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Abstract: Accurate detection of power fittings is crucial for identifying defects or faults in these
components, which is essential for assessing the safety and stability of the power system. However,
the accuracy of fittings detection is affected by a complex background, small target sizes, and
overlapping fittings in the images. To address these challenges, a fittings detection method based
on the dynamic graph convolutional neural network (DGCNN) and U-shaped network (U-Net)
is proposed, which combines three-dimensional detection with two-dimensional object detection.
Firstly, the bi-level routing attention mechanism is incorporated into the lightweight U-Net network
to enhance feature extraction for detecting the fittings boundary. Secondly, pseudo-point cloud
data are synthesized by transforming the depth map generated by the Lite-Mono algorithm and its
corresponding RGB fittings image. The DGCNN algorithm is then employed to extract obscured
fittings features, contributing to the final refinement of the results. This process helps alleviate the
issue of occlusions among targets and further enhances the precision of fittings detection. Finally,
the proposed method is evaluated using a custom dataset of fittings, and comparative studies are
conducted. The experimental results illustrate the promising potential of the proposed approach in
enhancing features and extracting information from fittings images.

Keywords: fittings; automatic inspection; U-Net; DGCNN; attention mechanisms; Lite-Mono

1. Introduction

Power line inspection is a crucial aspect of power line management, as it helps in
identifying issues, mitigating risks, and ensuring the reliability of electricity production.
However, the current approach to inspecting electrical grid facilities heavily relies on man-
ual labor, which poses challenges in terms of time, labor intensity, and safety concerns [1].
Therefore, there is a need to shift towards intelligent inspection methods that are automated
and less reliant on manual efforts. In this regard, the use of computer vision and drone
operations aligns with the requirements of intelligent and automated power grids in the
Industry 4.0 era. Drone line patrol operations exhibit advanced, scientific, and efficient
characteristics, making them an ideal solution for collecting transmission line images. This
approach reduces labor intensity and costs while providing a safer and more reliable means
of inspection [2].

Power fittings serve as metallic attachments used to suspend, secure, and reinforce
conductors or towers, thereby ensuring the dependability of power system. Furthermore,
fittings target detection is a crucial component of transmission line inspection [3]. However,
the accuracy of fittings detection is affected by a complex background, small target sizes,
and overlapping fittings in the images. Additionally, the features extracted by many
detection algorithms exhibit significant redundancy, impacting the accuracy of intelligent
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fittings inspection. Consequently, intelligent fittings detection remains a focal point in
smart grid research [4,5].

Convolutional neural networks (CNN) have attained relatively advanced performance
across various domains, with particular prominence in computer vision [6]. Deep learning
methods are also constantly evolving in the field of the intelligent detection of power
fittings [7]. Many researchers have studied this problem using approaches based on
CNN. Luo et al. [8] introduced an ultra-compact model for detecting bolt defects based
on a CNN, an approach that enables end-to-end detection of bolt defects through a two-
stage detection process. In addition, Wan et al. [9] employed a region-based fully CNN to
integrate fine-grained features and contextual information among fittings, enhancing the
detection accuracy. However, the neural network employed in the above method has a
complex structure with many layers, and its scope of application is uncertain.

In the domain of two-dimensional (2D) detection, RGB images are vulnerable to var-
ious complicating factors, including occlusion, lighting conditions, and weather effects.
In addition, 2D detection cannot determine the three-dimensional (3D) spatial positions
of objects, and extracting features from occluded objects remains a challenging task [10].
Consequently, some methods take advantage of the abundant depth information of point
clouds and the ability to accurately locate the target, forming a 3D detection method based
on 2D data upgrading. Wu et al. [11] introduced a confidence-guided data association
method to address challenges such as occlusion and missed detections of distant objects
in tracking. This method leverages the geometric, appearance, and motion features of
objects in point clouds, associating the predicted and detected states by predicting con-
fidences and aggregating pairwise costs. Chen et al. [12] utilized geometric constraint
relationships to construct an equation system for solving object position information by
incorporating camera intrinsic parameters with object physical dimensions and orientation
information. Wang et al. [13] proposed a 3D multi-object tracking framework, which first
employs PointRCNN [14] and recurrent rolling convolution [15] to separately obtain 3D
and 2D detections of objects. Then a multi-stage depth association mechanism is devised
solely utilizing object motion information to achieve 3D multi-object tracking, focusing on
occluded objects.

Through a review of the existing literature, it appears that the method of converting 2D
data to 3D for processing fittings images has not been previously employed. To address the
challenges in fittings image detection, such as complex image backgrounds and a certain
degree of occlusion among multiple objects, a detection method of fittings based on the
U-shaped network and dynamic graph convolutional neural network (UD-Net) is herein
proposed. The effectiveness of this method is evaluated through several experimental
setups. First, a U-shaped network (U-Net) is employed to augment the extraction capability
of fittings features. Then, the Lite-Mono algorithm is deployed to generate depth maps for
the fittings. Following the fusion of the depth maps with the fittings images, these are fed
into a 3D detection network, thereby optimizing 2D object detection through the leverage
of 3D detection. The contributions of the paper are as follows:

• A fittings inspection image dataset is constructed: The fittings dataset comprises
2563 inspection images that have been meticulously annotated using the LabelImg
tool, encompassing seven distinct fittings component types. This comprehensive
dataset, characterized by its diverse scenarios, ensures robust model training;

• The UD-Net detection network is proposed: First, an improved U-Net serves as the
backbone for initial extraction of fittings features. Then, incorporating the Lite Mono
algorithm and employing the dynamic graph CNN (DGCNN), we aim to detect and
extract obscured fittings feature information;

• Enhanced U-Net: First, to improve the computational efficiency, the width of the
U-Net is narrowed to reduce the parameter volume. Then, four attention modules are
embedded to bolster the model’s feature extraction capability in complex backgrounds,
addressing the issue of diminished target salience resulting from mutual occlusion
among objects;
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• Introduction of 3D-detection-driven 2D detection methods into the fittings detection
field: First, the Lite mono algorithm is used to generate a depth image of the fittings,
and then this depth map is combined with the corresponding RGB images to create
a point cloud dataset. Finally, a 3D detection network is employed to capture fea-
tures that may elude 2D detection algorithms, contributing to the final refinement of
the results.

2. Related Works
2.1. U-Net

The U-Net architecture is designed with a symmetrical encoder–decoder structure,
distinctively exhibiting a U-shaped topology [16]. The design integrates both encoding
and decoding pathways. The encoding pathway, focused on extracting contextual feature
information, consists of convolutional blocks, max pooling operations, and ReLU activation
functions [17,18]. The ReLU function primarily aids in introducing non-linearity within the
model, with the computation given by:

f (x) = max(0, x) (1)

where x represents the input value, and f (x) represents the corresponding output value.
After inputting the image into the network, it undergoes four downsampling op-

erations, resulting in feature maps with twice the number of channels. This procedure
adeptly extracts high-dimensional features while retaining both global and semantic infor-
mation. The decoding path parallels the encoding path, featuring convolutional blocks and
upsampling operations. Transpose convolutions achieve fourfold upsampling to extract
depth information. During the upsampling phase, skip connections merge shallow and
deep information from the encoding and decoding pathways, respectively. Finally, in a
culmination of this procedure, a 2 × 2 deconvolution block is employed to restore the image
resolution, producing the final output.

U-Net [19] is often used in the automatic detection of power system transmission lines.
Its symmetrical encoding and decoding structure offers high detection accuracy paired
with a simple network topology. For example, He et al. [20] proposed a transmission line
and tower segmentation network based on an improved U-Net, which employs a fully
connected backbone structure for feature extraction and a hybrid feature extraction module
to refine semantic features, thus enabling high-precision segmentation. Han et al. [21]
proposed a lightweight U-Net model integrated with GhostNet [22] to enhance the accu-
racy of transmission line segmentation results. Choi et al. [23] introduced a power line
segmentation method based on U-Net. This method involves the combination of visible
images and infrared images of transmission lines using a U-Net embedded with attention
mechanism, resulting in successful segmentation outcomes.

2.2. DGCNN

In recent years, 3D object detection has seen significant advancements, with PointNet [24]
leading the way in combining graph neural networks with point clouds. He et al. [25]
proposed sparse voxel-graph attention network (SVGA-Net), which emphasizes advance-
ments in feature extraction and the establishment of a global graph to bolster performance
in 3D object detection. Notably, SVGA-Net addresses a pivotal concern overlooked in pre-
vious models such as PointNet, ShapeContextNet [26,27], and the PointNet series [28]—the
disregarding of inter-point relationships. Wang et al. [29] proposed DGCNN, a network
designed for learning using point clouds. DGCNN utilizes edge convolution to extract
edge features between points and their neighboring points, effectively capturing the local
geometric structure of point clouds. By employing multiple layers of edge convolution,
DGCNN generates diverse neighborhood graphs that facilitate the propagation of point
information throughout the data. This approach enables the network to select the most suit-
able neighbors in the feature space, thereby improving its classification performance [30].
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Centered around the DGCNN algorithm, Gamal et al. [31] proffered a building segmen-
tation method, which involves the direct segmentation of buildings using light detection
and ranging data and employs the DGCNN algorithm to distinguish buildings from veg-
etation. Xing et al. [32] delineated a technique for extracting geometric features using
DGCNN to ascertain a target sphere position within the fully mechanized mining face.
Liang et al. [33] introduced a medical image segmentation network based on DGCNN. The
approach involves initially employing a dual-path CNN network to segment the boundary
of lesion areas in medical images. Subsequently, the preprocessed medical images are
reclassified using the DGCNN network, enhancing the segmentation capability of the
overall network. The aforementioned methods proposed around DGCNN stand out by
dynamically constructing a graph at every layer, eschewing the need for a pre-constructed,
static graph. This methodology exhibits superior performance in both classification and
segmentation tasks.

3. UD-Net

To enhance the accuracy of fittings target detection, this paper presents a novel fittings
detection method based on UD-Net. The architecture of UD-Net is depicted in Figure 1. As
the figure shows, the BRA-UNet, which is the U-Net embedded with four bi-level routing
attention (BRA) modules, serves as the foundation for extracting fitting features. The Lite-
Mono network is then utilized to reconstruct depth maps for fittings, and the information
derived from these depth maps is merged with the RGB fittings images to produce pseudo
point cloud data. Following this, the preliminary 2D object bounding boxes identified by
the BRA-UNet network are converted into 3D object bounding boxes, which are combined
with the pseudo point cloud data for fitting objects. Finally, the recognition results are
refined using the DGCNN network.

Figure 1. The framework diagram of the UD-Net. The BRA-UNet is used for preliminary feature extrac-
tion, and then combined with the Lite Mono algorithm and DGCNN to refine the recognition results.
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3.1. BRA-UNet

To augment computational efficiency, the number of encoder blocks is reduced from
5 to 4 in the U-Net model, and the number of convolutional channels in each module is halved.
This adjustment balances the increase in parameters resulting from the DGCNN network inte-
gration while maintaining an equilibrium between resource usage and performance efficacy.

When employing the U-Net network for feature extraction, it becomes difficult to
identify the characteristics and contour details of smaller objects, thereby exacerbating
the complexity of fittings detection. Attention mechanisms in deep learning draw inspi-
ration from human visual cognition [34,35]. These mechanisms allow neural networks to
autonomously learn and selectively emphasize essential information during input data
processing, ultimately bolstering model performance [36]. One such mechanism is the
BRA mechanism [37]. Figure 2 depicts the architecture of the BRA mechanism. A fea-
ture map is inputted and a query, key, and value are obtained through linear mapping.
Then, a directed graph is constructed using an adjacency matrix to find the participation
relationship between different key–value pairs. After obtaining the region-to-region rout-
ing index matrix, a fine-grained token-to-token attention mechanism is applied. These
operations involve GPU-friendly dense matrix multiplications, which are advantageous
for accelerating inference on the server-side. Moreover, the BRA mechanism excels at
distinguishing between the background and foreground, capturing a wealth of features,
and expanding the receptive field and contextual information. This substantially boosts the
model’s performance. Therefore, in this work, the BRA mechanism is incorporated into the
upsampling layer of the U-Net network to enhance its feature extraction capability.

Figure 2. BRA attention mechanism structure. The mechanism aggregates key–value pairs and
employs sparse operations to bypass calculations in the less relevant regions, resulting in savings in
terms of parameters and computational resources.

3.2. Depth Map Generation

In the pursuit of improving 2D detection outcomes through the use of a 3D detector, a
major challenge arises from the lack of a comprehensive and accurate fittings depth dataset.
To address this challenge, the Lite-Mono network was introduced [38]. The Lite-Mono
network is a cutting-edge framework designed to tackle the complex task of monocular
depth estimation. This innovative system combines the computational efficiency of CNN
with the sophisticated contextual understanding capabilities of transformer models, all
within a self-supervised learning paradigm.

The Lite-Mono network consists of two key components: DepthNet and PoseNet.
DepthNet is responsible for estimating multiscale depth maps from input images. Within
its encoder section, DepthNet leverages a series of consecutive dilated convolutions (CDC)
modules to augment the receptive field of the initial shallow CNN layers. These CDC mod-
ules employ dilated convolutions for the extraction of local features at multiple scales. A
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suite of dilated convolutions, each with distinct rates of dilation, is strategically embedded
along the encoding pathway, facilitating effective multi-scale contextual aggregation. In
the decoding phase, DepthNet utilizes bilinear upsampling layers to expand feature map
dimensions, thereby improving spatial resolution. Simultaneously, convolutional layers
connect features from three encoder stages to ensure seamless information flow to the
decoder. Additionally, varying resolutions of output are achieved by attaching a prediction
head after to each upsampling, which yields inverse depth maps at assorted scales. PoseNet
utilizes a pre-trained ResNet-18 model as its pose encoder, processing pairs of color images
for input. It is designed to assess a camera’s movement across consecutive frames, culmi-
nating in the creation of a reconstructed target image. This methodology transforms the
depth estimation problem into an image reconstruction problem. To optimize the model, a
loss function is then calculated. The computation process of its loss function is as follows:

Lp
(

Ît, It
)
= α

1− SSIM
(

Ît, It
)

2
+ (1− α)

∥∥ Ît − It
∥∥ (2)

where It is the target image, Ît is the reconstructed image, Lp
(

Ît, It
)

is the loss between the
It and Ît, SSIM is the structural similarity index, and α is 0.85. Additionally, the loss of
minimum photometric Lp(Is, It) is calculated:

Lp(Is, It) = min
Is∈[−1,1]

Lp
(

Ît, It
)

(3)

Lr
(

Ît, It
)
= µLp(Is, It) (4)

where µ represents the binary mask parameter and Lr
(

Ît, It
)

represents the image recon-
struction loss. To ameliorate the smoothness of the generated inverse depth maps, an
edge-aware smoothness loss, denoted as Lsmooth, is computed. Subsequent operations are
then conducted as follows:

Lsmooth = α|∂xd∗t |e−|∂x It | + |∂xd∗t |e−|∂y It| (5)

L =
1
3 ∑

s∈{1, 1
2 , 1

4}
(Lr + λLsmooth ) (6)

where s represents the various scale outputs produced by the depth decoder and d∗t = dt
d̂t

represents the mean-normalized inverse depth. The value of λ is 10−3. Lite-Mono effec-
tively balances network complexity and inference speed. It exhibits strong generalization
capabilities and addresses the challenges mentioned above. Hence, in this work, the algo-
rithm is employed to generate depth maps for fittings RGB images, thereby supplementing
the missing depth information in fittings images.

3.3. 3D Object Bounding Box Prediction

Relying solely on the pseudo point cloud may not yield optimal detection results;
therefore, it is beneficial to map the generated 2D region boxes in the image to their corre-
sponding 3D regions. This process involves converting the 2D coordinate information into
3D coordinate information. It is assumed that the perspective projection of 3D bounding
boxes closely aligns with their 2D counterparts. The 3D bounding box is defined using cen-
ter coordinates C = [cx, cy, cz], dimensions I = [ix, iy, iz], and orientation O(θ, φ, α). Given the
object’s pose (O, C) in the camera coordinate system and the camera’s intrinsic parameters,
the relationship between the 3D point X0 = [X, Y, Z, 1] and the projected point x = [x, y, 1]T

in the camera coordinate system is as follows [39]:

x = K[O, C]X0 (7)
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where K represents the intrinsic matrix.
Presuming that the object’s coordinate system origin is located at the center of the 3D

bounding box and the object’s dimension is known, the eight vertices of the 3D bounding box
can be succinctly expressed as X1 = [ dx

2 , dy
2 , dz

2 ], X2 = [− dx
2 , dy

2 , dz
2 ], . . . , X8 = [− dx

2 , − dy
2 , − dz

2 ].

3.4. Three-Dimensional-Detection-Driven 2D Detection

The implementation of 3D-detection-driven 2D detection mainly relies on the DGCNN
network. In this work, DGCNN is employed to train point cloud data related to fittings.
Figure 3 delineates the architecture of DGCNN. For each point, the edge convolution
(EdgeConv) computes edge features on the layer, and these features are then aggregated for
each point to obtain the EdgeConv computation result. EdgeConv utilizes the connecting
edges to express the amalgamation of feature information within this pair of inmixed
nodes. Following this, a series of non-linear transformations are applied to combine feature
information, effectively expressing the local features from the focal node.

Figure 3. DGCNN architecture. The right-side diagrams represent the spatial transform and Edge-
Conv, respectively. The spatial transform module utilizes the estimated 3 × 3 matrix to map the input
to the canonical space.

As depicted in the EdgeConv module of Figure 3, F stands for the dimensionality of
each point, N denotes the total number of points, and (a1, a2, . . . , an) within MLP signifies
the input and output dimensionality for each layer. K signifies the number of neighboring
nodes. Through subsampling the target point cloud, a point cloud with n points and
F dimensions is obtained. The function of neurons in each layer is predicated on the
preceding layer’s output. Subsequently, a directed graph is established to encapsulate the
local structure of the point cloud. The edges connecting central points and neighboring
points are represented using Equation (8):

eij = hθ(xi, xj − xi) (8)

where eij is the edges connecting central points and neighboring points, xi represents the
central point, xj represents a point adjacent to the central point, θ represents learnable
parameters, and hθ represents an activation function. The output of the central points
is as follows:

x′i = poolingj:(x,y)hθ(xi, xj − xi) (9)

where x′i is the central points’s output.
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By stacking numerous network layers, conventional deep neural network models
have demonstrated remarkable performance on various problems, due to their potent
representational capabilities. In the context of multi-layer EdgeConv in DGCNN, the neigh-
borhood information extracted through edge convolution has the potential to represent
distant regions in the original point cloud space.

4. Results and Discussion
4.1. Implementation Details

This study utilized a self-built dataset consisting of 2563 inspection images of power
fittings, captured during overhead line inspections. A total of 982 of these images featured
rust data and were used for detection. Using the LabelImg annotation tool, seven categories
of power fittings were annotated: shackle, eyelink, damper, thimble, suspension clamp,
clevis, and ball eyes. To address the challenge of limited training samples for certain
fittings, various data augmentation techniques were applied in the object detection task.
These techniques encompassed random scaling, flipping, rotation, and the introduction of
Gaussian noise. The dataset was divided into training, validating, and testing sets with a
ratio of 7:2:1. The final number of power fittings utilized for training is presented in Table 1.

Table 1. Self-built dataset information.

Fittings Training Dataset Validating Dataset Testing Dataset

Shackle 2236 639 320
Ball eyes 1059 303 151

Suspension clamp 1260 360 180
Thimble 1047 299 150
Clevis 1199 342 171

Eyelink 1201 343 172
Damper 1845 338 169

To verify the detection performance of the UD-Net in different scenes, our study also
utilized a dataset provided by a power supply company (PSC Dataset), which contains im-
ages of thimbles, eyelinks, and shackles and is divided into images under green vegetative
scenes and yellow farmland scenes. Among them, there are 726 images in green vegetative
scenes and 581 images in yellow farmland scenes. The images in this dataset all have a size
of 512 × 512 and are carefully labeled.

Details of the hardware and software utilized in this experimental study are given in
Table 2. During the experiments, a training batch-size of 8 was employed, and the training
process transpired over a total of 100 epochs.

Table 2. Details of the Hardware and Software used in the Experimental Study.

Computer Systems Configurations

Hardware
Ubuntu 16.04 operating system

NVIDIA GTX2080Ti with 11GB memory

Software
Python 3.7, PyCharm 2020
CUDA 10.1, PyTorch 1.7.0

4.2. Experimental Results
4.2.1. Comparison with State-of-the-Art Models

A sequence of comparative analyses was carried out to assess the efficacy of the UD-
Net model. The study compares UD-Net with U-Net, FA-UNet, SSD (single shot multibox
detector) [40], Fast R-CNN (fast region-CNN) [41], YOLOv4 [42], and Faster R-CNN [43].
Additionally, it measures UD-Net’s performance against lightweight object detection
models, including YOLOv3-tiny [44], YOLOX-Nano [45], and YOLOv5s. Table 3 shows
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the comparison results. When benchmarked against SSD, UD-Net shows substantial
improvements, with a 17.24% increase in Precision, an 11.85% increase in Recall, and a
14.2% increase in mAP (mean average precision) values. Furthermore, when compared
with R-CNN series algorithms and U-Net series algorithms, UD-Net consistently exhibits
better detection accuracy. When compared with the lightweight models mentioned above,
although YOLOX-Nano has the smallest number of parameters, its detection accuracy is
lower than that of UD-Net. When comparing UD-Net and YOLOv5s models, although the
parameter number of UD-Net is slightly higher than that of YOLOv5s, it performs better in
terms of overall accuracy.

Table 3. Comparison between State-of-the-Art Models and UD-Net.

Models Precision/% Recall/% mAP/% Parameters/Million

SSD 76.01 78.33 75.79 -
Fast R-CNN 78.68 72.77 76.26 -

Faster R-CNN 80.18 78.99 78.56 -
YOLOv3-tiny 72.83 75.69 79.55 8.8

YOLOv4 81.62 82.15 81.08 52.5
YOLOv5s 88.15 89.37 88.26 7.0

YOLOX-Nano 86.59 84.85 85.22 1.8
U-Net 84.98 83.76 86.34 7.7

FA-UNet 90.09 87.81 87.73 19.9
UD-Net 93.25 90.18 89.99 7.2

Figure 4 offers an intuitive representation of the comparison results of various algo-
rithms via a box plot. As the figure shows, YOLOv5s exhibits commendable detection
performance among the YOLO (you only look once) series algorithms. However, a no-
ticeable performance disparity exists when juxtaposed with the UD-Net algorithm. The
UD-Net model showcases reduced variance across multiple experimental runs, highlighting
its consistent and superior performance.

Figure 4. Box plot of comparison results for the different algorithms.

4.2.2. Impact of BRA-UNet

To validate the superiority of embedding the BRA attention module into the UNet
network, experiments were conducted by upsampling on the U-Net network, incorporating
various attention mechanisms including squeeze-and-excitation networks (SENet) [46],
dual multiscale attention network (DMSANet) [47], efficient channel attention networks
(ECANet) [48], convolutional block attention module (CBAM) [49], and the BRA attention
mechanism. We carried out the experiments four times on the shackle dataset and the
results are presented in Figure 5. It is evident that the integration of the BRA mechanism
into the network enhances detection accuracy and ensures its stability. The inclusion of the
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BRA attention mechanism effectively expands receptive fields and contextual information,
thereby substantially enhancing the performance of the U-Net model. As the heatmaps
shown in Figure 6 demonstrate, the regions of interest for the target classifier become more
pronounced, and the high-response zones in the heatmap are focused on target fittings.
These results indicate that the enhanced BRA-UNet effectively focuses on the fittings target.
Furthermore, incorporating the BRA attention mechanism lessens the model’s reliance on
external data and bolsters its ability to discern internal data correlations.

Figure 5. Violin plots of detection results for U-Net networks embedded with different attention
mechanisms.

Figure 6. Comparison of heatmap results before and after embedding the BRA attention mechanism in
U-Net. (a) Represents the heatmap results detected by the original U-Net network, and (b) represents
the heatmap results detected by the U-Net embedding the BRA attention mechanism.

4.2.3. Ablation Analysis

To assess the validity of the UD-Net model, a series of ablation experiments were
conducted on a self-built dataset. Four methods were considered: A, representing the U-Net
model, B, representing the U-Net combined with the DGCNN network, C, representing the
BRA-UNet network, and D, representing the UD-Net. Table 4 provides insights into the
influence of these models on detection performance. By comparing A and C, it is discernible
that embedding the attention mechanism yields a degree of improvement in detection
accuracy. This indicates that embedding the BRA attention module enhances the model’s
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feature extraction capability. This enables the U-Net model to better learn the characteristics
and patterns of various categories during training, thereby improving the reliability of
fittings inspection. Similarly, comparing C and D reveals that the DGCNN algorithm has
a positive effect on U-Net detection. When benchmarked against method A, method D
shows substantial improvements, with a 1.24% increase in Accuracy, a 9.42% increase in
Precision, an 8.27% increase in Recall, and a 6.42% increase in mAP values. This indicates
that method D optimizes the outcomes of method A and refines the detection results of the
original U-Net. Overall, the enhanced UD-Net model demonstrates the highest detection
performance, underscoring the effectiveness of utilizing the DGCNN algorithm to extract
feature information from obscured fittings, thereby further improving accuracy.

Table 4. Ablation study results.

Models Accuracy/% Precision/% Recall/% mAP/%

A 97.88 79.95 84.98 83.76
B 98.41 81.81 85.94 85.23
C 98.46 85.75 87.24 86.37
D 99.12 89.37 93.25 90.18

Figures 7–9 delineate the results of fittings detection under the four different methods,
A, B, C, and D, showcasing the superior recognition proficiency of method D, especially in
scenarios of occlusion and small target fittings. In Figure 7, all four methods demonstrate
the capability to recognize unobstructed and normally sized fittings targets. However, the
target boxes in methods A, B, and C show some inaccuracies. Notably, for objects like
the eyelink in the first row, methods A and B produce false detections, likely because of
the similarity in shape and size between shackles and eyelinks. A shackle is mistakenly
labeled as an eyelink in Figure 7. Conversely, method D predicts the target boxes with
greater accuracy, underscoring its superior recognition capability. The findings indicate
that method D decreases the rates of both missed detections and false detections for fittings.

As depicted in Figure 8, while methods A and B fail to detect the ball eyes among
the small targets, methods C and D successfully identify them. For the shackle, method
A experiences missed detection issues. With methods B and C, even though the targets
are detected, there are inaccuracies in the positioning and dimensions of the target boxes.
Relative to the first three methods, method D not only rectifies the missed detection cases
in small target fittings but also exhibits superior recognition capabilities. For the thimble
that is partially obscured by steel strands, as seen in Figure 9, the detection results in the
first row clearly show that method D adeptly identifies thimble images with occlusion
challenges. In a similar vein, the image of the damper obscured by the cement pole is
uniquely discerned by our proposed method D.

The comparison results of the detection of different fittings are presented in Table 5. It
is evident that the UD-Net network exhibits significant enhancements in both Precision
and Recall metrics for fittings detection. Notably, detection of the suspension clamp saw an
increase of 13.65% in Precision and 2.18% in Recall when compared to the original U-Net
network. Because the suspension clamp has significant differences in shape compared
to other fittings, the model exhibits superior recognition ability for this type of fitting.
In addition, UD-Net significantly outperforms the original U-Net model in recognizing
small target fittings, such as dampers. Compared with the U-Net algorithm, the UD-Net
algorithm shows substantial improvements, with a 10.29% increase in mIoU, a 26.24%
increase in Precision, and a 9.78% increase in Recall. Meanwhile, the enhanced UD-Net
algorithm exhibits superior detection accuracy for fittings prone to occlusion, such as the
thimble and eyelink. This underscores the algorithm’s proficiency in extracting features
from occluded objects, thereby optimizing the results. Overall, UD-Net demonstrates
superior performance across all four evaluation metrics, Accuracy, mIoU, Precision, and
Recall, compared to the U-Net. In terms of algorithm performance, the UD-Net network’s
average training time increases by a minimum of 12.88% compared to the U-Net. This
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suggests that despite the introduction of the DGCNN algorithm, the operation of BRA-
UNet within the UD-Net structure—achieved by reducing both the number of encoder
blocks and the convolution channels—effectively decreases the model’s computational
overhead, thereby enhancing its training speed. Furthermore, UD-Net is more lightweight
than U-Net. This underscores the efficacy of the proposed algorithm in the domain of
electric power fittings detection.

Figure 7. Visual detection results of fittings under various methods. The first row shows images of an
eyelink, the second row shows images of a suspension clamp, the third row displays images of a clevis.
A is the U-Net, B is the U-Net combined with the DGCNN, C is the BRA-UNet, and D is the UD-Net.

Table 5. Detection results for various fittings.

Category

U-Net UD-Net

Accuracy mIoU Precision Recall
Average
Training

Time
Accuracy mIoU Precision Recall

Average
Training

Time

Suspension
clamp 97.69 85.92 81.33 94.18 2.86 99.05 93.47 94.59 96.2 3.4

Ball eye 99.12 84.99 83.5 87.26 2.97 99.47 90.52 86.3 95.14 3.53
Clevis 99.02 61.83 57.24 72.95 2.9 99.22 83.77 85.17 94.39 3.47

Shackle 98.12 79.34 64.37 85.44 2.95 98.9 85.9 89.25 87.35 3.33
Damper 99.33 74.5 63.19 83.06 2.94 99.28 84.85 89.43 92.84 3.35
Eyelink 97.85 62.07 48.63 70.28 2.91 98.92 80.18 83.54 86.43 3.44
Thimble 98.16 70.76 57.26 83.57 3.00 98.46 79.29 78.18 88.92 3.52
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Figure 8. Visual detection results of small target fittings under various methods. The first and second
rows depict the visual inspection results of a ball eye and a shackle, respectively. A is the U-Net, B is
the U-Net combined with the DGCNN, C is the BRA-UNet, and D is the UD-Net.

Figure 9. Visual detection results of occluded fittings under various methods. The first row shows
images of a thimble obscured by steel strands, the second row shows images of a damper obscured
by a cement pole. A is the U-Net, B is the U-Net combined with the DGCNN, C is the BRA-UNet,
and D is the UD-Net.

Figure 10 provides a more intuitive representation of the results through bar charts.
From the comprehensive results depicted in these three bar charts, the enhanced UD-
Net model demonstrates superior detection performance with higher values for mIoU,
Precision, and Recall compared to the U-Net model. As can be observed from Figure 10a,b,
the UD-Net detection algorithm demonstrates significant enhancements in both Precision
and Recall. This improvement is particularly evident for the images of a clevis and an
eyelink, suggesting that the algorithm is better equipped to identify targets within fittings
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images while significantly reducing the rate of missed detections. Figure 10c reveal that the
UD-Net detection algorithm excels in the task of accurately detecting fittings images, while
also minimizing the likelihood of misidentifying intricate backgrounds as fittings targets.

Figure 10. Metrics scores for different fittings. (a) Precision score for different fittings. (b) Recall score
for different fittings. (c) mIoU score for different fittings.

4.2.4. Fittings Detection in Different Scenes

To evaluate the generalization ability of UD-Net in different scenes, we conducted
a control experiment on the PSC Dataset. Figure 11 shows the mAP values for detecting
fittings in green vegetative scenes and yellow farmland scenes. The results indicate that
UD-Net effectively detects three distinct types of fittings across these two varied scenes.
Specifically, in green vegetative scenes, Figure 11a shows that relative to the U-Net algo-
rithm, the mAP values for the detection of shackles, eyelinks, and thimbles by UD-Net
have risen by 6.29%, 5.95%, and 3.84%, respectively. Similarly, in yellow farmland scenes,
Figure 11b shows mAP increases of 6.07%, 6.27%, and 3.16% for these fittings, respectively.
These results indicate that UD-Net not only exhibits excellent performance on the self-built
dataset, but also has good generalization ability when applied to different environments.
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Figure 11. mAP scores for two different scenes. (a) Green vegetative scenes. (b) Yellow farm-
land scenes.

Furthermore, to illustrate the training outcomes of UD-Net more vividly, Figures 12 and 13
display the visualized results of fittings detection in green vegetative and yellow farmland
scenes, respectively. Figure 12 reveal that in green vegetative environments, the bounding
boxes identified by UD-Net are markedly precise. Notably, in the figure’s second col-
umn, featuring thimble images, UD-Net precisely pinpoints the occluded thimble target,
a detail that U-Net overlooks. In Figure 13, UD-Net is able to identify the incomplete
shackle below the first column in yellow farmland environments, while U-Net fails to
do so. The visualization results further confirm the generalization ability of UD-Net in
different environments.

Figure 12. Visual detection results of thimbles under green vegetation scenes. The first row shows
the detection results with U-Net and the second row displays the detection results with UD-Net.

4.2.5. The Detection of Rusted Fittings

In real-world electric power environments, fittings can be impacted by several ele-
ments, rust being a prime example. Rust can cause changes in the surface color, texture,
and shape of the fittings, thus increasing the complexity of their identification. To validate
the robustness of the UD-Net algorithm, we performed training and testing on 982 images
of rusted fittings from a self-built dataset. Figure 14 provides a visualization of these results,
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highlighting rusted fittings with a particular emphasis on rusty ball eyes. Notably, the UD-
Net proficiently identifies rusted ball eyes, even amidst complex field backgrounds. This
proficiency underscores UD-Net’s efficacy in detecting defects in fittings and emphasizes
its significant potential for practical applications.

Figure 13. Visual detection results of shackles under yellow farmland scenes. The first row shows the
detection results with U-Net and the second row displays the detection results with UD-Net.

Figure 14. Visual results of detection of rusted fittings with UD-Net.

5. Conclusions

In addressing the inherent challenges associated with power fittings inspection, partic-
ularly characterized by intricate backgrounds and mutual occlusions amongst fittings, a
detection method based on the novel UD-Net is proposed. First, a U-Net model embed-
ded with BRA mechanisms is used for initial recognition of fittings images to enhance
the model’s feature extraction capability in complex backgrounds. Then, the Lite-Mono
algorithm is utilized for the generation of a depth map for the fittings. This depth map
is subsequently combined with the RGB image of the fittings, resulting in the conversion
into a point cloud representation. The DGCNN algorithm is then applied to enhance the
feature extraction capabilities of the network for fittings targets to fulfill the objective of
3D-detection-driven 2D detection. The simulation results demonstrate that the proposed
methodology holds substantial promise, augmenting feature discernibility and facilitating
the extraction of more pertinent information from images of fittings compared to other
considered methods. The algorithm not only accomplishes the high-precision detection
of power fittings but also harbors the potential to be applied to the automatic detection of
rusted fittings within images.
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Although the current recognition accuracy for shackles and eyelinks satisfies detection
requirements, it is imperative to note that the structural similarity between shackles and
eyelinks may still exert an influence upon recognition outcomes. Consequently, future
endeavors may strategically focus on further optimizing the model for fine-grained object
recognition, particularly pertaining to these two categories of fittings. Moreover, con-
strained by human resources and material availability, this study focuses on the annotation
and identification of seven types of fittings. However, many types of fittings exist in real-
ity. Future work can encompass a broader array of fitting types, enhancing the model’s
detection scope and performance for transmission line fittings.
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