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Abstract: Image denoising, as an essential component of image pre-processing, effectively reduces
noise interference to enhance image quality, a factor of considerable research importance. Traditional
denoising methods often lead to the blurring of image details and a lack of realism at the image edges.
To deal with these issues, we propose an image denoising algorithm named Residual structure and
Cooperative Attention mechanism based on Generative Adversarial Networks (RCA-GAN). This
algorithm proficiently reduces noise while focusing on preserving image texture details. To maximize
feature extraction, this model first employs residual learning within a portion of the generator’s
backbone, conducting extensive multi-dimensional feature extraction to preserve a greater amount
of image details. Secondly, it introduces a simple yet efficient cooperative attention module to
enhance the representation capacity of edge and texture features, further enhancing the preservation
of intricate image details. Finally, this paper constructs a novel loss function—the Multimodal
Loss Function—for the network training process. The experimental results were evaluated using
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) as evaluation metrics. The
experimental results demonstrate that the proposed RCA-GAN image denoising algorithm has
increased the average PSNR from 24.71 dB to 33.76 dB, achieving a 36.6% improvement. Additionally,
the average SSIM value has risen from 0.8451 to 0.9503, indicating a 12.4% enhancement. It achieves
superior visual outcomes, showcasing the ability to preserve image texture details to a greater extent
and excel in edge preservation and noise suppression.

Keywords: image denoising; generative adversarial network; attention mechanism; residual network

1. Introduction

Due to the inevitable noise during the image acquisition and transmission process, im-
age quality frequently experiences degradation [1], impacting the reliability of subsequent
image-related tasks across various fields [2]. Therefore, the need for achieving adaptive
image enhancement is increasingly pressing. Image denoising, a classical technique in com-
puter vision, aims to restore noise-free images from noisy counterparts, ensuring effective
subsequent processing of high-quality images [3–5]. Hence, the pursuit of more practical
image denoising methods to enhance image quality remains a focal point in the realm of
image processing [6].

There are mainly traditional denoising methods and denoising methodologies rooted
in deep learning techniques [7–9]. The traditional denoising methods include spatial
domain filtering [10,11] and transform domain filtering [12]. Spatial domain filtering
employs convolution techniques with image signals and filtering templates to complete the
filtering process [13], including median filtering [14,15], mean filtering [16,17], and more.
Transform domain filtering involves taking a noisy image and filtering it in the transform
domain to obtain a denoised image. This process includes methods such as wavelet
transform domain [18,19] and Fourier transform domain [20]. The Block-Matching and 3D
filtering (BM3D) [21] method utilizes self-similar patches to attain superior outcomes with
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respect to both image fidelity and visual quality. While these methods are effective in noise
suppression, the quality of the denoised images often falls short, and the feature extraction
process they entail is laborious, time-consuming, and computationally intensive. This
makes them less suitable for handling real noise characterized by intricate distributions.

In contrast to conventional image denoising algorithms, deep learning-based image
denoising algorithms are data-oriented, capable of achieving higher performance metrics
in fixed-mode image denoising, and enhancing image quality to some extent. Burger
et al. [22] introduced the Multi-Layer Perceptron (MLP) algorithm for image denoising,
which iteratively learns by constraining the difference between network outputs and actual
images using the L2 loss function. Zhang et al. [23] introduced the Denoising Convolutional
Neural Network (DnCNN) image denoising algorithm, which incorporates residual learn-
ing [24] and batch normalization to broaden the scope of denoising tasks, encompassing
universal image denoising and enhancing denoising performance. In the literature [25], a
two-channel residual convolutional network was proposed to address underwater image
denoising. This approach utilizes both local residual and global sparse blocks for feature
extraction and employs feature processing blocks to achieve feature fusion, ultimately
leading to an improvement in image quality. To enhance the denoising capabilities of
traditional Convolutional Neural Network (CNN), Lan et al. [26] introduced the deep
residual convolutional neural network in 2019. They harnessed the power of residual learn-
ing and skip connections to facilitate deep neural network processing, thereby mitigating
the denoising limitations stemming from network depth. Addressing the prevalent issue
of texture detail loss in existing denoising methods, Chen et al. [27] proposed a creative
two-step denoising network framework. Initially, they employed approximate noise blocks
extracted from noisy images to train the Generative Adversarial Network (GAN). Subse-
quently, the combination of extracted and generated noise blocks, in conjunction with clean
images, was used as training data for network training. In response to the complexity and
instability challenges associated with GAN training, literature [28] adopted a GAN incor-
porating Wasserstein distance and perceptual loss for image denoising. This approach not
only bolstered GAN’s performance but also concurrently improved subjective perception.
Zhu et al. [29] introduced a GAN-based, robust denoising network to tackle challenges in
image denoising. This approach yielded substantial improvements in both accuracy and
robustness, with a noteworthy enhancement in defense against adversarial attacks.

The above-mentioned algorithm has significantly improved denoising performance.
However, due to ineffective extraction of image edge features, it leads to the loss of certain
texture details. To tackle this issue, this paper proposes an image denoising method named
RCA-GAN, which combines a cooperative attention module with a residual module within
a GAN. The network’s input exhibits flexibility as it can directly generate clean images
from the noisy ones. Furthermore, while enhancing network stability, this approach places
a stronger emphasis on the restoration of fine-grained image texture details.

The main contributions of this paper are as follows:

1. We proposed the RCA-GAN image denoising algorithm which enhances crucial
features by incorporating residual learning into the generator’s backbone network,
thus improving the model’s capability to recover image details and edge information.

2. We devised a cooperative attention mechanism that proves highly effective in dealing
with complex noise distributions. It can model and address intricate noise distri-
butions within images, thereby enhancing the accurate restoration of the original
image information.

3. We constructed a Multimodal Loss Function that guides network parameter opti-
mization by weighting and summing perceptual feature loss, pixel space content
loss, texture loss, and adversarial loss, thereby enhancing the model’s reconstruction
performance for image texture details.
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2. Background Techniques
2.1. Generative Adversarial Network

The GAN is a deep learning model capable of producing high-quality outputs through
the adversarial training of its Generator and Discriminator models within a framework.
This network, introduced by Ian Goodfellow et al. [30] in their 2014 paper “Generative
Adversarial Networks”, represents an unsupervised learning approach widely employed
in tasks such as image denoising. Its structure is shown in Figure 1.
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Figure 1. GAN Network Architecture.

The noisy image z is input into the generator G, resulting in the acquisition of the
generated image G′(z). The generated image G′(z) is then fed into the discriminator D
together with the original image u to output the probability that the generated image
bearing resemblance to the original image. Finally, the loss function is adjusted in reverse
and iteratively trained for both the generator network G and the discriminator network D.
This iterative process aims to make the generated image G′(z) from the generator network
G closely resemble the original image. Simultaneously, it strives to make the discriminator
D unable to accurately recognize the generated image from the original image. In other
words, it seeks to achieve the optimal denoising effect through the generation network G.

2.2. Residual Learning

In light of the progress in deep learning techniques, more researchers are opting to
increase the depth of neural networks to enhance model performance and extract more
intricate image features for image denoising. However, studies have revealed that exces-
sively deep networks often lead to information loss during feature extraction, negatively
impacting image feature reconstruction. Consequently, He et al. [31] introduced the resid-
ual structure, where a skip connection forms a path between the input and output of each
block, effectively addressing this issue. The residual block is illustrated in Figure 2.
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Given an input Fi and an output Fi+1, where the convolution operation is denoted as
H, the input-output relationship can be represented as follows:

Fi+1 = Fi + H(Fi) (1)

Within the context of the residual structure, the input Fi undergoes a convolution
operation, and the resulting outcome H(Fi) is then added to the original input Fi to yield the
output Fi+1 of the residual module. In contrast to the output Fi+1 = H(Fi) of the traditional
CNN, the residual network primarily involves the calculation of a minor adjustment to
the input Fi. Subsequently, this adjustment is applied to transform the output H(Fi),
resulting in a composition of both the original input Fi and the magnitude of the calculated
adjustment. By transferring information to deeper layers of the neural network through
skip connections, it ensures that even in deeper networks, image features are retained. This
effectively addresses the issues of gradient disappearance and gradient explosion, thereby
stabilizing the network’s performance.

3. Design of Network Architecture and Denoising Model
3.1. RCA-GAN Network Architecture

This paper introduces an image denoising approach based on GAN, referred to as
RCA-GAN, which combines a Cooperative Attention mechanism with residual learning.
The algorithm framework outlined in this study is visually depicted in Figure 3. Initially,
the noisy image is fed into the generator G, which incorporates the Cooperative Attention
mechanism, resulting in the generation of a reconstructed image. Subsequently, both the
generated image and the original image are jointly provided as input to the discriminator
D, which evaluates the likelihood of the input image being similar to the original image.
Finally, network parameter optimization is guided using a composite loss function that
combines adversarial loss and generation loss with appropriate weighting. The iterative
training of both the generator G and discriminator D incorporates the utilization of the
Adam momentum optimizer. The purpose of this process is to refine the generated im-
ages, bringing them closer to the original images, ultimately resulting in the training of a
generator model with enhanced denoising performance.
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3.1.1. Generator Network Architecture

The generator network, serving as the core component of the denoising model, is
primarily tasked with generating a low-noise image that faithfully preserves edge details,
given a high-noise input image. This network operates through the cooperative action
of the Cooperative Attention module and residual modules, facilitating the extraction of
high-level features. The residual network retains more image details during convolution
and pooling operations, enabling each channel to capture richer features for subsequent
feature fusion. At the same time, the Cooperative Attention module assigns greater weights
to crucial image textures and edge features, thereby enhancing high-frequency texture
information and optimizing feature utilization. Consequently, this process brings the
generated images closer to the original images. The improved generator network model is
illustrated in Figure 4. In this context, k denotes the size of the convolution kernel, while
n corresponds to the quantity of output channels allocated for the convolutional layer. s
stands for the step size employed in the process, and Conv refers to the convolutional layer
itself. Additionally, Block signifies the presence of the residual block, and BN is associated
with the batch normalization process. The network comprises four modules: the feature
extraction section, the feature domain denoising section, the high-level feature extraction
section, and the feature dimensionality reduction fusion section.
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The feature extraction section comprises multi-scale convolutional layers with kernel
dimensions of 1 × 1, 3 × 3, 5 × 5, and 7 × 7, primarily employed to extract a sufficient
number of features for subsequent network processing. The denoising component in the
feature domain comprises a stack of eight convolutional layers, each followed by Batch
Normalization (BN) layers and Rectified Linear Unit (ReLU) activation functions to en-
hance learning and accelerate network training. In the high-level feature extraction layer,
an initial convolutional network is employed to fuse the denoising features, facilitating
the subsequent extraction and processing of abstract high-level features. These convolu-
tional layers contribute to capturing intricate patterns and minute details within the image.
Following this initial fusion, a stack of residual blocks is utilized to further extract and
multidimensionally fuse the denoising features. Leveraging skip connections, this combi-
nation enhances the network’s ability to model high-frequency image details by merging
the abstraction capacity of high-dimensional features with the information preservation
capability of low-dimensional features. RCA-GAN incorporates a Cooperative Attention
mechanism before the residual structure, aiming to thoroughly explore key feature infor-
mation such as edges and textures. It assigns higher weights to these critical features while
suppressing relatively redundant or less important characteristics, thereby reducing the
weight allocated to such information. The Cooperative Attention mechanism enhances the
recovery capacity for image detail and edge information by allocating different weights se-
lectively. Simultaneously, the inclusion of the attention module helps mitigate some noise in
the skip connections, further contributing to denoising. Additionally, the residual network
addresses optimization challenges linked to increased network depth, averting network
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degradation through skip connections, and mitigating the risk of gradient explosion. The
feature dimensionality reduction fusion part employs a five-layer stacked convolutional
network to select and fuse image features from different levels, ultimately reducing the im-
age features to a single-channel image as the output. Finally, global cross-layer connections
are employed to compensate for detail loss in the output image by utilizing information
from the input image. The generated denoised image is subsequently reconstructed by
mapping the output image to the pixel value range that aligns with it using the tanh
activation function.

3.1.2. Discriminator Network Architecture

The discriminator network is constructed using a fully convolutional neural network,
which serves the purpose of distinguishing whether the input image is an original real
image or a generated image. By employing two different convolution kernel sizes for
feature extraction and fusion, maximum pooling is chosen for image down-sampling, thus
preserving more texture details. The architecture of the discriminator network is depicted
in Figure 5.
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Where k, n, and s represent the size of the convolutional kernel, number of chan-
nels, and step size, respectively. The discriminant network consists of six convolutional
layers, followed by two fully connected layers. The input image is extracted and fused
through six stacked convolutional layers. Each convolutional layer is processed with batch
normalization and utilizes the Leaky Rectified Linear Unit (LReLU) activation function.
Additionally, maximum pooling is employed for image down-sampling operations to
retain more texture details. The quantity of kernels in the convolutional layer is increased,
and the features are doubled each time. Two different step sizes for convolutions are
employed to reduce the sharpness of the image. The final step involves processing the
extracted 256 feature maps through two fully connected layers, with 1024 outputs in the
first layer and a single output in the second layer. These fully connected layers handle the
extracted features to determine the probability of the input image being similar to a real
image. The 1024 outputs refer to the output dimension of the first fully connected layer,
representing the information captured by the discriminator network at a high-level feature
hierarchy. This layer of a fully connected network is employed for further processing the
feature maps extracted from the convolutional layers, enhancing the network’s capability
to distinguish between real and generated images. The purpose of using feature maps is
to provide the discriminator with a rich feature representation, effectively distinguishing
between original real images and generated images. Each feature map captures different
aspects of the input image, enabling the network to consider a wide range of features in the
decision-making process. The choice of the number of feature maps is typically determined
based on various factors and experimental results. In this experiment, the use of 256 feature
maps is considered a sufficient quantity to strike a balance between model complexity
and performance. The cross-entropy layer is omitted at the end of the discriminator, and
image patches are utilized for image training. The omission of the cross-entropy layer is a
carefully considered decision stemming from the distinct nature of the discriminator’s role
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in GAN compared to traditional classification tasks. In traditional classification problems,
cross-entropy loss is typically used to measure the disparity between predicted results and
actual class labels. However, in the context of GANs, the primary task of the discriminator
is not image classification but rather the identification of differences between generated
images and real images. The crux of GAN training lies in the adversarial loss, which
establishes a competitive adversarial relationship between the generator and discriminator,
differing from conventional classification losses. The loss functions employed in this model
already encompass adversarial losses. Therefore, the omission of the cross-entropy layer is
a prudent choice based on the specific task and structure of GAN.

3.2. Cooperative Attention Mechanism

In the process of image denoising, image features can be categorized into key fea-
tures (such as image edge features or texture features) and secondary features (such as
redundant features). Traditional CNN [32–35] networks cannot effectively denoise images
by extracting features since they fail to identify critical feature information. Attention
mechanisms [36] address this issue by assigning higher weights to key features. In the
literature [37], attention mechanisms and multi-scale feature fusion are employed to re-
cover more image details. In [38], an adaptive attention module is utilized to extract image
features while preserving more texture details in the images.

The channel attention mechanism dynamically modulates the weights of individual
channels to enhance the representation capacity of channel features; however, it often over-
looks crucial positional information. On the other hand, the spatial attention mechanism
can adaptively choose the regions of interest, thereby preserving positional information.
Therefore, this paper adopts a Cooperative Attention mechanism that combines channel
attention and spatial attention. By leveraging the spatial attention structure to complement
the shortcomings of the channel attention structure, it performs weighted processing on the
input features in both spatial and channel dimensions, thereby enhancing the perceptual
capabilities of features in spatial and channel dimensions, allowing for the exploration of
more valuable information.

The Convolutional Block Attention Module (CBAM) [39] is a convolutional neural
network model employed in the domain of computer vision, and it has demonstrated com-
mendable results in visual tasks such as image classification and object detection. However,
due to the multiple instances of pooling and dimension-reduction operations used within
CBAM, it leads to the loss of vital information related to the spatial orientation and spatial
attributes within images, which significantly affects the preservation of fine-grained texture
details in the generated images. Therefore, this paper, drawing inspiration from CBAM,
introduces a straightforward yet highly effective Cooperative Attention mechanism. This
mechanism is integrated into the context of image denoising tasks within generative ad-
versarial networks with the primary goal of extracting concealed noise information within
complex backgrounds and enhancing the learning of image edges and texture features.
The Cooperative Attention mechanism proves to be particularly proficient at addressing
intricate noise distributions, enabling the modeling and processing of complex noise pat-
terns within images, ultimately leading to a more accurate reconstruction of the original
image information. In the case of handling noise with non-linear spatial correlations, the
Cooperative Attention mechanism can perform varying degrees of weighted processing
based on the intensity and location of the noise, thereby enhancing the utilization of fea-
ture information. Therefore, the introduction of the Cooperative Attention mechanism in
RCA-GAN enables high-dimensional feature extraction for addressing both hidden noise
and complex background noise. This not only improves denoising performance but also
effectively preserves the fine texture details in the image. In the CBAM module, the conven-
tional channel attention mechanism often employs dimensionality reduction operations on
image features, which can lead to the loss of texture details in the channel dimension and
a decrease in the efficiency of capturing interdependencies between channels. Therefore,
this paper introduces improvements to the channel attention component. In contrast to
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the traditional channel attention module in the CBAM module, our approach adopts a
strategy that does not reduce feature dimensions within the channel attention structure.
Simultaneously, it retains the spatial attention component. By effectively combining the
strengths of channel attention and spatial attention, our method focuses on critical image
features while suppressing responses in unnecessary regions. The structural diagram of
the Cooperative Attention mechanism model is presented in Figure 6.
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When dealing with the input feature map F ∈ Rc×h×w, the initial step involves cal-
culating a one-dimensional attention weight matrix Mc(F) ∈ R1×1×c using the enhanced
channel attention module. Subsequently, a two-dimensional spatial attention weight matrix
Ms(F) ∈ R1×h×w is computed through the spatial attention module. These matrices are
then utilized to derive the final enhanced feature maps, relying on attention weights. The
entire process can be succinctly summarized using Equations (2) and (3). The channel atten-
tion module explicitly models the interdependencies among channels, thereby enhancing
the feature representation of channels. To avoid the loss of high-dimensional information
and mitigate the computational complexity resulting from an excessive number of parame-
ters, this paper removes the fully connected layer and convolutional layer associated with
traditional attention within the channel attention module. The process solely relies on
batch normalization to compute the mean and variance across the channel. Additionally, it
employs the learnable parameter γ to gauge the variance of each channel, signifying their
individual importance. Subsequently, once the channel attention module conducts batch
normalization on the input feature map F ∈ Rc×h×w, it yields the channel attention weight
matrix Mc(F). This matrix is then utilized to perform element-wise multiplication with the
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input feature map F, resulting in the weighted feature map F′. The computation procedure
for channel attention is detailed in Equations (4) and (5).

F′ = Mc(F)⊗ F (2)

F′′ = Ms(F′)⊗ F′ (3)

BN(Bin) = γ
Bin − µI√

σ2
I + τ

+ β (4)

Mc(F) = Sigmoid(
γi

∑ j=0γj
(BN(F))) (5)

where ⊗ represents the pointwise matrix multiplication operation, µI and σI are the mean
and standard deviation of the current batch I, respectively, while γ and β are designated as
trainable scaling factors and displacements. Additionally, the hyperparameter τ serves as
the minimal value introduced to prevent the denominator from reaching zero.

Based on the channel attention module, this paper employs a spatial attention mecha-
nism to learn inter-feature correlations, thus capturing dependencies among feature regions.
Within the spatial attention module, two critical operations take place: channel-based global
maximum pooling F′max and global average pooling F′avg. These operations are applied
to the feature map F′ ∈ Rc×h×w, which is the output from the Channel Attention mod-
ule, along the channel dimension. Consequently, two two-dimensional maps, denoted as
F′max ∈ R1×h×w and F′avg ∈ R1×h×w, are generated through these pooling operations. By
combining these two maps through concatenation, the module achieves the aggregation of
feature map channel information and the selection of spatial information. Subsequently,
by employing a convolution operation, the dimensionality is reduced to a single channel
to derive the spatial attention weight matrix. Following this step, the Spatial Attention
Map, which is the spatial weight matrix Ms(F′), is generated through the Sigmoid activa-
tion layer. In the final step, the weight matrix output from the spatial attention module
is multiplied with the input features to facilitate adaptive feature refinement. This step
encourages the model to focus more on crucial information within the input features while
attenuating less important details, consequently enhancing the model’s performance. The
aforementioned process can be represented as Equation (6).

Ms(F′) = Sigmoid( f 7×7([F′avg; F′max])) (6)

In this context, f 7×7 signifies the convolution operation employing a 7× 7 convolution
kernel.

3.3. Multimodal Loss Function

In order to consider more texture detail information, this paper utilizes the weighted
sum of perceptual feature loss, pixel space content loss, texture loss, and the adversarial
loss is employed iteratively to fine-tune the network for achieving an improved denoising
effect. The total loss function in this paper is defined as follows:

Lloss = λ1Lpercep + λ2Lcon + λ3Ltex + λ4LWGAN−GP (7)

In the equation, λ1, λ2, λ3 and λ4 represent the weight of each loss, respectively.
Lpercep stands for perceptual feature loss; Lcon stands for pixel space content loss; Ltex
stands for texture loss; LWGAN−GP stands for adversarial loss. Lpercep , Lcon, and Ltex are
calculated as follows:

Lpercep =
∥∥∥φ
(

IRI
)
− φ

(
G
(

IDI
))∥∥∥2

2
(8)



Electronics 2023, 12, 4595 10 of 22

Lcon =

√
‖G(IDI)− IRI‖2

1 + ε2 (9)

Ltex =
∥∥∥Gram

(
φ
(

G
(

IDI
)))
−Gram

(
φ
(

IRI
))∥∥∥2

2
(10)

In the equation, ‖.‖1 represents L1 norm, ‖.‖2 represents the L2 norm, φ denotes the
feature extractor, IDI represents the noisy image, IRI represents the original image, and
G(.) represents the generator network. Gram represents the Gram matrix, which is used to
describe the texture information of an image. The Gram matrix allows for the reconstruction
of fine texture details in an image.

RCA-GAN incorporates Wasserstein Generative Adversarial Network with Gradient
Penalty (WGAN-GP), an enhanced iteration of WGAN’s discriminative loss, as the adver-
sarial loss function for network training. The utilization of Wasserstein distance effectively
addresses issues encountered in the original GAN network. Simultaneously, WGAN-GP
proves to be effective in quantifying the distance between two data distributions, and its
optimization objective function is depicted in Equation (11).

LWGAN−GP(D) = −Eu∼Pdata [D(u)] + Eu∼Pg [D(u)] + λEû∼Pû [(‖∇ûD(û)‖2 − 1)2] (11)

In the equation, E(·) represents the expectation operator, Pdata stands for the original
data distribution, Pg represents the generated data distribution, D(.) represents the discrim-
inator network, Pû is a random sample drawn from the space between Pdata and Pg, and
‖∇ûD(û)‖2 signifies the gradient of the discriminator network. WGAN-GP stabilizes the
gradient of the discriminant network by adding an additional loss on the basis of WGAN.

4. Experimental Comparisons and Analysis
4.1. Data Set

In this study, the Berkeley Segmentation Dataset 400 (BSD400) and Berkeley Segmen-
tation Dataset and Benchmark500 (BSDS500) datasets [40], provided by the University
of California, Berkeley, were used as training datasets for grayscale and color images,
respectively. Due to the limited number of images in the training datasets, which were
insufficient for network optimization, Gaussian white noise with mean zero and standard
deviations of σ = 15, σ = 25, and σ = 50 was initially added to 500 color images from
BSDS500, resulting in a dataset of 1500 noisy images. Subsequently, 3000 blurred, noisy
image pairs were generated by applying image flipping, creating clear-noisy image pairs
for training the color image denoising model. Additionally, the 400 grayscale images
from BSD400 underwent the same data augmentation procedures, resulting in a final set
of 2400 clear-noisy image pairs for training the grayscale image denoising model. The
classic Color Set8 (CSet8) and Berkeley Segmentation Dataset 68 (BSD68) datasets [41] were
employed to evaluate denoising performance on grayscale and color images, respectively.
The training and testing datasets used in this study were mutually independent, with no
dependencies between them. The effectiveness of the denoising algorithm for noisy images
was validated through denoising tests conducted on the testing dataset.

In our experiments, we employed Gaussian noise to simulate the unknown real-world
noise more accurately. In real environments, noise is often not caused by a single source
but is a complex mixture of noise from various sources. If we consider real noise as the
aggregation of random variables with different probability distributions, and each random
variable is independent, then, according to the Central Limit Theorem, as the number
of noise sources increases, their normalization tends to follow a Gaussian distribution.
Based on this assumption, using synthesized Gaussian noise offers a straightforward and
realistic approximation for addressing complex situations in which the noise distribution
is unknown.

Data augmentation is a commonly employed deep learning training strategy used to
generate more data from a limited set of original data by creating transformed versions
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of training samples. Its purpose is to enhance a model’s generalization capability. This
technique encompasses various methods, including flipping, scaling, and rotation. In
particular, flipping aids the model in learning spatial invariance within images from
different perspectives, thus improving its generalization ability. Flipping allows the model
to better comprehend images from various orientations, thereby enhancing its adaptability
to variations.

4.2. Experimental Environment

The hardware and software environment configurations used in all experiments in
this paper are shown in Tables 1 and 2.

Table 1. Hardware environment.

Hardware Configuration Items Hardware Configuration

CPU Intel(R) Core(TM) i9-10900X CPU @ 3.70 GHz
GPU NVIDIA GeForce GTX 3080

Memory 64.0 GB
Hard disk capacity 4 TB

Hardware configuration items Hardware configuration

Table 2. Software environment.

Software Configuration Items Software Configuration

Operating system Windows 10 64-bit
Python 3.7
PyTorch 1.8

Cuda 11.2
Development tools PyCharm 2020.2.1

4.3. Evaluation Metrics
4.3.1. PSNR

Peak Signal-to-Noise Ratio (PSNR) is the most commonly used image quality assess-
ment standard. It is employed to quantify the denoising performance of a model when
ground truth noise-free images are available. PSNR is based on the magnitude of the Mean
Square Error (MSE), which measures the pixel-wise differences between the denoised image
and the ground truth image. The calculation equations for MSE and PSNR are provided in
Equations (12) and (13), respectively.

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

(
Xij −Yij

)2 (12)

PSNR = 10 log10

(
n2

MSE(X, Y)

)
(13)

where, Xij and Yij represent the pixel values in noise-free images of size M× N and noisy
images, respectively. i and j denote the coordinates of the pixels within the image positions.
n represents the maximum grayscale level of the image.

4.3.2. SSIM

Structural Similarity Index (SSIM) is a metric used to assess image similarity by
considering multiple features, including contrast, brightness, and structure, making it a



Electronics 2023, 12, 4595 12 of 22

more objective image denoising evaluation indicator. The calculation process of SSIM is
presented in Equations (14) and (15).

l(X, Y) = 2µXµY+C1
µ2

X+µ2
Y+C1

c(X, Y) = 2σXσY+C2
σ2

X+σ2
Y+C2

s(X, Y) = σXY+C3
σXσY+C3

(14)

SSIM(X, Y) = l(X, Y) · c(X, Y) · s(X, Y) (15)

where X and Y represent the two images involved in structural similarity comparison, while
l(X, Y), c(X, Y), and s(X, Y), respectively, denote the similarity in luminance, contrast, and
structure of the images. µX and µY represent the pixel means of two images, while σX and
σY represent the pixel standard deviations of the two images. σXY stands for the covariance
between the two images. C1, C2, and C3 are all constants, ensuring the validity of the
structure by avoiding a zero denominator. Where C1 = (K1 × L), C2 = (K2 × L), and
C3 = (C2/2), under normal circumstances, take on the values K1 = 0.01, K2 = 0.03, and
L = 255.

4.4. Experimental Results
4.4.1. Quantitative Analysis

In this paper, some representative Block-Matching and 3D Filtering (BM3D) [21],
DnCNN [23], Wasserstein Generative Adversarial Network with VGG Loss (WGAN-
VGG) [28], and Residual-Generative Adversarial Network (Re-GAN) [42] are used as
comparison algorithms, and Gaussian white noise with noise intensity σ of 15, 25 and
50 is added to the BSD68 dataset, respectively. The PSNR and SSIM of different image
denoising methods are illustrated in Table 3. For a more intuitive representation, Figure 7
describes the PSNR values of different algorithms in the form of a bar chart under varying
levels of noise intensity. The values of PSNR and SSIM represent the average results of all
images in the entire dataset. The experimental data obtained in the table shows that the
denoising effect of the algorithm proposed in this paper surpasses that of other comparable
algorithms to a significant extent under different noise intensities, and both PSNR and
SSIM have been improved to varying degrees.

Table 3. The PSNR and SSIM values of different algorithms under varying levels of noise intensity.

Metrics PSNR(dB) SSIM

Noisy (σ) 15 25 50 15 25 50

Initial value 24.71 20.69 15.07 0.8451 0.7075 0.4610
BM3D 32.57 28.91 26.75 0.9293 0.8506 0.6889

DnCNN 33.01 30.75 27.33 0.9407 0.8692 0.7529
WGAN-VGG 33.27 31.46 28.21 0.9432 0.8719 0.7806

Re-GAN 33.54 31.99 28.25 0.9489 0.8729 0.7875
RCA-GAN 33.76 31.98 28.94 0.9503 0.8764 0.8005

When the noise intensity is set to σ = 15, the application of the algorithm proposed in
this paper results in an impressive average increase of 9.05 dB in PSNR value after denoising.
In direct comparison with the BM3D algorithm, both the PSNR and SSIM values show
notable improvements, increasing by 3.7% and 2.3%, respectively. Similarly, in comparison
to the fundamental DnCNN algorithm, the PSNR value and SSIM value demonstrate
improvements of 2.3% and 1.0%, respectively. In contrast with WGAN-VGG, the PSNR
value and SSIM value experience enhancements of 1.5% and 0.8%, respectively. Lastly, in
comparison to Re-GAN, the PSNR value and SSIM value show increases of 0.7% and 0.1%,
respectively. Notably, experimental data reveals that even when noise intensity remains
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relatively low, RCA-GAN consistently exhibits strong denoising capabilities, particularly
in scenarios where differences between deep learning methods are not substantial.
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When the noise intensity is set to σ = 25, the denoising capabilities of RCA-GAN
far exceed those of the initial three denoising algorithms. In direct comparison to the
denoising outcomes achieved by BM3D, DnCNN, and WGAN-VGG, the PSNR value
exhibits substantial improvements, increasing by 10.6%, 4.0%, and 1.7%, respectively.
Interestingly, the average PSNR value after applying the RCA-GAN denoising method is
marginally lower than that of the Re-GAN algorithm. This suggests that the disparities in
pixel values between the two resulting images are not particularly conspicuous. However,
when evaluating structural similarity, it becomes evident that RCA-GAN surpasses Re-
GAN by a margin of 0.4%. This signifies superior visual performance in images denoised
by the algorithm presented in this paper.

At a noise intensity level of σ = 50, RCA-GAN demonstrates notably enhanced content
integrity and improved structural similarity. In direct comparison to the BM3D algorithm,
both the PSNR and SSIM values exhibit substantial increases, showing improvements
of 8.2% and 16.2%, respectively. Similarly, when compared to the fundamental DnCNN
method, both the PSNR value and SSIM value experience significant enhancements, demon-
strating improvements of 5.9% and 6.3%, respectively. In contrast, when pitted against
WGAN-VGG, the PSNR value and SSIM value demonstrate appreciable improvements of
2.6% and 2.5%, respectively. Additionally, compared to the Re-GAN algorithm, both the
PSNR value and SSIM value register increases of 2.4% and 1.7%, respectively. What stands
out is that, unlike scenarios with low noise, it becomes evident that the approach proposed
in this paper exponentially augments the denoising effect in cases characterized by high
noise intensity.

Apart from common metrics like PSNR and SSIM, time complexity is also an important
criterion for evaluating image denoising algorithms. To clearly demonstrate the complexity
of different algorithms, multiple experiments were conducted using images with a noise
standard deviation of 15 and a resolution of 256 pixels × 256 pixels. The average execution
times for different algorithms were obtained, and Table 4 presents the average runtime
of different denoising algorithms. From the data in Table 4, it is evident that in a CPU
runtime environment, RCA-GAN reduces the average denoising time by 8.06 s compared
to BM3D, by 2.02 s compared to DnCNN, by 1.15 s compared to WGAN-VGG, and by
0.58 s compared to Re-GAN. In a GPU runtime environment, RCA-GAN exhibits a 35.3%
improvement in average denoising efficiency compared to DnCNN, a 26.7% improvement
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compared to WGAN-VGG, and a 21.4% improvement compared to Re-GAN. In comparison
to other deep learning denoising algorithms, our algorithm enhances effective feature
utilization by incorporating an attention mechanism while reducing the number of feature
extraction layers and residual blocks. This reduces computational complexity compared to
traditional convolutional layers and enhances processing speed. Therefore, our algorithm
demonstrates superior performance in terms of runtime.

Table 4. Average Running Time of Different Algorithms.

Denoising Algorithm
Running Time/s

CPU GPU

BM3D 13.55 -
DnCNN 7.51 0.17

WGAN-VGG 6.64 0.15
Re-GAN 6.07 0.14

RCA-GAN 5.49 0.11

In comparison to other conventional algorithms, although our algorithm excels in
terms of the average denoising time per single image, it is important to note that our
algorithm’s training time is relatively prolonged. This situation primarily arises from the
utilization of the Deep GAN architecture, which demands a substantial number of training
iterations and computational resources. Particularly, when handling high-resolution images
or extensive datasets, the training time may experience significant extensions. While
the extended training time stands as a limitation of our algorithm, it is imperative to
recognize that this challenge is prevalent within the current domain of deep learning
methodologies. Future endeavors may be directed toward further optimizing the training
process, enhancing computational efficiency, and exploring swifter model architectures
to augment the feasibility of our algorithm. We acknowledge this aspect and encourage
prospective research to persistently refine and advance the technologies within this field to
overcome the temporal constraints.

To ensure the experiment’s rigor, this study assesses the denoising effectiveness of
RCA-GAN within a specific range of noise intensities. Initially, noise is incrementally added
to the same test set image, commencing from a noise intensity of σ = 5, and progressing to a
maximum noise intensity of σ = 80 (beyond which image repair becomes nearly impossible).
This process yields a total of 13 noisy images. Subsequently, each of the five denoising
models introduced in this paper is applied to denoise the aforementioned noisy images
individually. Finally, the PSNR and SSIM values of the denoised images are computed to
objectively evaluate the denoising capabilities of the RCA-GAN model. Figures 8 and 9
depict the change curves in PSNR and SSIM values for each algorithm model within the
specified range of noise intensities following image denoising.

The experimental results reveal that RCA-GAN exhibits enhanced PSNR and SSIM
metrics in comparison to other benchmark algorithms. Consequently, with the incorpora-
tion of the mixed attention mechanism, RCA-GAN demonstrates superior capabilities in
preserving image details while effectively eliminating noise.

4.4.2. Qualitative Analysis

When evaluating denoising effects, subjective impressions are as crucial as objective
experimental data. To comprehensively assess the disparities between our proposed ap-
proach and the comparison algorithms, we selected two images—Barbara and Boats—from
the CSet8 test set. These images were subjected to different levels of Gaussian white noise
(σ = 25, 50) to evaluate denoising outcomes, as depicted in Figures 10 and 11.
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Figure 10 illustrates the denoising visual outcomes of the Boats image, alongside
results obtained using other denoising algorithms, at a noise intensity of σ = 25. Upon close
examination, it becomes evident that the traditional denoising algorithm BM3D effectively
eliminates noise from the entire image. However, the processed image exhibits noticeable
blurriness, resulting in a loss of vital image detail information. In the case of DnCNN
and WGAN-VGG, their denoising processes introduce a blurred smoothing effect along
the edges of the image. Meanwhile, Re-GAN succeeds in preserving a greater amount
of detailed information, and its visual results closely resemble those produced by the
algorithm presented in this paper. Nevertheless, upon closer scrutiny of enlarged detail
areas, the algorithm proposed in this paper demonstrates superior capabilities in retaining
image texture, edge definition, and other critical details, ultimately leading to enhanced
visual effects.

Figure 11 illustrates the denoising visual results of the House image with a noise
intensity of σ = 50 in comparison to other benchmark algorithms. From Figure 10, it is
evident that as noise intensity increases, the traditional denoising algorithm BM3D struggles
to effectively address the denoising task. DnCNN, while affected by noise, mistakenly
preserves noise as useful information. WGAN-VGG and Re-GAN, though proficient at
removing noise, overly smooth the image’s structure, resulting in a loss of fine texture
details in the denoised images. In contrast, employing our proposed algorithm, RCA-GAN,
not only retains a relatively higher level of fine detail information but also presents a clearer
overall visual perception that closely resembles the original image. This demonstrates that
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our algorithm excels in effective noise removal while preserving more image texture details,
showcasing its robust denoising performance.

The RCA-GAN model additionally chooses three monochrome images from the BSD68
dataset—Man, Traffic, and Alley—for testing and visualization purposes. The denoising
effect diagrams for these images are presented in Figures 12–14.
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As demonstrated in the sleeve portion of the Man image within Figure 12g, it becomes
evident that RCA-GAN achieves significantly higher image clarity and texture quality
after denoising at low noise intensity, surpassing the performance of DnCNN and WGAN-
VGG. Likewise, in the leafy region at the top-left corner of the Traffic image featured in
Figure 13g, encompassing the outline of the white car and the shadow effects of the car
door handle, RCA-GAN exhibits impressive pixel retention capabilities under medium
noise intensity. Further observations, illustrated by the enlarged wall section in the Alley
image showcased in Figure 14g, reveal that the RCA-GAN model excels in restoring texture
details and preserving edge structures. Collectively, the experimental results establish
that the RCA-GAN model excels in reconstructing intricate image features and texture
characteristics while effectively reducing noise, thereby enhancing the quality and content
accuracy of the generated image.

4.4.3. Loss Function Ablation Experiments

In the context of image denoising, the selection of a loss function significantly impacts
the retention of textural intricacies within the denoised image. To assess the efficacy of
the loss function in this study, the RCA-WGAN network is fine-tuned and trained using
five distinct loss functions, including MSE and LWGAN-GP. An ablation experiment of the
loss function is then conducted using the same test set images and identical noise intensity
levels. The outcomes of these experiments are shown in Table 5.

Table 5. PSNR and SSIM metrics after denoising with various combinations of loss functions.

Loss Function PSNR/dB SSIM

MSE 31.59 0.9262
LWGAN-GP 32.10 0.9389

Lpercep + LWGAN-GP 32.38 0.9472
Lpercep + Lcon + LWGAN-GP 33.81 0.9489

Lpercep + Lcon + Ltex + LWGAN-GP 33.80 0.9503

Under the Gaussian white noise with noise intensity σ = 15, the proposed Multimodal
Loss Function improves the PSNR by 7.0%, 5.3% and 4.4%, and the SSIM by 2.6%, 1.2% and
0.3%, respectively, compared to MSE, LWGAN−GP and Lpercep + LWGAN−GP. After adding
Ltex texture loss to the above loss function, the results show a slight decrease in PSNR
values, but the denoised images are closer to the original images with regard to luminance,
contrast, and structural characteristics, showing good denoising effects.

4.4.4. Analysis of Different Weight Coefficients in the Loss Function

In this experiment, the optimal combination of weighting factors for the Multimodal
Loss Function was determined through multiple iterations. These weighting factors in-
cluded perceptual feature loss, pixel space content loss, texture loss, and adversarial loss.
The ideal set of weighting values, which resulted in the best performance in terms of
evaluation metrics, was found to be λ1 = 1.0, λ2 = 0.01, λ3 = 0.001, and λ4 = 1.0, respectively.
This specific set of weight values enabled our model to achieve its peak performance
across various performance indicators. A quantitative comparison of denoising results
with different weight coefficients for the loss function is presented in Table 6.

The adjustment of the perceptual feature loss weight impacts the perceptual quality
and structural characteristics of the image. A lower weight leads to insufficient optimization
of the network for the perceptual features of the input image, thereby affecting the quality
and structural characteristics of the reconstructed image. Conversely, increasing the weight
of the perceptual feature loss encourages the model to focus more on pixel-level details.
Nevertheless, this might introduce some high-frequency noise, resulting in a decreased
PSNR value.
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Table 6. A quantitative comparison of denoising results with different weight coefficients for the
loss function.

Loss Weight
PSNR/dB SSIM

λ1 λ2 λ3 λ4

0.8 0.01 0.001 1.0 33.57 0.9371
1.2 0.01 0.001 1.0 32.65 0.9435
1.0 0.03 0.001 1.0 33.13 0.9319
1.0 0.05 0.001 1.0 33.69 0.9156
1.0 0.01 0.003 1.0 32.81 0.9389
1.0 0.01 0.005 1.0 31.76 0.9415
1.0 0.01 0.001 0.8 33.64 0.9352
1.0 0.01 0.001 1.2 33.52 0.9387
1.0 0.01 0.001 1.0 33.80 0.9503

When the weight of pixel space content loss is increased, the PSNR values demonstrate
a relatively stable trend, signifying the preservation of pixel-level similarity. Nonetheless,
we observe alterations in SSIM values, indicating a minor compromise in the model’s
capacity to maintain the image’s structural and semantic information. This outcome
highlights the delicate balance in weight settings, in which an elevation in pixel space
content loss weight aids in conserving pixel-level similarity while concurrently diminishing
structural similarity in the image.

Texture loss is intended to capture the details and textures within an image, and
an increase in its weight encourages the model to focus more on these specific features.
However, this adjustment can introduce high-frequency noise, leading to a reduction in
pixel-level similarity and causing fluctuations in pixel-level comparisons. Simultaneously,
we also observed slight variations in SSIM values, suggesting that the model’s treatment of
the image’s structural and semantic information was only minimally affected. Nevertheless,
these variations did not demonstrate a significant trend.

When adjusting the weight of the adversarial loss, there was no significant change
in image reconstruction quality with this weight modification. However, the decrease in
SSIM is relatively more pronounced, indicating a certain reduction in the visual quality of
the images. This is because adversarial loss plays a crucial role in the image generation
process and is essential for maintaining the visual and perceptual quality of the images.
Therefore, fine-tuning the weight of the adversarial loss has a critically important impact
on improving the image generation quality of the model.

4.4.5. Analysis of Visual Tasks and Applications

In the context of Synthetic Aperture Radar (SAR) image processing, image denoising
holds significant importance. SAR images are obtained by transmitting radar signals
and receiving their echoes to gather information about the Earth’s surface, making them
susceptible to interference from noise. If not subjected to denoising, the noise in SAR images
can substantially impact the extraction and recognition of ground features, consequently
affecting the effectiveness of image applications. This paper conducts model training using
existing real noise datasets and applies the trained RCA-GAN model to denoise real noise
in SAR images, thereby validating the effectiveness of RCA-GAN in handling real noise
and enhancing its capability to address complex real-world scenarios. For this purpose,
SAR images with lower noise intensity are used as the original images, while images with
higher noise intensity are utilized as noise images from the same category. The denoising
performance of the proposed algorithm is evaluated using objective metrics such as PSNR
and SSIM. The results of the SAR image denoising are depicted in Figure 15.
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In this context, the first SAR image affected by noise, after denoising with RCA-GAN,
saw an increase in PSNR value from 15.83 dB to 27.46 dB, representing a 73.5% improvement.
The SSIM value increased from 0.4210 to 0.7954, showing an 88.9% improvement. The
second and third SAR images, after noise removal, exhibited increases of 51.9% and 58.6%
in PSNR values, and 92.7% and 94.8% in SSIM values, respectively. Based on the analysis of
experimental data, it is evident that the proposed RCA-GAN model is effective in handling
complex real noise. Furthermore, in the denoising process of SAR images, the RCA-GAN
model holds significant practical value.

5. Conclusions

In response to the issue of traditional denoising algorithms causing the loss of edge
and fine-grained details in denoised images, this paper introduces an enhanced GAN-based
image denoising algorithm called RCA-WGAN. RCA-WGAN integrates residual structures
and a cooperative attention mechanism within the feature extraction component of the gen-
erator network. Additionally, it incorporates a global residual connection to capture more
image features, effectively eliminating noise while preserving image details. To optimize
noise reduction, a Multimodal Loss Function is formulated through weighted summation,
encompassing perceptual feature loss, pixel space content loss, texture loss, and adversarial
loss. Furthermore, the proposed denoising method leverages essential features in the
RGB channels to mitigate texture loss resulting from the denoising procedure. Through
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comparisons with four mainstream denoising algorithms—BM3D, DnCNN, WGAN-VGG,
and Re-GAN—the efficacy of the proposed algorithm in restoring image texture details is
demonstrated. Experimental results highlight that this algorithm, with enhancements in
the denoising network module and loss function module, exhibits remarkable denoising
performance, as evidenced by objective evaluation metrics such as PSNR and SSIM values.
In contrast to alternative algorithms, the proposed method excels at noise removal while
preserving image texture details. Effectively addressing complex noise in real-world sce-
narios continues to pose a significant challenge in the denoising procedure. Future work
will concentrate on further optimizations of RCA-WGAN to enhance its performance in
complex noise reduction and real-time processing.

Author Contributions: Conceptualization, Y.W. and S.L.; methodology, M.H.; software, Y.W. and
L.M.; validation, Y.W., S.L. and M.H.; formal analysis, Y.W.; investigation, S.L.; resources, M.H.; data
curation, Y.W.; writing—original draft preparation, S.L. and L.M.; writing—review and editing, S.L.;
visualization, Y.W. and L.M.; supervision, S.L.; project administration, Y.W.; funding acquisition, Y.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Defense Industrial Technology Development Program
(grant number JCKYS2020DC01).

Data Availability Statement: This paper used the BSD400 and BSDS500 dataset, and according to
the research requirements, the original dataset was augmented with various levels of Gaussian white
noise to expand the data and increase the amount of data. Data source: http://www.eecs.berkeley.
edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz (accessed on 7 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ihara, S.; Saito, H.; Yoshinaga, M.; Avala, L.; Murayama, M. Deep learning-based noise filtering toward millisecond order imaging

by using scanning transmission electron microscopy. Sci. Rep. 2022, 12, 13462. [CrossRef] [PubMed]
2. Zhang, D.; Zhou, F. Self-Supervised Image Denoising for Real-World Images with Context-Aware Transformer. IEEE Access 2023,

11, 14340–14349. [CrossRef]
3. Nawaz, W.; Siddiqi, M.H.; Almadhor, A. Adaptively Directed Image Restoration Using Resilient Backpropagation Neural

Network. Int. J. Comput. Intell. Syst. 2023, 16, 74. [CrossRef]
4. Vimala, B.B.; Srinivasan, S.; Mathivanan, S.K.; Muthukumaran, V.; Babu, J.C.; Herencsar, N.; Vilcekova, L. Image Noise Removal

in Ultrasound Breast Images Based on Hybrid Deep Learning Technique. Sensors 2023, 23, 1167. [CrossRef] [PubMed]
5. Zhou, L.; Zhou, D.; Yang, H.; Yang, S. Two-subnet network for real-world image denoising. Multimed. Tools Appl. 2023. [CrossRef]
6. Feng, R.; Li, C.; Chen, H.; Li, S.; Gu, J.; Loy, C.C. Generating Aligned Pseudo-Supervision from Non-Aligned Data for Image

Restoration in Under-Display Camera. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Vancouver, BC, Canada, 17–24 June 2023; pp. 5013–5022.

7. Han, L.; Zhao, Y.; Lv, H.; Zhang, Y.; Liu, H.; Bi, G. Remote Sensing Image Denoising Based on Deep and Shallow Feature Fusion
and Attention Mechanism. Remote Sens. 2022, 14, 1243. [CrossRef]

8. Wang, Z.; Ng, M.K.; Zhuang, L.; Gao, L.; Zhang, B. Nonlocal Self-Similarity-Based Hyperspectral Remote Sensing Image
Denoising with 3-D Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [CrossRef]

9. Zhang, F.; Liu, J.; Liu, Y.; Zhang, X. Research progress of deep learning in low-dose CT image denoising. Radiat. Prot. Dosim. 2023,
199, 337–346. [CrossRef]

10. Fan, L.; Zhang, F.; Fan, H.; Zhang, C. Brief review of image denoising techniques. Vis. Comput. Ind. Biomed. Art 2019, 2, 7.
[CrossRef]

11. Ismael, A.A.; Baykara, M. Digital Image Denoising Techniques Based on Multi-Resolution Wavelet Domain with Spatial Filters: A
Review. Trait. Signal 2021, 38, 639–651. [CrossRef]

12. Kostadin, D.; Alessandro, F.; Vladimir, K.; Karen, E. Image restoration by sparse 3D transform-domain collaborative filtering.
Proc. SPIE 2008, 6812, 681207.

13. Ma, Y.; Zhang, T.; Lv, X. An overview of digital image analog noise removal based on traditional filtering. Proc. SPIE 2023, 12707,
665–672.

14. Kumar, A.; Sodhi, S.S. Comparative Analysis of Gaussian Filter, Median Filter and Denoise Autoenocoder. In Proceedings of the
2020 7th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 12–14
March 2020; pp. 45–51.

15. Wu, J. Wavelet domain denoising method based on multistage median filtering. J. China Univ. Posts Telecommun. 2013, 20, 113–119.
[CrossRef]

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz
https://doi.org/10.1038/s41598-022-17360-3
https://www.ncbi.nlm.nih.gov/pubmed/35931705
https://doi.org/10.1109/ACCESS.2023.3243829
https://doi.org/10.1007/s44196-023-00259-w
https://doi.org/10.3390/s23031167
https://www.ncbi.nlm.nih.gov/pubmed/36772207
https://doi.org/10.1007/s11042-023-16153-8
https://doi.org/10.3390/rs14051243
https://doi.org/10.1109/TGRS.2022.3182144
https://doi.org/10.1093/rpd/ncac284
https://doi.org/10.1186/s42492-019-0016-7
https://doi.org/10.18280/ts.380311
https://doi.org/10.1016/S1005-8885(13)60037-0


Electronics 2023, 12, 4595 22 of 22

16. Lu, C.-T.; Chen, M.-Y.; Shen, J.-H.; Wang, L.-L.; Yen, N.Y.; Liu, C.-H. X-ray bio-image denoising using directional-weighted-mean
filtering and block matching approach. J. Ambient Intell. Humaniz. Comput. 2018, 1–18. [CrossRef]

17. Erkan, U.; Thanh, D.N.H.; Hieu, L.M.; Enginoglu, S. An Iterative Mean Filter for Image Denoising. IEEE Access 2019, 7,
167847–167859. [CrossRef]

18. Feng, X.; Zhang, W.; Su, X.; Xu, Z. Optical Remote Sensing Image Denoising and Super-Resolution Reconstructing Using
Optimized Generative Network in Wavelet Transform Domain. Remote Sens. 2021, 13, 1858. [CrossRef]

19. Zhang, X. A denoising approach via wavelet domain diffusion and image domain diffusion. Multimed. Tools Appl. 2017, 76,
13545–13561. [CrossRef]

20. Mousavi, P.; Tavakoli, A. A new algorithm for image inpainting in Fourier transform domain. Comput. Appl. Math. 2019, 38, 22.
[CrossRef]

21. Yang, D.; Sun, J. BM3D-Net: A Convolutional Neural Network for Transform-Domain Collaborative Filtering. IEEE Signal Process.
Lett. 2018, 25, 55–59. [CrossRef]

22. Burger, H.C.; Schuler, C.J.; Harmeling, S. Image denoising: Can plain neural networks compete with BM3D? In Proceedings of
the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2392–2399.

23. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image
Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef]

24. Singh, G.; Mittal, A.; Aggarwal, N. ResDNN: Deep residual learning for natural image denoising. IET Image Process. 2020, 14,
2425–2434. [CrossRef]

25. Yang, J.; Xie, H.; Xue, N.; Zhang, A. Research on underwater image denoising based on dual-channels residual network. Comput.
Eng. 2023, 49, 188–198. [CrossRef]

26. Lan, R.; Zou, H.; Pang, C.; Zhong, Y.; Liu, Z.; Luo, X. Image denoising via deep residual convolutional neural networks. Signal
Image Video Process. 2021, 15, 1–8. [CrossRef]

27. Chen, J.; Chen, J.; Chao, H.; Yang, M. Image Blind Denoising with Generative Adversarial Network Based Noise Modeling. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 3155–3164.

28. Yang, Q.; Yan, P.; Zhang, Y.; Yu, H.; Shi, Y.; Mou, X.; Kalra, M.K.; Zhang, Y.; Sun, L.; Wang, G. Low-Dose CT Image Denoising
Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss. IEEE Trans. Med. Imaging 2018, 37,
1348–1357. [CrossRef]

29. Zhu, M.-L.; Zhao, L.-L.; Xiao, L. Image Denoising Based on GAN with Optimization Algorithm. Electronics 2022, 11, 2445.
[CrossRef]

30. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Nets. In Proceedings of the Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014.

31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

32. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017
International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6.

33. Ketkar, N.; Moolayil, J. Convolutional Neural Networks. In Deep Learning with Python: Learn Best Practices of Deep Learning Models
with PyTorch; Ketkar, N., Moolayil, J., Eds.; Apress: Berkeley, CA, USA, 2021; pp. 197–242. [CrossRef]

34. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.
Intell. Rev. 2020, 53, 5455–5516. [CrossRef]

35. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects.
IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [CrossRef]

36. Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [CrossRef]
37. Wang, S.; Zeng, Q.; Zhou, T.; Wu, H. Image super-resolution reconstruction based on attention mechanism and feature fusion.

Comput. Eng. 2021, 47, 269–275+283. [CrossRef]
38. Ding, Z.; Yu, L.; Zhang, J.; Li, X.; Wang, X. Image super-resolution reconstruction based on depth residual adaptive attention

network. Comput. Eng. 2023, 49, 231–238. [CrossRef]
39. Ma, B.; Wang, X.; Zhang, H.; Li, F.; Dan, J. CBAM-GAN: Generative Adversarial Networks Based on Convolutional Block

Attention Module. In Artificial Intelligence and Security; Springer: Cham, Switzerland, 2019; pp. 227–236.
40. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating

segmentation algorithms and measuring ecological statistics. In Proceedings of the IEEE International Conference on Computer
Vision, Vancouver, BC, Canada, 7–14 July 2001.

41. Roth, S.; Black, M.J. Fields of Experts: A Framework for Learning Image Priors. In Proceedings of the IEEE Computer Society
Conference on Computer Vision & Pattern Recognition, San Diego, CA, USA, 20–25 June 2005.

42. Shi, C.; Tu, D.; Liu, J. Re-GAN: Residual generative adversaria network algorithm. J. Image Graph. 2021, 26, 594–604.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s12652-018-0692-8
https://doi.org/10.1109/ACCESS.2019.2953924
https://doi.org/10.3390/rs13091858
https://doi.org/10.1007/s11042-016-3778-3
https://doi.org/10.1007/s40314-019-0761-4
https://doi.org/10.1109/LSP.2017.2768660
https://doi.org/10.1109/TIP.2017.2662206
https://doi.org/10.1049/iet-ipr.2019.0623
https://doi.org/10.19678/j.issn.1000-3428.0064662
https://doi.org/10.1007/s11760-019-01537-x
https://doi.org/10.1109/TMI.2018.2827462
https://doi.org/10.3390/electronics11152445
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-1-4842-5364-9_6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.19678/j.issn.1000-3428.0057208
https://doi.org/10.19678/j.issn.1000-3428.0064243

	Introduction 
	Background Techniques 
	Generative Adversarial Network 
	Residual Learning 

	Design of Network Architecture and Denoising Model 
	RCA-GAN Network Architecture 
	Generator Network Architecture 
	Discriminator Network Architecture 

	Cooperative Attention Mechanism 
	Multimodal Loss Function 

	Experimental Comparisons and Analysis 
	Data Set 
	Experimental Environment 
	Evaluation Metrics 
	PSNR 
	SSIM 

	Experimental Results 
	Quantitative Analysis 
	Qualitative Analysis 
	Loss Function Ablation Experiments 
	Analysis of Different Weight Coefficients in the Loss Function 
	Analysis of Visual Tasks and Applications 


	Conclusions 
	References

