumber = viewNumber + 1

and resetting the consensus state.

e. Asynchronous Confirmation Reply Phase
The primary node m1 sends an asynchronous confirmation reply message to the

nodes that have confirmed the switch to the new view, notifying them that the view switch
has been successful, and syncs this information with nodes m2 and m3. By introducing
asynchronous mechanisms, this improved view process allows nodes to start a new view
without reaching a global consensus. This can enhance consensus efficiency, reduce the
waiting time for view changes, and allow the system to continue processing transactions
and consensus operations even when some nodes have not yet completed the view change.
The Algorithm 4 shows the pseudo-code implemented by the above algorithm.

Algorithm 4 Asynchronous View Switching

1: Preparation Phase:
2: function COLLECTVIEWCHANGEREQUESTS
3: R← new view change requests
4: broadcast (R)
5: end function
6: function VALIDATEREQUESTS
7: Req_Valid← {r|H(r) ∈ V}
8: end function
9:

10: Proposal Phase:
11: function PROPOSEVIEWCHANGE
12: VN_new← VN_old + 1
13: P← generate proposal(VN_new)
14: broadcast (P)
15: end function
16:
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Algorithm 4 Cont.

17: Asynchronous Confirmation Phase:
18: function HANDLEVIEWCHANGEPROPOSAL
19: for each slave node do
20: P_Valid← {p|H(p) ∈ P_set}
21: if P_Valid then
22: send Msg_Async_Con f irm to m1
23: end if
24: end for
25: end function
26:
27: View Switching Phase:
28: function HANDLEASYNCCONFIRMATIONS
29: Con f irm_Async← count(Msg_Async_Con f irm)
30: if Con f irm_Async ≥ 2 f + 1 then
31: Start view switching
32: viewNumber ← viewNumber + 1
33: Reset consensus state
34: end if
35: end function
36:
37: Asynchronous Confirmation Reply Phase:
38: function SENDASYNCCONFIRMATIONREPLY
39: broadcast Msg_Async_Con f irm_Reply to m2 and m3
40: end function

4. Experimental Design and Results

In this study, we conducted a comprehensive performance evaluation of various con-
sensus algorithms, including our proposed MRPBFT consensus algorithm, the traditional
HotStuff protocol, and an optimized version known as FastHotStuff. Our MRPBFT con-
sensus algorithm comprises two main components: the Ed25519LRS signature algorithm
and the MPBFT consensus mechanism. We implemented these algorithms using the Go
programming language (version 1.8) and performed all experiments on a Mac M1 computer
with 8 GB of memory. The GoLand tool was used for experimental purposes, and SHA256
was employed for hash calculations. During the experimental phase, we systematically
increased the number of nodes from 4 to 128. We utilized various signature algorithms,
including BLS112 aggregate signatures, ECDSA signatures, Ed25519 signatures, and our
custom Ed25519LRS signature algorithm. In this series of experiments, we assessed the
throughput and network latency of the consensus algorithms individually.

In the throughput tests, as presented in Table 2, we combined the ECDSA signature
algorithm with the consensus mechanisms of SimpleHotStuff, FastHotStuff, ChainedHot-
Stuff, and our improved MPBFT. The objective was to assess the performance of our
enhanced consensus mechanism when paired with the ECDSA signature algorithm and
compare it against the three original consensus mechanisms. Table 3, on the other hand,
showcases the results of our evaluation with the BLS12 signature algorithm. In this set
of experiments, we integrated the BLS12 signature algorithm with the consensus mecha-
nisms of SimpleHotStuff, FastHotStuff, ChainedHotStuff, and our improved MPBFT. This
evaluation aimed to examine the throughput performance of our improved consensus
mechanism when utilized alongside the BLS12 signature algorithm and compare it to
the original three consensus mechanisms. In Table 4, we utilized the Ed25519 signature
algorithm and paired it with the consensus mechanisms of SimpleHotStuff, FastHotStuff,
ChainedHotStuff, and our improved MPBFT. We conducted these experiments to assess the
throughput performance of our enhanced consensus mechanism when coupled with the
Ed25519 signature algorithm and to draw comparisons against the three original consensus
mechanisms. Finally, Table 5 presents the outcomes of our evaluation with the custom
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Ed25519LRS signature algorithm. We combined the Ed25519LRS signature algorithm with
the consensus mechanisms of SimpleHotStuff, FastHotStuff, ChainedHotStuff, and our
improved MPBFT to evaluate the throughput performance of our enhanced consensus
mechanism under the Ed25519LRS signature algorithm, and we compared these results to
the three original consensus mechanisms.

Table 2. The ecdsa sign with different consensus algorithm throughput.

Node Num SimpleHotStuff–tps/s FastHotStuff–tps/s ChainedHotStuff–tps/s MPBFT–tps/s Sign

4 1792 17,838 18,246 19,752 ecdsa

8 7126 7109 6994 8432 ecdsa

16 2688 2715 2642 3104 ecdsa

32 870 748 686 1053 ecdsa

64 486 431 401 653 ecdsa

128 301 267 231 367 ecdsa

Table 3. The bls12 sign with different consensus algorithm throughput.

Node Num SimpleHotStuff–tps/s FastHotStuff–tps/s ChainedHotStuff–tps/s MPBFT–tps/s Sign

4 1279 1274 1189 1345 bls12

8 892 873 812 932 bls12

16 516 532 478 579 bls12

32 338 325 267 351 bls12

64 NA NA NA NA bls12

128 NA NA NA NA bls12

“NA” indicates that when using the BLS signature algorithm, timeouts occur when the number of nodes exceeds 32.

Table 4. The ted25519 sign with different consensus algorithm throughput.

Node Num SimpleHotStuff–tps/s FastHotStuff–tps/s ChainedHotStuff–tps/s MPBFT–tps/s Sign

4 19,129 18,815 18,636 19,908 ed25519

8 7374 7315 7320 7902 ed25519

16 2828 2723 2850 3320 ed25519

32 921 902 898 1309 ed25519

64 517 501 476 703 ed25519

128 311 301 247 374 ed25519

Table 5. The ed25519LRS sign with different algorithm throughput.

Node Num SimpleHotStuff–tps/s FastHotStuff–tps/s ChainedHotStuff–tps/s MPBFT–tps/s Sign

4 13,782 13,581 13,317 15,488 ed25519LRS

8 7193 6971 6731 7752 ed25519LRS

16 2709 2658 2764 3864 ed25519LRS

32 905 897 879 1928 ed25519LRS

64 502 489 431 960 ed25519LRS

128 287 268 208 489 ed25519LRS
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In the latency tests, as presented in Table 6, we combined the BLS12 signature algo-
rithm with the consensus mechanisms of SimpleHotStuff, FastHotStuff, ChainedHotStuff,
and our improved MPBFT. The objective was to assess the latency of our improved consen-
sus mechanism when paired with the BLS12 signature algorithm and compare it against the
latency of the three original consensus mechanisms. Moving on to Table 7, we conducted
experiments using the ECDSA signature algorithm. We integrated the ECDSA signature
algorithm with the consensus mechanisms of SimpleHotStuff, FastHotStuff, ChainedHot-
Stuff, and our improved MPBFT. This evaluation aimed to examine the latency performance
of our enhanced consensus mechanism when coupled with the ECDSA signature algorithm
and draw comparisons against the latency of the three original consensus mechanisms. In
Table 8, we employed the Ed25519 signature algorithm and combined it with the consensus
mechanisms of SimpleHotStuff, FastHotStuff, ChainedHotStuff, and our improved MPBFT.
The purpose was to evaluate the latency of our improved consensus mechanism when
paired with the Ed25519 signature algorithm and compare it to the latency of the three
original consensus mechanisms. Finally, Table 9 presents the outcomes of our evaluation
with the custom Ed25519LRS signature algorithm. We combined the Ed25519LRS signature
algorithm with the consensus mechanisms of SimpleHotStuff, FastHotStuff, ChainedHot-
Stuff, and our improved MPBFT to evaluate the latency performance of our enhanced
consensus mechanism under the Ed25519LRS signature algorithm and compare it against
the latency of the three original consensus mechanisms.

Table 6. The bls12 sign with different consensus latencies.

Node Num FastHotStuff–lat/ms ChainedHotStuff–lat/ms SimpleHotStuff–lat/ms MPBFT–lat/ms Sign

4 46.8 51.2 78.1 39.6 bls12

8 65.1 71.2 111.2 59.7 bls12

16 110.7 120.4 187.9 99.8 bls12

32 230.1 265 310.5 209 bls12

64 NA NA NA NA bls12

128 NA NA NA NA bls12

Table 7. The ecdsa sign with different consensus latencies.

Node Num FastHotStuff–lat/ms ChainedHotStuff–lat/ms SimpleHotStuff–lat/ms MPBFT–lat/ms Sign

4 3.2 5.4 5.8 2.4 ecdsa

8 14 14.1 14 8.9 ecdsa

16 37 35.8 37.7 27.5 ecdsa

32 113.2 103.5 103.7 87.7 ecdsa

64 231 201 197.2 165.8 ecdsa

128 501.3 432.1 399.5 318.2 ecdsa

Table 8. The ed25519 sign with different consensus latencies.

Node Num FastHotStuff–lat/ms ChainedHotStuff–lat/ms SimpleHotStuff–lat/ms MPBFT–lat/ms Sign

4 5.2 5.6 5.17 4.67 ed25519

8 13.56 13.9 13.2 12.5 ed25519

16 35.6 34.7 34.9 31.8 ed25519

32 109.4 104.9 175.1 97.6 ed25519

64 221.5 207.8 289.8 187.2 ed25519

128 438.6 401.1 501.3 356.3 ed25519
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Table 9. The ed25519LRS sign with different consensus latencies.

Node Num FastHotStuff–lat/ms ChainedHotStuff–lat/ms SimpleHotStuff–lat/ms MPBFT–lat/ms Sign

4 6.8 7.2 6.3 5.6 ed25519LRS

8 16.1 17.1 14.8 13.5 ed25519LRS

16 35.2 37.6 35.3 32.8 ed25519LRS

32 108.3 110.3 107.1 82.6 ed25519LRS

64 236.6 228.8 291.5 145.9 ed25519LRS

128 441.2 415.3 517.4 303.4 ed25519LRS

5. Discussion

In this section, we will delve deeper into the experimental results presented above
and compare them with relevant work in the field.

Throughput Comparison: Our experimental results (as shown in Tables 2–5) reveal
that when tested with the ECDSA signature algorithm and four consensus algorithms, the
MPBFT consensus mechanism outperforms the others. As depicted in Table 2, MPBFT
achieves the highest throughput, surpassing SimpleHotStuff by 20% at 128 nodes and
demonstrating nearly a 50% improvement over ChainedHotStuff. In the case of the BLS12
signature algorithm (Table 3), although its performance is suboptimal across all four con-
sensus mechanisms and results in latency timeouts beyond 64 nodes, MPBFT remains the
top performer for configurations with fewer than 32 nodes. In the context of the Ed25519
signature algorithm (Table 4), MPBFT achieves impressive throughput, nearly reaching
20,000 transactions per second with only four nodes, making it the leading choice among
the four consensus mechanisms. When employing our custom Ed25519LRS signature
algorithm (Table 5), MPBFT still maintains its superiority. However, it is notable that con-
sensus algorithms based on the Ed25519LRS signature algorithm exhibit lower throughput
than ECDSA and Ed25519 for configurations with fewer than 16 nodes. This is an ex-
pected outcome as our Ed25519LRS signature algorithm introduces anonymity and tamper
resistance, increasing the overall complexity of the signature algorithm. Nevertheless,
beyond 16 nodes, our algorithm surpasses ECDSA and Ed25519 signature algorithms in
throughput and consistently performs best throughout the throughput tests (as illustrated
in Figure 1). This can be attributed to the fact that, as the number of nodes increases, the
communication overhead between nodes becomes more significant than the impact of the
signature algorithm on consensus algorithm throughput.

Latency Comparison: Our experimental results (as presented in Tables 6–9) consis-
tently demonstrate that, among the four signature algorithms, MPBFT consensus exhibits
the best performance in terms of latency. As evident in Table 6, when using the BLS12
aggregate signature, it registers the highest latency among all signature algorithms, and
timeouts occur when the node count exceeds 32. This aligns with our earlier throughput
test results, where higher throughput generally leads to lower latency. In contrast, when
utilizing the ECDSA signature algorithm (as indicated in Table 7), our MPBFT consensus
mechanism achieves the lowest latency, reaching as low as 2.4 milliseconds, making it the
top-performing option in the entire set of experiments. In latency testing with the Ed25519
signature algorithm and various consensus mechanisms (as shown in Table 8), MPBFT
continues to outperform, exceeding SimpleHotStuff by nearly 10% with four nodes. When
employing our custom Ed25519LRS signature algorithm alongside the four consensus
mechanisms (as demonstrated in Table 9), our signature algorithm delivers the best perfor-
mance. It achieves latency as low as 5.6 ms, and notably, beyond 16 nodes, our Ed25519LRS
signature outperforms other signature algorithms and consensus mechanisms within our
MPBFT. This advantage is further emphasized in Figure 2, where it is evident that our
performance excels, particularly as the number of nodes increases.
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Shortcomings: Despite the numerous improvements we have made, there are still
some limitations that need to be addressed. These include enhancing system scalability
and fault tolerance, as well as finding more effective solutions for network latency and
packet loss issues. Additionally, it is worth noting that our experiments were conducted
in a local environment and did not involve testing in a real network setting. While our
research represents significant progress compared to prior achievements, there are areas
for improvement and challenges that warrant exploration and resolution. These include
outlining strategies for further enhancing system scalability and fault tolerance and devising
more efficient methods to address network latency and packet loss problems. These aspects
will form the focus of our future research efforts.
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6. Evaluation

In this paper, we have introduced an improved HotStuff consensus algorithm called
MRPBFT. MRPBFT enhances the efficiency of the consensus algorithm while ensuring
anonymity and tamper resistance. We began by analyzing the principles of the Ed25519RLS
signature algorithm and then discussed the security aspects of the signature algorithm, fo-
cusing on both anonymity and tamper resistance. Furthermore, we improved the consensus
mechanism within HotStuff by introducing a multi-principal node model, which enhances
system dynamics and scalability, ultimately improving consensus efficiency. The asyn-
chronous view change mechanism further accelerates consensus reaching speed, enhancing
system throughput and responsiveness.

In the future, our research will continue to focus on the MRPBFT consensus algorithm.
We aim to further enhance system scalability and fault tolerance, conduct testing in real
network environments, and apply the algorithm to digital asset transactions.
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