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Abstract: Facial emotion recognition (FER) stands as a pivotal artificial intelligence (AI)-driven tech-
nology that exploits the capabilities of computer-vision techniques for decoding and comprehending
emotional expressions displayed on human faces. With the use of machine-learning (ML) models,
specifically deep neural networks (DNN), FER empowers the automatic detection and classification
of a broad spectrum of emotions, encompassing surprise, happiness, sadness, anger, and more.
Challenges in FER include handling variations in lighting, poses, and facial expressions, as well as
ensuring that the model generalizes well to various emotions and populations. This study introduces
an automated facial emotion recognition using the pelican optimization algorithm with a deep convo-
lutional neural network (AFER-POADCNN) model. The primary objective of the AFER-POADCNN
model lies in the automatic recognition and classification of facial emotions. To accomplish this, the
AFER-POADCNN model exploits the median-filtering (MF) approach to remove the noise present in
it. Furthermore, the capsule-network (CapsNet) approach can be applied to the feature-extraction
process, allowing the model to capture intricate facial expressions and nuances. To optimize the
CapsNet model’s performance, hyperparameter tuning is undertaken with the aid of the pelican
optimization algorithm (POA). This ensures that the model is finely tuned to detect a wide array of
emotions and generalizes effectively across diverse populations and scenarios. Finally, the detection
and classification of different kinds of facial emotions take place using a bidirectional long short-term
memory (BiLSTM) network. The simulation analysis of the AFER-POADCNN system is tested on
a benchmark FER dataset. The comparative result analysis showed the better performance of the
AFER-POADCNN algorithm over existing models, with a maximum accuracy of 99.05%.

Keywords: facial emotion recognition; deep learning; computer vision; emotions; pelican optimization
algorithm

1. Introduction

Facial emotion recognition (FER) methods are mainly utilized to recognize facial ex-
pressions on the human face [1]. Numerous kinds of emotions occur, but some may not
be superficial to the human eye [2]. Therefore, with the help of appropriate mechanisms,
any kind of suggestions can aid in identifying the classification. In the FER field, there are
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different types of universal facial expressions, like neutral, happiness, surprise, fear, anger,
sadness, and disgust [3]. From facial expressions, emotion extraction is an active study in
mental health, psychiatry, and psychology nowadays [4]. The automatic emotion recogni-
tion from facial expressions comes with numerous usages, likely HCI (human–computer
interaction), modern augmented reality, healthcare, smart living, and HRI (human–robot
interaction) [5]. Most of the researchers are employing FER because it comes with many
customs [6]. The procedure to build emotion-specific features is difficult because of several
factors which appear from the nonlinear interaction among dissimilar evidence, multidi-
mensional data, and the modalities that one can rapidly face with emotions in different
scenarios [7].

There is an increasing demand for robust and accurate systems able to automatically
recognize and classify human emotions from facial expressions. Emotions have a major
role in human communication, affect decision-making processes, and have applications in
diverse domains, from human–computer interaction to mental health assessment. Existing
FER models often face challenges related to noise, feature extraction, and generalization.
Recently, machine learning (ML) and deep networks have established an effective technique
to avoid such restrictions by distinguishing the most multipart nonlinear features linked
in multimodal data [8]. The two utmost-serious techniques in emotion detection are
feature extraction and classification [9]. Some of the foremost feature classifiers used for
superior classification exactness are artificial neural network, ML, and deep-learning (DL)
systems [10]. The established feature-engineering and ML methods attempt to remove
complicated as well as nonlinear patterns from the multivariate time-series data [11].
However, selecting an effective characteristic from many feature sets is very difficult, so
the dimensionality-reduction method will be needed. The feature-extraction as well as
selection process takes more time. For instance, when the dimensionality feature increases,
the calculating feature overhead selection develops radically [12]. DL techniques, namely,
the recurrent neural network (RNN), autoencoder (AE), and convolutional neural network
(CNN), have improved in all the areas of computing, especially computer vision, natural
language processing (NLP), audio-recognition machine translation, etc. [13]. Recently, DL
methods have been employed to deliver high-level data abstraction to develop a flexible
structure for emotion detection. In the DL method, DNNs are utilized to gather unique
qualities from the high-level data illustration [14].

This study introduces an automated facial emotion recognition using the pelican opti-
mization algorithm with a deep convolutional neural network (AFER-POADCNN) model.
The major intention of the AFER-POADCNN model lies in the automated recognition
and classification of facial emotions. To accomplish this, the AFER-POADCNN method
exploits the median-filtering (MF) approach to remove the noise present in it. Furthermore,
the capsule-network (CapsNet) approach can be applied to the feature-extraction process
and the hyperparameter tuning of the CapsNet model is carried out by the POA. Finally,
the detection and classification of different kinds of facial emotions take place using a
bidirectional long short-term memory (BiLSTM) network. The performance analysis of
the AFER-POADCNN technique is tested on benchmark FER databases. In short, the key
contributions of the paper are summarized as follows.

• An AFER-POADCNN technique comprising MF-based preprocessing, a CapsNet fea-
ture extractor, POA-based hyperparameter tuning, and BiLSTM classification has been
developed for FER. To the best of our knowledge, the AFER-POADCNN technique
has never existed in the literature;

• The CapsNet model has been employed for feature extraction, allowing for the capture
of intricate and nuanced facial expressions;

• The POA is presented to tune the hyperparameters of the capsule network, enhancing the
model’s adaptability and generalization to different emotions and diverse populations;

• The BiLSTM model applied for emotion classification ensures the robust detection and
categorization of various facial emotions.
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2. Literature Review

Sarvakar et al. [15] proposed a neural network convolutionary (FERC) technique which
uses two parts. At the initial stage, the image backdrop is removed, and then the face vector
is removed. For the classification process, the expressional vector (EV) is employed. The
two-layer CNN is constant, and the exponent and weight standards of the last perception
layer may differ with each iteration. Then, the EV generation ensures the growth of issues
before a novel background-removal procedure is utilized. Said and Barr [16] designed a
face-sensitive CNN for human-emotion classification, which is collected from two phases.
At the initial stage, the method is employed to identify faces in high-resolution images, and
then the faces are trimmed for further processing. Next, the CNN is utilized to estimate
facial expression, which is relayed on standard analytics. Then, it is implemented on
pyramid images for processing scale invariance. In [17], the facial-expression-detection
method has been designed. At an initial stage, an area of interest has been performed as
face classification. Secondly, a DL-based CNN design is projected. In the third stage, some
of the new data-augmentation methods have been applied.

Talaat [18] proposed a real-time emotion-identification method that employs three
phases of emotion classification. The selection designs an enhanced DL method to identify
facial emotions by utilizing the CNN. The projected emotion-recognition framework took
up the benefit of employing the IoT and fog for reducing the delays for real-time classi-
fication, with a quick response time as well as providing location awareness. Chowdary
et al. [19] mainly dealt with emotion detection by making use of the transfer-learning (TL)
method. The well-defined networks of Mobile Net, Vgg19, Resnet50, and Inception V3 are
utilized in the research. The pretrained ConvNets are deleted, and then entire connected
layers are added that are more appropriate for the totality of the instructions. At last,
the fresh additional networks are skilled to improve the weights. In [20], an automated
framework algorithm is used for facial recognition by employing an FD-CNN, which is
developed with four convolutional layers as well as two hiding networks for enhancing
the accuracy. An extensive CK+ dataset is mainly employed, including facial images of dis-
similar females and males with various expressions. For validating the projected technique,
K-fold cross-validation is executed.

Sikkandar and Thiyagarajan [21] presented an improved cat swarm optimization
(ICSO) method. The deep-CNN technique is employed for the extraction process. The
ICSO is mainly designed to select optimum features. Using DCNN with the ICSO method
enhances the retrieval performance; then, the ensemble classification algorithm uses a
support vector machine (SVM) and neural network (NN) that are performed to classify
facial expressions. Helaly et al. [22] developed a DCNN method based on an intelligent
computer-vision system which is capable of identifying the facial emotions on human faces.
In the first stage, the DCNN designed using the TL method is mainly introduced to build
up an accurate FER system. Secondly, the research suggests the ResNet18 method.

In [23], a new end-to-end facial-microexpression-recognition architecture termed
Deep3DCANN has been developed to combine these modules for active microexpression
discovery. The first module of our design is a deep 3D-CNN that learns beneficial spa-
tiotemporal features from a series of facial images. Kansizoglou et al. [24] offer a new
model for online emotion detection that features audio as well as visual modalities, and
then offers a receptive forecast when the system is sufficiently self-assured. The author
developed two deep CNN techniques for removing emotional features; one model for each
modality, and a DNN for their fusion. Li et al. [25] presented a unique self-supervised
exclusive–inclusive interactive-learning (SEIIL) technique to simplify the discriminative
multilabel FER in the wild that effectually grip-coupled manifold thoughts with incomplete
unrestrained training data. Kansizoglou et al. [26] presented a new method that slowly
maps, as well as learns, human personalities by considering and following a person’s
emotional differences through communication. The developed network removes the facial
landmarks of a subject, which are utilized to train a properly planned deep recurrent neural
network (DRNN) framework.
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3. The Proposed Model

In this study, we have designed a novel AFER-POADCNN model. The primary objec-
tive of the AFER-POADCNN model lies in the automated recognition and classification
of facial emotions. To accomplish this, the AFER-POADCNN method includes different
phases of operations, namely, MF-based preprocessing, the CapsNet model for feature
extraction, the BiLSTM model for classification, and POA-based hyperparameter tuning.
Figure 1 portrays the entire procedure of the AFER-POADCNN system.
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3.1. Image Preprocessing

To remove the noise that exists in the input images, MF is used. It is a basic preprocess-
ing method deployed in image processing to decrease noise and increase data quality [26].
Different from other smoothing techniques, MF methods excel at maintaining edges and
fine details while efficiently mitigating impulse noise, like salt-and-pepper noise usually
created in images. It works by changing all values of the pixels with the median value
from a local neighborhood, making it specifically compatible with applications where
noise reduction is important, without affecting the integrity of significant image features.
MF is extensively utilized in domains like CV, remote sensing, and medical imaging for
enhancing the data quality and robustness before additional visualization or analysis.

3.2. Feature Extraction

For deriving the feature vectors, the CapsNet model is applied. Capsule networks, also
known as CapsNets, describe a new method for DL techniques, developed to address a few
drawbacks of standard CNNs in tasks, namely image recognition [27]. Developed by Geof-
frey Hinton and his team, CapsNets present capsules as the main building blocks. These
capsules are smaller collections of neurons that function together to identify different parts
of objects or visual patterns within an image. Dissimilar CNNs depend on max-pooling
for extracting features, and CapsNets utilize dynamic-routing mechanisms to evaluate
the spatial relationships among parts and their entire objects. This allows CapsNets to
manage complex hierarchical connections among features that are specifically beneficial in
conditions where object pose and orientation matter, like in understanding handwritten
features or identifying objects in cluttered scenes. Another feature of CapsNets is the capa-
bility to manage variable-length pose vectors for all parts, permitting them to obtain rich
information about the relative positions and orientations of object components. This makes
CapsNets robust to various transformations, including scaling, rotation, and deformation,
making them a compelling choice for tasks like image segmentation and object recognition
in challenging real-world conditions. While CapsNets are still an evolving field of research,
they hold significant promise in advancing the state-of-the-art in computer vision and
pattern recognition. Figure 2 exemplifies the infrastructure of the CapsNet.
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3.3. Hyperparameter Tuning

In this work, the POA optimally chooses the hyperparameter values of the CapsNet
model. POA is a new swarm intelligence (SI)-based optimization algorithm, and pelicans
are its population [28]. The swarm member implies a candidate solution. Mainly, the
swarm members are randomly initialized based on the problem limit:

zi,j = lj + rand ·
(
uj − lj

)
, j = [1, 2, . . . , m], i = [1, 2, . . . , N] (1)

In Equation (1), the upper and lower bounds of the jth variable of the problem are
uj and lj, correspondingly. The amount of the jth parameter defined by the ith candidate
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solutions are zi,j; the number of swarm members is N, an accidental amount between (0, 1 )
is rand, and the number of parameters in the solution space is m.

The pelican swarm’s associates can be described by the matrix. In the following matrix,
the value in each row describes a candidate solution; moreover, the value in the column
depicts the presented amount for the variable in the solution space.

Z =



Z1
...
Zi
...
ZN

 =



z1,1 . . . z1,j . . . z1,m
...

. . . zi,j
...

zi,1 . . .
... . . . zi,m

...
...

. . .
...

zN,1 · · · zN,j . . . zN,m


(2)

In Equation (2), Z and Zi are the swarm matrix and ith pelicans.
In this work, the cost function is calculated on any candidate solution. The cost-

function vector (Fi) is used to define the attained amount for the cost function, as follows:

F =



F1
...
Fi
...
FN


N×1

=



F(Z1)
...
F(Zi)
...
F(ZN)

 (3)

1. Exploration Stage (Moving direction of Bait)

First, pelican members used to identify the hunting region; then, they move towards
that place. The solution area is scanned due to its simulation of the pelican strategy; also, it
gives rise to the exploration capability of the POA to explore different areas of the solution
space. Consider that the hunting position is randomly generated in the searching region;
the exploration ability rises once it finds the solution space. This can be mathematically
expressed as follows:

zp1
i,j =

{
zi,j + rand.

(
pj − I.zi,j

)
, Fp < Fi,

zi,j + rand.
(
zi,j − pj

)
, else,

(4)

In Equation (4), the new situation of ith pelicans at the dimension is zp1
i,j , I indicates

a random integer; the prey location in the jth dimension denotes the pj. The parameter
I is arbitrarily chosen for any member and any iteration. If the quantity of I is 2, then
it increases in dislocation for a member; thus, the member conducts a new region of the
problem. The exploration ability of these optimizers for the incorrect scanning of the
problem is better than the I parameter.

The new position for the pelican is attained, which provides the cost-function value.
The algorithm could not move towards the nonoptimum region using this type of up-
grade, which is called the effective-update process. This method is simulated by the
subsequent formula:

Zi =

{
Zp1

i , Fp1
i < Fi;

Zi, else
(5)

In Equation (5), Zp1
i shows the new position of ith pelicans and Fp1

i represents its
cost-function amount.

2. Exploitation Stage (Winging on the Water Surface)
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In this phase, the pelicans spread their wings to attain the water surface; therefore,
the fish come out and they gather bait in their throat pouch. The statistical formula for the
demeanor of pelicans during hunting is given below:

zp2
i,j = zi,j + R ×

(
1 − t

T

)
× (2 × rand − 1)× zi,j (6)

In Equation (6), the new location of the ith individuals at the jth parameter is zp2
i,j , and

the neighborhood radius of zi,j is R ×
(
1 − t

T
)
, where the iteration number is t, R equals 0.2,

and the maximal iteration counter is T. “R ×
(
1 − t

T
)
” is the coefficient representing the

radii of the surrounding of the swarm individual to the local exploration, and the proximity
to any member to converge for a promising solution. The nearby area and swarm member
with more precise and shorter movements can be examined, and the PO is able to converge
the answer closer to the global optima. In this stage, an effective update is used for taking
or refusing the new pelican position, which is formulated as follows:

Zi =

{
Zp2

i , Fp2
i < Fi;

Zi, else
(7)

In Equation (7), the novel situation of the ith pelican is Zp2
i and the cost-function

amount is Fp2
i .

3. Repetition

Once the swarm individuals are updated, the optimal solution will be upgraded by
the rate of the performance index and the new position of the swarm. The next iteration
begins, and the different stages of the proposed PO, using the abovementioned formula, are
repeated, finishing the whole performance. Eventually, the best solution candidate attained
in the algorithm epoch is shown as a quasioptimal solution.

The POA algorithm derives an FF to obtain a high efficiency of classification. It deter-
mines a positive integer to represent the improved performance of the solution candidate.
The decline of the classifier error rate is considered an FF.

f itness(xi) = Classi f ierErrorRate(xi)

=
number o f misclassi f ied samples

Total number o f samples
∗ 100 (8)

3.4. Detection Using the BiLSTM Model

To detect the presence of emotions in distinct types, the BiLSTM model is applied.
The input, forget, and output gates are the three gates of the LSTM unit [29]. The input
gate defines what amount of the input data to remain in the existing state of the memory
unit, the forget gate is a basic design for the LSTM to learn long-term dependency, and the
output gate decides which state of the memory cell is transported to the hidden output
state. The state of the memory unit at t − 1 is Ct−1, the input of the unit at existing moment
t is xt, and the output of the hidden state at prior time t − 1 is ht−1, which are the three
inputs of the LSTM neurons. The state of the memory cell at t is Ct and the output of the
hidden layer (HL) at t is ht, which are the two outputs of the LSTM neuron:

ft = σ
(

w f xxt + w f hht−1 + b1

)
(9)

It = σ(wixxt + wihht−1 + b2) (10)

Zt = tanh(wzxxt + wzhht−1 + b3) (11)
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Ct = ft ◦ Ct−1 + it ◦ Zt (12)

Ot = σ(woxxt + wohht−1 + b4) (13)

ht = Ot ◦ tanh(Ct) (14)

From the equations, the sigmoid function is σ. The multiplication by elements is “ ◦ ”;
w and b are the corresponding weight parameters and bias.

The prediction of the BiLSTM is based on time sequences and considers the negative
and positive direction of prior data. The BiLSTM model comprises two layers of one-way
LSTM, where HL in the positive time direction consists of prior data series and evaluates
the present data sequence. HL in the reverse time direction is used to add the reverse data
series in the calculation and read the future data series in the input. Next, the value defined
by the two LSTM modules is feedforwarded into the output layer.

4. Results and Discussion

The proposed model is simulated using the Python 3.8.5 tool on a PC i5-8600k, GeForce
1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings are given
as follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation:
ReLU. In this section, the FER outcome of the AFER-POADCNN algorithm is examined on
the FER database [30], comprising 920 images and 8 classes, as illustrated in Table 1.

Table 1. Details of the database.

Classes No. of Samples

Anger 45
Contempt 18

Disgust 59
Fear 25

Happy 69
Neutral 593

Sad 28
Surprise 83

Total No. of Sample Images 920

Figure 3 demonstrates the confusion matrices attained by the AFER-POADCNN
algorithm at 80:20 and 70:30 of the TR phase/TS phase. The outcome denotes the effective
recognition and classification of all eight classes.

In Table 2 and Figure 4, the FER results of the AFER-POADCNN technique at 80:20
of the TR phase/TS phase are presented. The simulation values highlight that the AFER-
POADCNN method properly recognized facial emotions accurately. With 80% of the TR
phase, the AFER-POADCNN technique offers an average accuy of 98.85%, sensy of 83.90%,
specy of 98.93%, Fscore of 86.88%, and an MCC of 86.36%. Additionally, with 20% of the
TS phase, the AFER-POADCNN approach achieves an average accuy of 99.05%, sensy of
90.03%, specy of 99.22%, Fscore of 91.47%, and an MCC of 91.28%.

In Table 3 and Figure 5, the FER outcome of the AFER-POADCNN approach at 70:30
of the TR phase/TS phase is presented. The outcome displayed that the AFER-POADCNN
algorithm appropriately detected the facial emotions accurately. With 70% of the TR phase,
the AFER-POADCNN system gains an average accuy of 98.91%, sensy of 83.55%, specy of
98.92%, Fscore of 87.37%, and an MCC of 86.99%. Furthermore, with 30% of the TS phase,
the AFER-POADCNN approach reaches an average accuy of 98.82%, sensy of 89.65%, specy
of 99.02%, Fscore of 91.43%, and an MCC of 90.74%.
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Table 2. Cont.

Classes Accuy Sensy Specy FScore MCC

Happy 99.46 98.15 99.56 96.36 96.09

Neutral 97.42 99.36 94.01 98.00 94.43

Sad 99.59 91.30 99.86 93.33 93.15

Surprise 99.05 95.52 99.40 94.81 94.29

Average 98.85 83.90 98.93 86.88 86.36

TS Phase (20%)

Anger 98.37 72.73 100.00 84.21 84.55

Contempt 100.00 100.00 100.00 100.00 100.00

Disgust 98.91 100.00 98.87 87.50 87.69

Fear 99.46 66.67 100.00 80.00 81.43

Happy 98.91 93.33 99.41 93.33 92.74

Neutral 98.91 100.00 96.67 99.20 97.54

Sad 100.00 100.00 100.00 100.00 100.00

Surprise 97.83 87.50 98.81 87.50 86.31

Average 99.05 90.03 99.22 91.47 91.28
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Table 3. FER outcome of AFER-POADCNN algorithm at 70:30 of the TR phase/TS phase.

Classes Accuy Sensy Specy FScore MCC

TR Phase (70%)

Anger 99.22 96.88 99.35 92.54 92.23

Contempt 99.38 62.50 99.84 71.43 71.87

Disgust 98.91 87.18 99.67 90.67 90.17

Fear 99.07 68.42 100.00 81.25 82.32

Happy 99.38 95.83 99.66 95.83 95.50

Neutral 97.67 99.76 93.67 98.25 94.86

Sad 98.91 64.71 99.84 75.86 76.52

Surprise 98.76 93.10 99.32 93.10 92.42

Average 98.91 83.55 98.92 87.37 86.99

TS Phase (30%)

Anger 99.28 100.00 99.24 92.86 92.74

Contempt 99.28 80.00 100.00 88.89 89.11

Disgust 98.91 90.00 99.61 92.31 91.76

Fear 99.64 83.33 100.00 90.91 91.12

Happy 98.91 95.24 99.22 93.02 92.46

Neutral 97.46 98.82 95.28 97.96 94.64

Sad 98.91 81.82 99.62 85.71 85.26

Surprise 98.19 88.00 99.20 89.80 88.82

Average 98.82 89.65 99.02 91.43 90.74

To estimate the performance of the AFER-POADCNN algorithm at 80:20 of the TR
phase/TS phase, TR and TS accuy curves are defined, as illustrated in Figure 6. The TR and
TS accuy curves demonstrate the outcome of the AFER-POADCNN algorithm on various
epochs. The figure offers meaningful details regarding the learning task and generalization
capabilities of the AFER-POADCNN approach. With an enhancement in the epoch count,
it is observed that the TR and TS accuy curves are enhanced. It is still experimental that the
AFER-POADCNN algorithm attains higher testing accuracy, which has the capability in
identifying the patterns in the TR and TS data.

Figure 7 reveals the overall TR and TS loss values of the AFER-POADCNN algorithm
at 80:20 of the TR phase/TS phase over epochs. The TR loss displays that the model loss is
lesser over epochs. Primarily, the loss values are reduced as the model modifies the weight
to minimize the prediction error on the TR and TS data. The loss curves demonstrate the
extent to which the model fits the training data. It is detected that the TR and TS loss is
steadily decreased, and represents that the AFER-POADCNN approach effectually learns
the patterns displayed in the TR and TS data. It is also noticed that the AFER-POADCNN
algorithm fine-tunes the parameters for decreasing the discrepancy between the prediction
and the original training label.

The precision–recall (PR) outcome of the AFER-POADCNN approach at 80:20 of
the TR phase/TS phase is represented by plotting the precision against the recall, as
defined in Figure 8. The outcomes confirm that the AFER-POADCNN algorithm reaches
higher PR performances under all classes. The outcome exhibits that the model learns to
identify distinct classes. The AFER-POADCNN algorithm reaches improved solutions in
the recognition of positive instances, with minimal false positives.
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The ROC curves offered by the AFER-POADCNN algorithm at 80:20 of the TR
phase/TS phase are illustrated in Figure 9, which has the capability of discriminating
the class labels. The outcome implies appreciated insights into the trade-offs among the
TPR and FPR rates, with various classifier thresholds and distinct counts of epochs. It
defines the correct predictive outcome of the AFER-POADCNN approach on the classifier
of various classes.
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Table 4. Cont.

Methods Sensy Specy Accuy Fscore

MobileNet 83.74 83.81 92.32 86.52

Inception-V3 80.23 84.06 93.74 73.82

CNN-VGG19 82.95 81.59 94.03 81.75
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Figure 11 signifies a comparative sensy and specy inspection of the AFER-POADCNN
system with recent algorithms. The outcomes inferred that the AFER-POADCNN algorithm
attains optimum solutions. Based on sensy, the AFER-POADCNN algorithm achieves a
superior sensy of 90.03%, while the HGSO-DLFER, ResNet50, SVM, MobileNet, Inception-
v3, and CNN-VGG19 algorithms achieve lesser sensy values of 84.99%, 83.96%, 83.17%,
83.74%, 80.23%, and 82.95%, correspondingly. Furthermore, based on specy, the AFER-
POADCNN system offers an enhanced specy of 99.22%, while the HGSO-DLFER, ResNet50,
SVM, MobileNet, Inception-v3, and CNN-VGG19 systems gain minimal specy values of
98.65%, 83.65%, 82.18%, 83.81%, 84.06%, and 81.59%, correspondingly. These performances
confirmed the higher outcome of the AFER-POADCNN algorithm.
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5. Conclusions

In this study, we have designed a novel AFER-POADCNN model for automated and
accurate FER. The primary objective of the AFER-POADCNN model lies in the automatic
recognition and classification of facial emotions. To accomplish this, the AFER-POADCNN
method comprises MF-based preprocessing, a CapsNet feature extractor, POA-based hy-
perparameter tuning, and BiLSTM-based classification for FER. Finally, the detection and
classification of different kinds of facial emotions take place using the BiLSTM network.
The simulation analysis of the AFER-POADCNN algorithm can be tested on benchmark
FER databases. The stimulation values demonstrated the better performance of the AFER-
POADCNN model over existing techniques, with a maximum accuracy of 99.05%. Further
enhancements can include expanding the model’s robustness to varying lighting conditions,
facial expressions, and head poses. Additionally, exploring real-time applications and the
integration of multimodal data, such as audio and text analysis, can pave the way for a
more comprehensive understanding of human emotions in a wide range of contexts. Future
work can investigate the computational efficiency of the proposed model.
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