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Abstract: Federated Learning (FL) is a distributed Deep Learning (DL) technique that creates a
global model through the local training of multiple edge devices. It uses a central server for model
communication and the aggregation of post-trained models. The central server orchestrates the
training process by sending each participating device an initial or pre-trained model for training. To
achieve the learning objective, focused updates from edge devices are sent back to the central server
for aggregation. While such an architecture and information flows can support the preservation of
the privacy of participating device data, the strong dependence on the central server is a significant
drawback of this framework. Having a central server could potentially lead to a single point of
failure. Further, a malicious server may be able to successfully reconstruct the original data, which
could impact on trust, transparency, fairness, privacy, and security. Decentralizing the FL process
can successfully address these issues. Integrating a decentralized protocol such as Blockchain
technology into Federated Learning techniques will help to address these issues and ensure secure
aggregation. This paper proposes a Blockchain-based secure aggregation strategy for FL. Blockchain
is implemented as a channel of communication between the central server and edge devices. It
provides a mechanism of masking device local data for secure aggregation to prevent compromise
and reconstruction of the training data by a malicious server. It enhances the scalability of the
system, eliminates the threat of a single point of failure of the central server, reduces vulnerability
in the system, ensures security, and transparent communication. Furthermore, our framework
utilizes a fault-tolerant server to assist in handling dropouts and stragglers which can occur in
federated environments. To reduce the training time, we synchronously implemented a callback
or end-process mechanism once sufficient post-trained models have been returned for aggregation
(threshold accuracy achieved). This mechanism resynchronizes clients with a stale and outdated
model, minimizes the wastage of resources, and increases the rate of convergence of the global model.

Keywords: artificial intelligence; deep learning; federated learning; blockchain; secure aggregation

1. Introduction

The introduction of the Internet of Things (IoT) has resulted in the massive growth
in the number of intelligent devices. With strong hardware and dedicated sensors, these
devices can collect and process data at high speed. Artificial Intelligence (AI) and Machine
Learning (ML) flourish in data. These data are generated by billions of IoT devices and
smart phones. By generating these large amounts of data, the IoT has effectively enhanced
the training of Deep Learning (DL) models. However, IoT devices cannot independently
execute DL algorithms because of their resource-constrained nature. Traditionally, a DL
approach entails data collection from various sources and storing them in a centralized
location. These stored data are then used to train the DL model. However, privacy
legislations such as European Commission’s General Data Protection Right (GDPR) and
the U.S. Consumer Privacy Bill of Right require that in certain cases, data collection may
not be feasible. To address this issue, Federated Learning (FL) was introduced. FL is a
distributed DL technique that creates a global model through the local training of multiple
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decentralized edge devices. It enables distributed ML to be effectively accomplished
between various edge devices or participants. Moreso, it promotes the exchange of big data
and tends to enhance the privacy preservation of users’ data within the confinement of the
law [1,2].

The FL algorithm permits the decentralized training of data, but the central server
aggregates the model and process planning. In traditional FL, the central server sends
to each participating device/client an initial/pre-trained model for training. Using their
own local dataset, each participating device trains the model locally and sends it back
to the central server for aggregation. The server aggregates the returned trained model
to produce an updated global model that is sent back to the participating devices for
another round of local training [3]. This client–server interaction [4] continues until model
convergence is achieved or a specific number of iterations (rounds) are attained. However,
this centralized approach of model aggregation and process planning in traditional FL
makes the central server a single point of failure [5]. This threat of a single point of failure
(SPOF) on the server could be because of unforeseen external attacks, purposeful unfair
aggregation, unexpected failure in network connection, etc. This strong dependence on the
central server is a significant drawback to this technique because if there exist a problem
with the server or it fails, the training process will stop and as mentioned earlier, the
resource-constrained end devices will not be able to independently execute the aggregation
process [6]. Several risks and issues arise in such a centralized model: (1) Communication
failure: To collect model updates and distribute the updated model, the central server
depends on communication with end devices. If there is a communication failure, it
can interrupt the training process and delay model updates. (2) Scalability and overload
issues: The central server might face scalability issues in a large network with several
end devices. If the model updates and requests from end devices cannot be effectively
handled by the central server, it may be overloaded and slow down or crash. This will lead
to training disruption. (3) Security breach: A security breach on the central server could
result in malicious actors gaining unauthorized access to sensitive data or model updates,
leading to privacy issues or tampering with the model updates. (4) Server downtime: The
central server may experience hardware failures or software issues which could result in
downtime, making it unavailable to end devices. During this period, model updates cannot
be aggregated, and the FL process will stop. (5) Aggregation bias: To form an updated global
model, the central server aggregates updates from various end devices. If the aggregation
is biased, it could favour certain end devices over others, leading to a skewed model result.

Furthermore, the privacy leakage in FL could put updates from the end devices at
risk due to fairness and trust issues from the central server, and this could be because of
the following: (1) Central server integrity: The central server orchestrates the training and
aggregation of model updates from end devices. If the server is compromised, it could
change or alter the model updates, resulting in influenced or poisonous models being
dispersed to end devices. (2) Model poisoning: Without thorough validation, the central
server may aggregate model updates from a malicious participant in the training process.
The malicious participant may attempt to poison the global model by intentionally sending
updates that degrade the model performance. (3) Data bias: Data distribution across end
devices may not be evenly distributed, resulting in bias or data imbalance. This imbalanced
distribution could result in less accurate models and be unfair to a subset of the end devices.
(4) Data privacy and security: In as much as FL aims to preserve the privacy of the user
data by not sharing raw data with the central server, there is still risk of data exposure
during model updates. The gradients sent to the server may accidentally reveal sensitive
information about the local data. Moreso, a malicious central server might compromise
or gain sensitive intuitions of the updates from the end devices because of its capability
to successfully reconstruct the original data due to non-scrutinized, constant, and direct
communication with the end devices. Recent works have shown that a malicious server
can use the gradient information to infer the sensitive content about the clients’ training
data. Through a Generative Adversarial Network (GAN), the distribution of the training
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data can be recovered by the malicious server [7]. Also, attacks on the server can alter the
global model [8]. Furthermore, attacks on the end devices could manipulate local models,
and this can result in errors in the global model generated from such altered local models.
In like manner, the integrity of the generated global model should be verified before use by
the edge devices. FL was integrated with Blockchain technology to ensure transparency
and enhance its privacy preservation, security, and performance [9,10].

To address this SPOF threat, privacy, trust, fairness, transparency, and security,
Blockchain is integrated into FL methodology to mitigate against vulnerability in the
FL centralized approach of model aggregation and process planning. Blockchain is used
as a reliable orchestrating memory that eliminates the need for a central coordinating
unit and provides a secured, certified, and validated exchange of information. The three
fundamental security considerations identified in Ref. [11] are confidentiality, integrity, and
availability. As identified in Refs. [12,13], FL suffers from insufficient incentives, poisoning
attacks, privacy preservation, etc.

In Blockchain, transactions are unaltered and timestamped. As a distribute ledger,
Blockchain can act as an append-only database that offers data integrity. Also, it can act as a
hybrid Blockchain that guarantees data confidentiality to only authenticated and permitted
users. Blockchain allows the storage and exchange of data in a decentralized approach
using digital blocks, increasing FL fault tolerance capacity [14]. These digital blocks are
chained together using cryptographic hashes to form a distributed ledger. Blockchain is a
type of distributed ledger that is shared among all devices in a federated network. This
ensures that data are immutable, visible, traceable, transparent, and non-repudiated. These
unique characteristics of Blockchain make it an ideal technology to combine with FL to
safeguard the privacy and security of aggregated data.

This paper aims to implement a callback/end-process Blockchain-based secure ag-
gregation mechanism for FL through the masking of model updates. For each iteration
of the FL training process by the central server, the Blockchain enables the masking and
tracking of local models, where devices mask their local model to train the global model,
and post-trained models are sent back to the server for model aggregation. When a cer-
tain percentage of post-trained models have been returned by the clients, the server will
implement a callback aggregation and issue a force stop to lessen training time, reduce
communication rounds, and speed up the convergence of the global model. Similarly, if
this percentage as stated by the FL server is not met and a deadline has been reached, an
end-process strategy will be issued to the clients yet to return their post-trained models to
avoid the issue of infinite loop or endless waiting.

In both cases (callback/end-process), devices at the stage of model training will be
forced to synchronize with the central server. The main contributions of this paper are
as follows:

• Formulate a mechanism of masking the local models to train the global model for
aggregation by the server to prevent the compromise and reconstruction of the data
used to train the model.

• Implement a Blockchain network for transparent communication within an FL envi-
ronment which eliminates the threat of SPOF, ensures transparency, and enhances the
security and privacy preservation of data.

• To lessen training time due to dropouts that might occur in the FL environment, a
callback function will be synchronously implemented by the FL server once sufficient
post-trained models have been returned.

The rest of the paper is organized as follows: In Section 2, we examine related works in
the field. Section 3 is the background information of Blockchain technology. Section 4 illus-
trates the distribution of the global model, consensus mechanism, masking of device local
data, and model aggregation. Section 5 introduces the system architecture, synchronization
process, client selection update, and FL loss function. Section 6 illustrates the callback
function and end-process aggregation mechanism in FL. Section 7 presents the Results,
Discussion, and performance evaluation. Finally, Conclusions are drawn in Section 8.
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2. Related Work
2.1. Secure Aggregation in FL

To guarantee privacy and security using FL, the following proposals [15,16] on secure
aggregation mechanisms have been proposed. Fereidooni et al. [15] proposed a secure ag-
gregation for private Federated Learning. This approach tends to impede inference attacks
on FL by prohibiting access and tampering with trained model updates. They utilized
a Secure Multipath Computation (SMC) encryption technique to prevent the aggregator
from accessing the model updates used for the training of the Machine Learning model.
Similarly, Wu et al. [16] proposed a secure aggregation mechanism for model updates in
FL to prevent inference and inversion attacks that can obtain sensitive information from
local model updates. Their approach utilized matrix transformation to protect each clients’
model updates by preventing the attacker from gaining sensitive information using encryp-
tion of a little part of the model update to avoid heavy encryption that could result in low
accuracy. Their aggregation mechanism functions with an acceptable overhead. However,
both approaches suffer the threat of the SPOF of the central server which orchestrates the
training process [5].

Huang et al. [7] proposed a secure aggregation mechanism for Federated Learning
that utilized ransom masking code to ensure the confidentiality of local gradients. Their
proposed mechanism ensures the confidentiality of local gradients and verifiability of
aggregated gradients. However, this mechanism is not communication- and bandwidth-
efficient when several clients are involved in the training process. Also, it suffers from the
threat of SPOF in the aggregator and verification servers. To protect against Byzantine
adversarial that could compromise the performance and convergence of the global model,
Zhao et al. [17] proposed a secure aggregation mechanism in FL. This mechanism used
intel SGX primitives to ensure privacy preservation of the local models by providing a
recovery key to the encrypted models. This technique ensures that sensitive information is
not revealed to the aggregation server. However, it still suffers the threat of SPOF of the
aggregation server that could halt the training process.

2.2. Blockchain-Based Federated Learning

Traditional FL mechanisms depend on the central server for coordination and orches-
tration. This central server dependence may result in SPOF, trust issues, and unwanted
behaviours of the server. To ensure effective decentralization, trust, transparency, and relia-
bility, Blockchain technology has emerged. Blockchain technology has been implemented
by many researchers to eliminate the threat of SPOF in traditional FL [18,19].

To guarantee data authenticity and privacy protection, the authors in Ref. [18] im-
plemented an FL framework using Blockchain in self-driving cars. In Ref. [20], they
implemented a private Blockchain FL using an interstellar file system to minimize high
storage costs in Blockchain, inference, and poisoning attacks in FL. As seen in Ref. [21], they
implemented a private Blockchain for secure model aggregation in FL using a consensus
process for traffic prediction. In Ref. [19], the author proposed a Blockchain-enabled FL
where the security and privacy of the user’s information were protected by encrypting
and encoding it in the cloud. All these research works mentioned above makes use of
Blockchain technology for the aggregation of a trained model, which incurs huge band-
width and complexity in computation. Most of the contributions are based on a private
Blockchain, where the entire process is not decentralized, which could result in trust issues.

For the local evaluation and global aggregation of parameters, Sun et al. [22] proposed
the use of Blockchain in FL to lessen the effect of end-point adversarial training data. In
this work, the method of selecting a committee member is not feasible and was not fully
analysed. Furthermore, if there are more users participating in the network, the method
may experience a decrease in classification accuracy. To facilitate the model update and
guarantee secure aggregation of the global model, Mallah et al. [23] proposed a Blockchain-
enabled Federated Learning that selects only reliable IoT devices for global aggregation.
Their approach ensures the aggregation of the global model through optimized behaviour
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monitoring of the devices, increasing the convergence time of FL processes while preserving
network performance. However, there is a trade-off in time and bandwidth efficiency,
and the scalability of this technique in variable network topology is not guaranteed. To
guarantee a secure aggregation mechanism that will ensure trust, security, and integrity of
the global model, the following approaches [24,25] have been proposed.

Kalapaaking et al. [24] proposed a Blockchain-based FL secure aggregation mechanism
to guarantee the security and integrity of the global model. Their technique ensured a
trusted aggregation of the local model to generate a global model. However, they failed to
consider how to handle stragglers and dropouts in Industrial IoT (IIoT). Their assumption
was that all the IIoT will successfully return their trained model, which is practically
impossible. Chen et al. [25] proposed a Blockchain-based FL for the secure aggregation and
efficient sharing of medical data. Their technique enhanced the sharing of medical data
in a privacy-preserved manner. However, the use of a contribution-weighted aggregation
mechanism, as seen in Ref. [25], will incur huge bandwidth and complexity in computation,
which makes the technique not feasible within a resource-constrained setting. To minimize
the impact of the attacks from malicious clients or a poisonous server and preserve privacy
in FL, Refs. [26,27] have been proposed.

Li et al. [26] proposed a Blockchain-based decentralized FL with committee consensus
to solve the issues of SPOF, privacy, and security. Their technique solves the threat of
SPOF, prevents malicious attacks, prevents models from been exposed to poisoning or
unauthorized devices, and the burden of consensus computing is reduced. However, the
validation consumption is increased, and the consensus committee selection could result in
security issues if not properly selected. Miao et al. [27] proposed an FL privacy preserving
scheme based on a Blockchain network. Their approach mitigates against a poisoning attack
from malicious clients and ensures a transparent process using the Blockchain network.
However, they did not provide mechanisms on how to deal with stragglers and dropouts
that may exist within the devices.

In comparison with above-mentioned research works, our approach is scalable and
eliminates the threat of SPOF with traditional FL while retaining the central server for the
aggregation of post-trained models. This significantly reduces the computational burden
and communication cost of aggregating the trained model using the Blockchain network.
Additionally, our technique handles the issues associated with stragglers and dropouts in
IoT systems within an FL environment.

3. Background Information on Blockchain Technology

Distributed Ledger Technology (DLT) is an umbrella technology of Blockchain in
the sense that every Blockchain is a DLT but not every DLT is a Blockchain. Previously,
Blockchain was primarily designed for digital transactions and used as currency, but
recently, researchers have found various ways of using the technology or combining it with
other methodologies for the greater good. In a distributed ledger, data are independently
held and updated by end devices within the network. This eliminates the need for a central
authority to perform the orchestration. Rather, each end device is given access to the
transaction lists, where each individually and autonomously updates the distributed ledger.
Implementing Blockchain with FL will provide additional protection, strong robustness,
and privacy preservation.

In Ref. [28], the Blockchain technology components were identified as the Blockchain,
Blockchain network, and distributed consensus mechanism. A Blockchain network com-
prises two computation nodes, namely, the verifier and normal nodes. The former hold an
entire record of the Blockchain structure and transaction validations, implement smart con-
tracts, ensure data security, and require high storage and computational capability, while
the latter do not keep a record of the Blockchain ledger due to limited computational and
storage capability but obtain a little knowledge from the full nodes about the Blockchain
status. In private and distributed data, Blockchain has proven to be a secure aggregation
mechanism for edge computing in a federated Machine Learning (FML) environment.
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There exist three types of Blockchain: (1) Public Blockchain: This type gives free access to
the public or any person to partake in the core activities. It is a democratically decentralized
Blockchain operation. The disadvantage with this type of Blockchain is that deceptive
participants may exist that could execute malicious activities on core functions. (2) Private
Blockchain: In this type, only chosen and validated participants are allowed to join. A
control function is put on who can partake in the core activities. These types of Blockchain
are not essentially decentralized because the distributed ledger is operated by central
supervisors and could result in trust issues. (3) Hybrid Blockchain: this combines public
and private contributors. It could involve external parties that carefully implement network
restrictions and control contributor activities in their respective roles. The immutability
data structure of Blockchain makes it a viable technology when implemented in an FL
framework. To deal with operational changes or issues such as stragglers or dropouts in an
FL environment, Blockchain offers an efficient ecosystem in handling such issues. In a bid to
identify malicious activities within a data auditing scheme, Ref. [29] described Blockchain
as a DLT that keeps track of the activities of all the nodes in a Blockchain network using a
smart contract. The advancement of Blockchain technology has aided the implementation
of smart contract technology. Smart contracts are treaties between various entities based
on a particular matter that is meant to be implemented by computer programs. Using
smart contracts, more users are encouraged to participate in FL training, facilitating the
management and control of the entire process [30]. Blockchain members validate and verify
codes in the form of smart contracts to protect relationships over computer networks. Smart
contracts are used by Blockchain members to make a treaty in a distribution ledger without
involving a central third party to implement the treaty. Using interaction records between
nodes on a Blockchain network, smart contracts can effectively and automatically identify
violations based on the records [31]. To ensure the correctness of the smart contracts, nodes
within the Blockchain network must run the same smart contracts, and through a consensus
agreement strategy, results are accepted. With Blockchain and smart contracts, various
fields have been expanded and improved [32].

3.1. Structure of Blockchain

There are five logical layers of Blockchain, and they are as follows:

• Application layer: In Blockchain structure, this is the uppermost layer. The application
layer serves as a channel for the Blockchain to connect to the real world. It comprises
the chain code, smart contracts, and distributed applications (dApps). The two sub-
layers of the application layer are the presentation and execution layers.

• Consensus layer: In this layer, consensus algorithms are used to validate transactions. A
method of agreement must be reached to generate a new block on a single data block
comprising multiple insecure numbers of nodes. These methods of agreement are
termed consensus algorithms. They are used to validate transactions and to determine
the node to generate a new block. The consensus mechanisms are Proof of Work
(PoW), Proof of Stake (PoS), Proof of Elapsed Time (PoET), Proof of Authority (PoA),
and Byzantine Fault Tolerance (BFT). We adopted PoA as a consensus mechanism for
this framework.

• Network layer: In a Blockchain network, the network layer provides communication
between nodes. This is also referred to as a Point-to-Point (P2P) network. Network
failures are avoided in P2P networks because the nodes regularly communicate with
each other. P2P networks help filter out illegal transactions. Full nodes and light nodes
are the two types of nodes in P2P networks.

• Data layer: This is the basic layer of the Blockchain structure. The data layer comprises
data blocks, a digital signature, transactions, a Merkle tree, and hash functions.

• Infrastructure layer: This layer is also known as the hardware structure. It contains
the services that enable data exchange. Within the infrastructure layer exist services,
virtual machines, messaging, and containers.
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3.2. Performance Evaluation of Blockchain

The performance of Blockchain can be evaluated with the following factors:

• Decentralization: The decentralization nature of Blockchain effectively eliminates SPOF
and solves the bottleneck problem of a central authority. The operation of a Blockchain
network is unaltered by the disruption of a single node in the network because data
exist in multiple nodes on the P2P network. This p2p network configuration ensures
the immutability and authenticity of data. The decentralization nature of a Blockchain
network effectively handles dropouts or offline nodes without compromising the
security and availability of the network.

• Transparency: There is great transparency in Blockchain transaction histories because
nodes in the network share the same documents. The shared documents must be
modified through a consensus where every node in the network must agree. Any
alteration of a single record will require the modification of subsequent records for the
entire network. With transparency, the integrity of the network is protected, and there
is a complete reduction in data alteration.

• Improved security: There is enhanced security in Blockchain technology implementation
because an agreement must be reached in advance before a transaction takes place.
After a transaction is approved, it becomes encrypted and connected to the previous
one. To avoid any potential security breaches, the data are not stored on a single
server but are instead distributed across a network of computers. Private/public key
infrastructures are used to improve the security of the Blockchain network, and it is
mathematically impossible to devise these keys because they are randomly generated
strings and numbers. Through this process, the security of the network is strengthened,
and there is a significant reduction in data leakage.

• Immutability: Using cryptographic hashes and timestamps, Blockchain ensures that
data remain immutable. After validation, the hash function restricts data altering,
updating, and removal. Any change in the transaction data can be identified easily.

• Data privacy: In a Blockchain network, data are protected against alteration using
digital signatures. Immutable hash chains ensure that transactions are monitored by
nodes across the network to preserve data rights.

• Anonymity: The data on the chain in a Blockchain network are public. However,
Blockchain uses encryption techniques to achieve the privacy preservation of the end
devices’ private data to avoid exposure to another node on the network.

3.3. Technical Limitations

The technical limitations of Blockchain include the following:

• Computational complexity: There is a high computational cost involved in complet-
ing a transaction. It entails several steps, such as validation, scrutiny, and security
checks across multiple nodes. This computational complexity consumes a significant
amount of power and resource-constrained IoT devices will need help to meet re-
source demands. Also, the sophisticated architecture will demand high computational
capabilities that could result in an increase in implementation and running costs.

• Privacy and security issues: Blockchain can resist security attacks such as Distributed
Denial-of-Service (DDoS), Ransomware, and Sybil attacks. However, there are integral
security shortcomings in existing Blockchain networks. If the computing resources can
be controlled by more than half of the nodes running Blockchain, consensus processes
could be altered for malicious reasons. This is known as a 51% attack. Furthermore, if
transactions are not robustly supervised, Blockchain could suffer network interruption
and data loss.

• Scalability issues: The limited scalability of Blockchain is caused by restricted through-
put and high computational costs. This negatively impacts the overall system perfor-
mance due to the limited block size and increased block time. These complications
arise when processing large amounts of data on the Blockchain, especially in large IoT
systems where massive amounts of data are generated [33].
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According to Ref. [34], Blockchain is defined as a decentralized and distributed tech-
nology that can be used and employed in applications involving daily living, such as
healthcare systems, supply chain management, digital currencies, etc.

3.4. Blockchain Technology Applications

The applications of Blockchain technology include the following:

• Secured digital payment system: Blockchain technology ensures a secured digital pay-
ment system and facilitates a reduction in intermediaries’ fees as compared to tra-
ditional digital payments, where organizations such as credit card companies and
financial institutions act as intermediaries. Also, the transaction time is drastically
reduced using automated validation and verification systems [35].

• Automated governance: Blockchain uses E-governance to provide automated govern-
ment services. These services include tax collection, conducting elections, issuing
certificates, implementing social security, etc. These services are enhanced, and per-
sonal data privacy is preserved using Blockchain technology. It gives adequate control
functions and supports the efficient management of these services.

• Data redundancy: Blockchain facilitates efficient data distribution. Distributed data
storage is one of the features of Blockchain and it helps to easily spot data alteration
and facilitates recovery from peer nodes. This attribute helps to keep good audit
records of data and ensures data integrity and confidentiality.

• Supply chain management: This involves business processes that go through various steps
to supply the needs of customers and add value to stakeholders. It involves the syn-
chronization of complex processes that require efficient monitoring and accountability.

Having examined the analysis of the Blockchain technology, the next section will
showcase global model distribution and the performance evaluation of the Blockchain
technology through the masking of device local data for privacy preservation and mitigation
against the reconstruction of device local data by a malicious server.

4. Global Model Distribution, Consensus Mechanism, Masking of Device Local Data,
and Model Aggregation
4.1. Global Model Distribution

The aggregator server (central server) initiates the training process by sending an
initial or pre-trained model to the clients through the Blockchain network. The Blockchain
network, using the nodes, verifies the model, validates it, and reaches a consensus.

4.2. Consensus Mechanism

We implemented a private Blockchain setting and adopted PoA as a consensus mecha-
nism. Using trustworthy validators, transactions and blocks are validated. These validators
are also tasked with the responsibility of creating new blocks and transaction confirmation.
In a consensus mechanism using PoA, not all the nodes are allowed to participate in the
consensus process; rather, validators are chosen based on attributes such as investment in
the system, identity verification, and reputation. Based on these attributes, PoA depends
on a pre-selected group of nodes as validators. Unlike PoW, where there is competition
to solve a puzzle, there exist no competition to create a block among validators in PoA.
Rather, validators take turns based on a set schedule or a round-robin fashion.

In our architectural framework, the global model sent from the aggregator server to
the clients is checked and validated and a consensus is reached before it is sent to the clients
as a smart contract. Using a pre-selected group of nodes as validators and turn taking based
on a set schedule or a round-robin fashion, the speed of the transaction verification process
is significantly increased. Once transactions are confirmed and validated by validators,
they are added to the next block. This process ensures trust and security because validators
have a strong incentive to correctly validate transactions, or their reputation will be at stake.
However, through governing processes, malicious validators can be removed from the
network by other validators.
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Regarding speed and scalability, transactions are processed faster in PoA networks
than in PoW and PoS because PoA does not require stake-based competitions and com-
putations that are resource-intensive. In energy efficiency, PoA is more environmentally
friendly because it does not depend on resource-intensive mining. Furthermore, block
creation and transaction validation are more predictable with a set schedule and known
validators. There is reduced centralization risk in PoA. In an FL setting like our architectural
framework, where trust among clients can be established and maintained, PoA offers a
balance between efficiency and decentralization.

4.3. Masking of Device Local Data

The essence of masking the local model is the privacy preservation of a device’s
local data and mitigation against the server from reconstructing the data used to train the
model. To illustrate the masking of the device local model using common seeds, keeping
each device local model private and secure using a Blockchain network, the following
assumptions are made:

Assume M12, M13, and M14 as the masks (M) indiscriminately created based on
common seeds by (device1 and device2), (device1 and device3), and (device1 and device4),
respectively. This is such that (M12 = M21), (M13 = M31), and (M14 = M41), respectively.
Similarly, (M23, M24, and M34) are assumed to be the masks indiscriminately created
based on common seeds by (device2 and device3), (device2 and device4), and (device3 and
device4), respectively. In like manner, (M23 = M32), (M24 = M42), and (M34 = M43),
respectively. Using a key agreement protocol, these common seeds are decided prior to
training amongst a pair of devices. The following equations ensued to further illustrate the
individual device and the secure aggregation protocol.

Let device = D.
Global model = θG.
Device local model = β1, β2, β3, . . . , βn.
Training samples/dataset = x1, x2, x3, . . . , xn.

D1 = β1x1 + M12 + M13 + M14 (1)

D2 = β2x2 −M21 + M23 + M24 (2)

D3 = β3x3 −M31 −M32 + M34 (3)

D4 = β4x4 −M41 −M42 −M43 (4)

Combining (1) to (4) will result in the mask cancelling out, i.e., (M12 − M21 = 0),
(M13 −M31 = 0), (M14 −M41 = 0), ( M23 −M32 = 0), (M24 −M42 = 0), and
(M34 −M43 = 0).

∑ Di = D1 + D2 + D3 + D4 = β1x1 + β2x2 + β3x3 + β4x4 (5)

θG = ∑
Di

∑ xi
= ∑

(βixi)

∑ xi(i > 3)
(6)

In summary, the local model masked at device i is as follows:

Di = βi xi + ∑1<2M12 − ∑1>2M21 (7)

4.4. Aggregation of Masked Trained Model

Figure 1 illustrates how the device masked trained models are aggregated at the
server. As a secured end-process Blockchain-based aggregation mechanism, only returned
post-trained models are needed for aggregation. An end-process or a callback function
mechanism forces the devices to synchronize with the server. During aggregation, the
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callback or end-process mechanism eliminates the problem of complicated handling of
stragglers and dropouts masked using double masking and Shamir’s t-out-of-n Secret
Sharing [21]. This mechanism ensures that only returned post-trained models are needed
for aggregation.
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The aggregated global model is as follows:

θG =
(β1. x1 + β2. x2 + β3.x3 + · · · βn.xn)

(x1 + x2 + x3 + · · · xn)
(8)

θG =
∑ (βixi)

∑ xi
(9)

where i = 1, 2, 3, . . . , n.
As shown in Figure 2, the masked models will be sent to the server for aggregation. The

server periodically sends the intermediate results of the aggregated model to the Blockchain
network, and the Blockchain, through the fault-tolerant server, sends an encrypted update
of the clients’ situation to the aggregator server. This process will be fully illustrated in the
next section. The local model trained at device i (βi) using its local dataset (xi) trains the
model, and the updates are sent to the aggregator server for aggregation as masked model
updates. The masked model updates are aggregated and unmasked to create a new global
model. The new global model is sent back to the devices through the Blockchain network
for further training, and this iteration continues until convergence or the desired accuracy
is achieved, as shown in Figure 2.

A new global model emerges as follows:

θG = ∑
Di

∑ xi
(10)

At the server, the mask is cancelled, resulting in the following:

θG =
∑ βi xi

∑ xi
(11)

where i = 1, 2, 3, . . . , n.
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5. System Architecture, Synchronization Process, Client Situation Update, and
Loss Function
5.1. System Architecture

In this section, a brief description of all the entities that make up the architectural
framework as illustrated in Figure 3 is given, followed by a general explanation of the
system architecture, client situation updates (CSUs), and how the loss function is mini-
mized using federated averaging (FedAvg). From Figure 3, the Blockchain-based secure
aggregation system architecture consists of four entities: the aggregator server, blockchain
network, fault-tolerant server, and clients. Their roles are described as follows:

• Aggregator server: This is a central server that is tasked with aggregating the model
updates from the clients. It generates the initial global model needed for training and
sends it to the clients through the Blockchain network.

• Blockchain network: The Blockchain network ensures trust and transparency and enables
the masking of the global model for local model training. The intermediate results are
sent to the Blockchain network for an efficient and transparent computation process.

• Fault-tolerant server: In the context of the Blockchain, this entity acts like the PoA,
a variation of PoS that is less energy-intensive and requires less computing power
when compared with PoW. It ensures that the failure of certain clients or clients going
offline does not prevent the operation of the network. For every iteration, the clients’
situation updates are communicated to the fault-tolerant server in a privacy-preserved
manner. These updates are used within the network to handle the issues associated
with stragglers and dropouts.

• Clients: They are data owners that train the global model. They send their model
updates to the central server and status report (active, stragglers, and dropouts) to the
fault-tolerant server in a privacy-preserved manner.

From Figure 3, an initial or pre-trained global model from the aggregator server is sent
to the clients through the Blockchain network for model training and aggregation. The
trustworthy nodes in the blockchain network verify the model, reach a consensus using PoA,
mask the global model, and send it to the clients as smart contracts. This ensures the
security, transparency, tamper-proofness, and privacy-preservation of data. Each client
uses their local data to train the model and send a masked update to the central server for
aggregation. The masking of device local data and secure aggregation is illustrated using
Algorithm 1.
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Algorithm 1: Masking Local Data and Secure Aggregation
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24  end 
25  (III). For the aggregator server: 
26  for 𝜃  do 
27 (a). Aggregate and unmask according to (8); 

28  
(b). Dynamically initiate a callback or end-process aggregation mechanism or get update about the de-
vice status as per Algorithm 2; 

29 (c). Generate a new global model according to (11); 
30  end 
31  t ← t + 1. 
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33 return The aggregated final model 𝜃 . 

There is constant communication between the central server and the fault-tolerant
server through the Blockchain network. The clients communicate their status updates to
the fault-tolerant server in a privacy-preserved manner. As illustrated in Algorithm 2, the
fault-tolerant server handles stragglers and dropouts in an efficient manner by ensuring
that the unavailability of participating clients does not stop the training process because
other clients can step in and take their place. The client’s status feedback is communicated
to the central server through the Blockchain network in a privacy-preserved manner. The
central server uses this information to decide when to initiate a callback function or end-
process aggregation mechanism. These aggregation mechanisms effectively handle stale
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model updates which could occur when clients experience connectivity issues or delays in
sending model updates to the central server. Also, it resynchronizes clients that experience
a temporary drop-out and then reconnects with an outdated model to receive the latest
global model. The entire FL training process is recorded in the Blockchain network, and this
technique addresses the threat of an SPOF, privacy, trust, and security. Furthermore, the
aggregation of post-trained models (model updates) is carried out by the aggregator server,
which greatly reduces the computing burden on the Blockchain network. Furthermore,
the clients’ status communications to the fault-tolerant server help to manage the issues
associated with stragglers and dropouts.

Algorithm 2: Client Situation Update
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5.2. Synchronization Process

The synchronization of the Blockchain with the other components in the architectural
framework is in real time. Once the global model updates are aggregated by the central
server, a hash of the update or summary is recorded on the Blockchain. This provides
an immutable record of the model update. A consensus is reached by the validators on
the validity of the recorded model updates. This record becomes a permanent part of the
Blockchain. Synchronization is achieved through periodic communication between the
servers and the immutable records on the Blockchain. The two servers (fault-tolerant server
and aggregator server) periodically synchronize with the Blockchain to check for new
records and status updates. In an unexpected failure of the central server, the Blockchain
immutable records can serve as a reference point to continue the training. The Blockchain
serves as a traceable, consistent, transparent, and a trusted reference point across all
components in the architectural framework.

5.3. Client Situation Updates (CSUs)

In this context, stragglers and dropouts will be classified as crashed clients. To avoid
infinite loops and handle crashed clients, the aggregator server does not need to wait for all
the clients to return their post-trained models but will dynamically be able to implement
a callback or end-process aggregation once sufficient updates have been returned. This
mechanism enhances round efficiency in situations where there is a high probability of
crash of clients. CSUs are carried out in a privacy-preserved manner.

Available clients = A.
Selected clients = B.
Crashed clients = C.

SU =
|B− B ∩ C|
|A| (12)

After every round of training, the crash ratio is determined using the following:

Cr =
C
A

(13)

where Cr is the crash ratio.
In every training round, the fault-tolerant server will send these updates to the aggre-

gator server through the Blockchain network. The aggregator server uses these updates
to dynamically evaluate when to implement a callback or end-process mechanism. These
updates will enable the Blockchain network during the selection of clients for training to
make the decision to allow other clients to step in and take the place of the crashed clients.

5.4. Federated Learning Loss Function

The loss function is a means of evaluating the model’s performance on the data it has
been trained on. The loss function used in this FL is the cross-entropy loss, a standard
supervised learning loss function that examines the difference in the anticipated probability
distribution and the actual probability distribution of device data. The loss function of
each device is calculated, and the results are aggregated to update the global model. This
ensures that the global model is a true representation of the device data. To minimize the
expected loss across all devices, FedAvg is used. FedAvg is a technique where multiple
devices store training data locally, and the aggregated local updates from these devices are
used to train a model.

Let model parameters = w.
Number of devices = n.
Loss function = L.
Loss function for the ith device = li(w).
Learning rate = η.
Derivative function = ∇.
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The FedAvg loss function can be expressed as follows:

L(w) =
1
n
∗∑n

i=1li(w) (14)

The FedAvg goal is to reduce the loss function based on the model parameter w. Using
the following update rule, the FedAvg algorithm minimizes the loss function by iteratively
updating the model parameters.

wnew = wold + η ∗ ∇(L(wold)) (15)

∇(L(wold)) is the gradient of the loss function with respect to the model parameter
wold, and it is computed as the aggregated local gradients of each device.

∇(L(wold)) =
1
n
∗∑n

i=1∇(li(wold)) (16)

With respect to the model parameter wold, ∇(li(wold)) is the gradient of the loss
function for the ith device. Applying the update rule iteratively, the FedAvg algorithm mini-
mizes the overall loss function across the devices by converging to a set of model parameters.

6. Illustration of Callback Function and End-Process Mechanism in
Federated Learning

Based on the partitioning sample, the strategies that can be adopted to implement FL
are Vertical Federated Leaning (VFL), Horizontal Federated Learning (HFL), and Federated
Transfer Learning (FTL) [36,37].

(1) VFL: This is a scenario where the sample identities (IDs) are the same, but the
sample spaces shared by the datasets are different. There is quite a huge gap in the user–
space intersection due to differences in feature space. VFL is also called feature-based FL.

Let Sy , Fy, and Ly denote the yth sample ID space, the yth feature space, and the
yth label space, respectively. Consequently, let the data held by each data owner y be
represented by the matrix My. Then, VFL can be summarized as follows:

Sy = Sz, Fy 6= Fz, Ly 6= Lz, ∀My, Mz, y 6= z (17)

The zth expression is the same as that of the yth.
(2) HFL: In this category, data samples are different but share the same feature space.

In this scenario, each device shares an identical feature space, which makes the user–space
intersection less significant. HFL represents a real-life scenario, and most FL studies are
based on this strategy. HFL can be summarized as follows:

Sy 6= Sz, Fy = Fz, Ly = Lz, ∀My, Mz, y 6= z (18)

(3) FTL: This is a combination of the VFL and HFL strategies, and it is applicable when
there are differing data samples and feature spaces of two device datasets. This can be
summarized as follows:

Sy 6= Sz, Fy 6= Fz, Ly 6= Lz, ∀My, Mz, y 6= z (19)

The architecture in Figure 4 utilizes a synchronous HFL strategy. The technique is
to implement an end-process aggregation, called the deadline aggregation mechanism.
This aggregation mechanism is dynamically implemented based on the updates from the
fault-tolerant server. When the devices have returned a certain sufficient percentage of
post-trained models, the server will implement a callback and issue a force stop to devices
yet to return their post-trained models. On the other hand, if this sufficient percentage of
the post-trained model, as specified by the FL server, is not yet achieved and a deadline
has been reached, a force stop will be issued to the selected devices so that the issue of an
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infinite loop or endless waiting could be avoided. The assumption made in Figure 4 is to
use five devices, but in a real use case scenario, it will involve hundreds of thousands of
devices. β1, β2, β3, β4, and β5 represent the post-trained models of devices 1, 2, 3, 4, and 5,
respectively, while θG represents the global model.
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In each round of training, the FL server, through the Blockchain network, sends a
global model to all participating devices for local training. In round 1, a callback was
initiated because a certain percentage of the post-trained models (β1β2β3β5) was returned
to the server, and a force stop was issued to the remaining devices yet to return their post-
trained models, in this case, device 4. As illustrated in Figure 2 and using (10), the secured
aggregated masked post-trained models are unmasked by the aggregator server to produce
a new global model used for the next round of training. It is worth noting that only returned
post-trained models are needed for unmasking and aggregation. In the second round of
training (round 2), a callback was not issued because the percentage of post-trained models,
as specified by the server, was not met. At the expiration of the deadline, a force stop is
issued to devices yet to return their post-trained models. The returned post-trained models
(β1β3β5) are unmasked and aggregated to produce a new global model needed for the next
round of training. In the third round (round 3), a callback was issued by the server because
the percentage of the returned post-trained model was met, and a force stop was issued
before the deadline was reached. A new model emerges from the secure aggregation of the
returned post-trained models (β2β3β4β5) of dev 2, dev 3, dev 4, and dev 5, respectively, as
shown in Figure 4. The iteration continues until convergence is reached and a final global
model is produced.

7. Results, Discussion, and Performance Evaluation

In this section, we conduct an experiment to demonstrate our proposed framework’s
performance in model update, secure aggregation, and evaluation of the trained model.
This is with respect to the clients and the aggregator server.
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7.1. Implementation

The model training was implemented through Python on a Linux operating system
using Tensorflow Federated (TFF) libraries. FL training was carried out on a laptop con-
figuration of 8 GB RAM, 500 GB HDD, and 1.3 GHz processor. Using TFF libraries, an FL
model was trained on the EMNIST dataset. This dataset was pre-processed by defining
a pre-processed function. Pre-processing steps were carried out so that the image pixels
and labels could be converted into suitable format for training a keras model. For efficient
training, the input data were pre-processed by reshaping the images and labels, batching
the data. Using keras, a Convolutional Neural Network (CNN) model was created, which
consisted of convolution, pooling, flattening, and dense layers. To enable FL, the model
was wrapped with TFF.

The FedAVG process was built, specifying the model function, server, and client
optimizers. The training state was initialized, and the training process was executed in
multiple rounds. The model was trained repeatedly using data from various clients in
a federated manner. During each round of training, the progress was monitored, and
metrics such as accuracy and loss were analysed. This process continued until sufficient
post-trained models (desired accuracy threshold was achieved) were returned to the server,
or the maximum number of rounds was reached. After the training process, the model was
evaluated on the test dataset, the test data were batched, and the accuracy was computed.
Finally, the training progress was visualized by plotting the accuracy against the number of
rounds and the accuracy against loss.

To achieve better convergence, we implemented a learning rate scheduler that de-
creased the learning rate (lr) over iterations. We achieved speedy convergence by imple-
menting an exponential decay learning rate scheduler. Furthermore, the feedback loop
of our framework enhanced speedy convergence and reduced communication cost. The
exponential decay learning rate formular is as follows:

decayed_lr = (init_lr)× (decay_rate)step/decay_steps (20)

where:
decayed_lr: exponential decay learning rate.
init_lr: the starting learning rate.
decay_rate: the base of the exponential function.
step: the current round of FL training.
decay_steps: the decay step.

7.2. Results

In Figure 5, we can see a graph that displays the accuracy of the model versus the
number of training rounds. As the training continues, the accuracy of the model changes,
providing valuable information on how well the model performs for a specific task. A
closer look at the graph will identify the trend in the accuracy improvement over time.
This gives an understanding of whether the model is converging or if further training is
required. To hasten model convergence and avoid an infinite loop or endless waiting, a
callback was initiated once enough post-trained models (desired accuracy threshold) had
been returned to the server. In this case, 75% accuracy was achieved. Considering the
unreliable nature of IoT (stragglers and drop-offs) and to reduce the communication cost,
callback at a 75% accuracy threshold (three quarter of the clients) will guarantee a good
model and could be a good feat within a resource-constrained setting.
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Figure 6 shows the relationship between the accuracy of the model and loss during
the training process. The accuracy indicates how well the model is performing, while the
loss indicates the ability of the model to minimize prediction loss. Using the graph, an
analysis of the trade-off between accuracy and loss can be achieved. With every iteration,
the model learns, and the loss should decrease, leading to improved accuracy. By a closer
examination of the graph, we can identify patterns, such as decreasing loss accompanying
increasing accuracy. From Figure 6, the model performance can be assessed, and it will also
assist in finding an optimal balance between accuracy and loss.
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7.3. Comparison

Here, we compare our scheme with several existing related schemes in terms of secure
aggregation and model performance. Table 1 gives a functional comparative evaluation
of our scheme and previous schemes from the following viewpoints: the ability to han-
dle dropouts, computational complexity, scalability, and communication cost. It can be
observed that our scheme successfully achieved all functionalities.
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Table 1. A comparative evaluation of our scheme and previous schemes.

Schemes Handle
Dropouts

Computational
Complexity Scalable Communication

Cost

[7] YES NO NO Low

[15] YES NO NO Low

[16] NO YES NO Low

[17] NO NO NO High

[21] NO YES NO High

[24] NO YES NO High

[25] NO YES NO High

OURS YES NO YES Low

In handling stragglers and dropouts, the client situation updates are communicated to
the fault-tolerant server in a privacy-preserved manner for each round of training. These
updates are used within the network to estimate the training time and make decisions on
when to end the training process of each round to avoid an infinite loop. These updates
will assist in deciding on the number of clients to select for each round of training. If there
are more dropouts in each round, the tendency to achieve an accuracy threshold (initiating
callback) will be low. The aggregator server uses these updates to set an end-process time
if a callback is not yet initiated.

As shown in Figure 7, the computational cost is a measure of the time it takes for each
training round. It is a measure of the difference between the start and end times of the
training process for each round. The computational complexity of our scheme is not high
because the aggregation of the returned trained models is carried out using the aggregator
server rather than the Blockchain network. The computational complexity associated with
aggregating each round of the training using the Blockchain is eliminated. Here, we retain
the central server’s ability to aggregate returned trained models to eliminate the complexity
associated with aggregation using the Blockchain network. Figure 7 shows the performance
of our scheme in terms of communication round complexity in seconds, and it needs just
two rounds of communication. The first one is the clients sending their model updates to
the aggregator server for aggregation, while the second is sending their status update to
the fault-tolerant server for managing dropouts and stragglers. Our communication round
can only be compared to Ref. [7], which made use of two communication rounds.

Figures 8 and 9 illustrate the scalability tests of accuracy and loss, respectively. They
show various curves that represent the accuracy and loss of models trained with varying
number of clients, such as 50, 100, 150, 200, and 250 clients. Across training rounds, the
accuracy and loss metrics change when there is variation in the number of clients available
for training. After several training rounds and across all client counts, the accuracy generally
increases and stabilizes, while the loss decreases. The early training rounds of both figures
indicate a period of rapid correction or adjustment according to Equation (20) in the FL
process before stabilization. This correction or adjustment is also based on the feedback loop
of our architectural framework. From a careful observation of our architectural framework
and previous schemes in Table 1, it appears that only our scheme has a feedback loop
after every communication round. The feedback loop of our framework provides the
status update and performance of the clients in a privacy-preserved manner. This gives an
overview of the training process and ensures that more clients are introduced in the next
round of training when there are more stragglers and dropouts in the preceding round.
Across different numbers of clients in both figures, the variability in curves does not show
drastic differences. Rather, it indicates that the model is relatively stable despite an increase
in the number of clients. An increase in the number of clients did not result in a dramatic
decrease in accuracy or a considerable increase in loss. Consequently, when the number of
clients is increased, the accuracy and loss seem to stabilize. The accuracy curves indicate
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that the training stability converged as the number of clients increases; it remained stable
until the desired accuracy was attained or callback was implemented. Our framework
shows positive scalability traits across varying client distributions. This indicates that our
framework is capable of handling more clients without degradation in performance.
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In a scalability assessment that considers factors such as fault tolerance and secure
aggregation strategies, our scheme’s architectural framework (Figure 3) indicates that
secure aggregation could be carried out using the aggregator (central) server or fault-
tolerant server. It could also be reconfigured to use the Blockchain network for aggregation.
This distinguishes our scheme from previous schemes in terms of fault tolerance and secure
aggregation strategies. The constant communication between the aggregator server and
Blockchain network ensures that the latest updates are stored in the Blockchain network.
Therefore, the abrupt failure of the aggregator server will not lead to a total collapse of the
training process because the Blockchain network or fault-tolerant server could continue
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orchestrating the training process from the point of a sudden or unforeseen breakdown of
the aggregator server. Our framework prevents the loss of training time and wastage of
resources due to the unexpected failure of the central server.
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Finally, our scheme’s trust, transparency, and privacy-preservation mechanism enable
adequate participation in the model training. With more active clients participating in
the model training, speedy convergence of the global model is achieved, the number of
iterations (training time) is reduced, and communication costs are low because of callback
or the end-process mechanism of aggregation.

8. Conclusions

In this article, a secured Blockchain-based aggregation mechanism using FL has been
proposed. The model utilizes Blockchain technology as a means of masking local data of
end devices within an FL framework to avoid the reconstruction of local data by a malicious
server. Blockchain as a distributed ledger offers an immutable data structure, enhanced
security, faster settlement in payment systems, and a consensus protocol. Blockchain
provides a unique system of accumulating data in a chronological and privacy-preserved
manner because the greatest resource of any organization is data. Using Blockchain, the
model tends to solve the threat of SPOF, ensures the privacy preservation of end devices’
local data, eliminates the issues of vulnerability, and ensures trust, transparency, fairness,
and security. The callback or end-process mechanism eliminates the need for endless
waiting that could arise because of the issue of stragglers and dropouts, which is evident
in the FL scenario. The secure aggregation mechanism of the masked models using a
callback function/end-process technique ensures that only returned post-trained models
are needed for aggregation. This mechanism prevents the problem of complicated handling
of local masked models of stragglers and dropouts by the FL server during aggregation
to produce a global model. The framework enables immutable, efficient, transparent, and
secure communication between the FL server and devices within the federated network.
The limitation of Blockchain technology, as observed in most research, is the computational
complexity in maintaining security and privacy preservation when there is increase in the
network. With this technique, the computational complexity is greatly reduced because the
Blockchain network does not perform aggregation; rather, the aggregator server aggregates
the returned post-trained model. Finally, only returned post-trained models are needed for
aggregation, which benefits resource-constrained IoT devices.
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