
Citation: Qiang, H.; Tao, Z.; Ye, B.;

Yang, R.; Xu, W. Transmission Line

Fault Detection and Classification

Based on Improved YOLOv8s.

Electronics 2023, 12, 4537. https://

doi.org/10.3390/electronics12214537

Academic Editors:

Azeddine Kaddouri and

Nouha Bouchiba

Received: 21 September 2023

Revised: 31 October 2023

Accepted: 2 November 2023

Published: 4 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Transmission Line Fault Detection and Classification Based on
Improved YOLOv8s
Hao Qiang 1,2 , Zixin Tao 1, Bo Ye 1, Ruxue Yang 1 and Weiyue Xu 1,*

1 School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China;
qhao@cczu.edu.cn (H.Q.); s22050858027@smail.cczu.edu.cn (Z.T.); 20085800048@smail.cczu.edu.cn (B.Y.);
s22050858030@smail.cczu.edu.cn (R.Y.)

2 Jiangsu Province Engineering Research Center of High-Level Energy and Power Equipment,
Changzhou University, Changzhou 213164, China

* Correspondence: wyxu@cczu.edu.cn

Abstract: Transmission lines are an important component of the power grid, while complex natural
conditions can cause fault and delayed maintenance, which makes it quite important to locate and col-
lect the fault parts efficiently. The current unmanned aerial vehicle (UAV) inspection on transmission
lines makes up for these problems to some extent. However, the complex background information
contained in the images collected by power inspection and the existing deep learning methods are
mostly highly sensitive to complex backgrounds, making the detection of multi-scale targets more
difficult. Therefore, this article proposes an improved transmission line fault detection method based
on YOLOv8s. The model not only detects defects in the insulators of power transmission lines but
also adds the identification of birds’ nests, which makes the power inspection more comprehensive
in detecting faults. This article uses Triplet Attention (TA) and an improved Bidirectional Feature
Pyramid Network (BiFPN) to enhance the ability to extract discriminative features, enabling higher
semantic information to be obtained after cross-layer fusion. Then, we introduce Wise-IoU (WIoU), a
monotonic focus mechanism for cross-entropy, which enables the model to focus on difficult examples
and improve the bounding box loss and classification loss. After deploying the improved method in
the Win10 operating system and detecting insulator flashover, insulator broken, and nest faults, this
article achieves a Precision of 92.1%, a Recall of 88.4%, and an mAP of 92.4%. Finally, we conclude that
in complex background images, this method can not only detect insulator defects but also identify
power tower birds’ nests.

Keywords: transmission line; fault detection; improved YOLOv8s; BiFPN

1. Introduction

Transmission line fault detection [1] is a key technology to ensure power supply
reliability. In recent years, with the continuous development of the power industry, the
proliferation of power grid equipment being constructed in challenging environments is
on a constant rise every day, which has put forward higher requirements for the safety
and maintenance of power system equipment. At present, the image data collected by
unmanned aerial vehicle (UAV) patrol inspection [2] has been imported into the offline
server. Its intelligence and operation autonomy speed up the efficiency of UAV uploading
the collected fault information to the automatic master station system so as to better realize
the defect location of the fault section [3].

With the continuous expansion of the power grid scale, transmission lines are prone to
failure under the influence of external environmental factors [4]. Traditional transmission
line operation faults include broken insulators, bird nests at the top of the power tower, and
pollution flashover faults [5]. As an important component to ensure the normal operation
of transmission lines, the insulator also has the highest probability of failure in transmission
lines. Insulators will be affected by ice damage, wind damage, lightning, and other adverse
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factors when exposed to complex environments for a long time, resulting in varying degrees
of failure. Serious failures may affect the operation of the entire power system, leading to
large-scale blackouts and resulting in huge economic losses [6]. Distance-based Protection
is a traditional method that involves measuring impedance and reactance values to estimate
the fault location. Although it is widely used, it can be less accurate for complex network
configurations and may fail in the presence of high-impedance faults. Wavelet Transform
Analysis employs wavelet analysis to examine the voltage and current signals on the
transmission line. Although it can effectively detect various types of faults, it may be
computationally intensive and require precise synchronization of data. Traditional fault
classification methods based on mathematical modeling and signal processing typically
require manual or robotic detection, which not only consumes a large number of human
resources but also can easily lead to missed detection. Moreover, these methods rely on
assumptions about linear and stationary systems, so they may also have problems with
nonlinear and non-stationary signals [7].

At present, the detection of transmission line faults is mainly achieved through drone
aerial photography. When compared to manual inspection, UAV inspections offer sev-
eral advantages, including low cost, enhanced efficiency, and increased safety measures.
However, the images collected by UAV patrol inspection usually include complicated
backgrounds with the presence of forests, grasslands, rivers, farmland, etc., which causes
detection uncertainty. In addition, the problems of shooting distance and shooting angle
during patrol inspection will cause the collected target defects to be small and sheltered.
Many researchers have begun to identify and locate defects [8,9] in drone aerial images to
further improve the quality of transmission line detection. Machine Learning and deep
learning methods [10] have greatly assisted in the detection, classification, and localiza-
tion of defects in power systems. Currently, the mainstream deep learning-based object
detection algorithms can be divided into two categories: two-stage algorithms based on
candidate regions and one-stage algorithms based on regression. The former has a complex
structure but has a high accuracy rate. While the latter has a simple structure and fast de-
tection speed, its accuracy is relatively low. This algorithm directly performs regression on
the input image through a convolutional neural network and then outputs the final result.

He et al. [11] once conducted research on the detection of insulators missing in aerial
images based on deep learning. They first used Faster R-CNN to identify the transmission
line insulator and then used the CNN algorithm to detect the defect of the missing insulator
after obtaining satisfactory identification results. The accuracy of detecting missing defects
in the article reached 86%, but it only focused on whether the insulator had defects and did
not position the defects accurately. However, Lei et al. [12] proposed a deep convolutional
neural network method based on the Faster R-CNN method to locate broken insulators
and bird nests. This article detected two types of faults and converted the problem of
target classification into the problem of target detection and identification. The detection
performance was good, but the insulator defects were still not accurately located, and the
detection time of a single picture was long (201 ms). Due to the long detection time and
large model of the two-stage algorithm, the one-stage algorithm has more advantages in
transmission line fault detection. Liu et al. [13] proposed an improved YOLOv3 network to
detect insulators under different background interference. By adding dense blocks to opti-
mize feature extraction and optimizing anchor frames through the clustering algorithm, the
accuracy of insulator identification under complex backgrounds was enhanced. Although
the article carefully divided the insulator detection results under different scenarios, it was
limited to the identification of insulators and failed to divide the defective insulators and
normal insulators. Wu et al. [14] proposed a lightweight YOLOv3 insulator defect detection
method using a k-means++ algorithm based on Euclidean Distance to improve the stability
of generating a priori frame. In order to improve the detection speed of the model, this
article applied Crop-MobileNet to reduce the time cost, but the mAP was only 84%, which
would make it more difficult to locate the fault in a complex background and easy to cause
missed detection. Wu [15] et al. proposed an improved YOLOv5 algorithm for detecting
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multiple defects of insulators to solve the problems of low detection accuracy and slow
detection speed. In this article, GhostNet and SimAM modules were introduced to improve
the accuracy and speed of the network for insulator flashover and damage, and the map
reached 87.8%. However, my research not only detected two kinds of insulator defects
but also added the birds’ nest defect to study the fault detection accuracy under complex
backgrounds, and the final mAP also reached a good percentage.

With the deepening of the deep learning algorithm, more attention mechanisms, such
as Convolutional Block Attention Module (CBAM), Efficient Channel Attention (ECA), and
so on, are integrated, which helps the neural network to dynamically search the regions
with discriminant characteristics from the perspective of multi-channel attention fusion
and cross element attention, so as to improve the detection accuracy. The current YOLO
series has been updated to YOLOv8 [16], which provides a brand new state of the art
(SOTA) model, replacing the C3 structure of YOLOv5 with a more gradient-flow-rich C2f
structure and adjusting the number of channels for different scale models. YOLOv8 has
been applied to different research objects, among which Chen et al. [17] performed better
detection of aircraft targets in Synthetic Aperture Radar (SAR) images, eliminating the
large target detection layer of YOLOv8 and introducing deformable convolution, thereby
achieving a balance between model complexity and detection accuracy. Gao et al. [18]
used a deformable convolutional improved backbone network and occlusion perception
attention mechanism on the YOLOv8 model to detect dense pedestrians, improving the
accuracy of small object detection.

To solve the problems, the deep learning model may be highly sensitive to complex
backgrounds and would probably affect the detection of multi-scale targets in fault detec-
tion. This article proposes an improved algorithm based on the YOLOv8s network. By
building upon the existing advanced single-stage target detector YOLOv8s, this method
introduces several improvements to the network structure and loss function, enabling
it to effectively address more intricate transmission line fault detection tasks. The main
contributions of this article are as follows:

(1) Since the two defects on the insulator belong to different subcategories under the
same category, an improved Mosaic image enhancement technique is adopted to enrich the
image features and alleviate the accuracy decline caused by overfitting;

(2) To promote the performance of feature extraction during model training, an im-
proved Triplet Attention (TA) is used to enhance the network’s ability to calculate attention
weights and apply them to key features. In addition, to reduce the generation of redundant
parameters, we propose that a lighter Light Conv structure be substituted for a portion of
the convolutional structure in YOLOv8s;

(3) In order to generate higher semantic information after fusion, two cross-layer
connections are established in the feature pyramid network (FPN) to fuse the 80 × 80 and
40 × 40 feature maps across layers. A comparative analysis of four distinct fusion methods
has determined that the “bifpn” exhibits the most optimal fusion technique;

(4) WIoU v2, a monotonic focusing mechanism for cross-entropy, is introduced to
enable the model to focus on difficult examples and better convergence of boundary loss
and classification loss, which improves the detection accuracy of the YOLOv8s model and
the overall performance of it;

(5) The experimental results show that the improved YOLOv8s has a detection Preci-
sion of 92.1%, a Recall of 88.4%, and a mAP of 92.4%. For class-specific metrics, the mAP
for pollution–flashover, broken, and nests are 87.6%, 91.4%, and 99.5%, respectively.

The rest of this article is organized as follows: Section 2 describes the constitution of
the improved YOLOv8s detection network. Section 3 presents the relative experiments and
analysis. Finally, Section 4 discusses and summarizes the whole article.

2. Model Construction Based on Improved YOLOv8s

This article proposes an improved YOLOv8s [16] algorithm network structure, as
shown in Figure 1. The model uses YOLOv8s as a framework, enriches the dataset with
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improved Mosaic [19] enhancement techniques, and adds Triplet Attention [20] to the
backbone network to assist in feature extraction for small targets. To improve the effi-
ciency of feature fusion, two cross-layer connected Bidirectional Feature Pyramid Network
(BiFPN) [21] networks are used, and deformable convolution is introduced to reduce the
computational complexity. Finally, a combination of Distribution Focal Loss (DFL) [22] and
Wise-IoU (WIoU) [23] is used as the regression loss.
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Figure 1. Improved YOLOv8s network structure.

2.1. Improved Mosaic Data Enhancement

The YOLOv8 algorithm uses Mosaic [19] data enhancement to enrich the data set
during the data preprocessing phase. The process of the algorithm combines four images
through reversal and zooming operations and gamut variations to produce a Mosaic image.
The Mosaic data enhancement of the four images is shown in Figure 2a. This article uses
Mosaic data enhancement of nine images to increase the size of each batch of images for
training, resulting in higher training efficiency. The mosaic enhancement of nine random
images is shown in Figure 2b, and the green box is the annotation box. Moreover, the data-
enhanced image is closer to the detection size of small targets, increasing the complexity
of the detected image and preventing overfitting. YOLOv8 introduces the operation of
closing Mosaic in the last 10 epochs proposed in YOLOX [24], which effectively improves
detection accuracy.
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2.2. Improved Backbone Network

Feature extraction is a layer-by-layer process of mining image data. Due to its fixed
convolution kernel and small receptive field, standard convolution operation may result
in missed detection in multi-class transmission line fault detection. This article adds a
Channel Attention to C2f [16], which can focus on more effective features. We adopt the
Triplet Attention [20] to better extract the features of small targets. Finally, a lighter-weight
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Light Conv [16] is used to unify the number of channels after feature extraction, making it
easier for subsequent feature fusion.

2.2.1. Channel Attention

The attention mechanism can effectively improve the sensitivity of the module to
the fault target and make it pay attention to more effective features. Due to the strong
background interference of the fault image, we introduce the Channel Attention module in
C2f. The Channel Attention sub-module is shown in Figure 3. Firstly, the feature map saves
the feature information of C ×W × H as W × H × C through the arrangement operation
and then gains a new feature map through the inverse arrangement and activation function
after passing through the perceptron.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 18 
 

 

2.2. Improved Backbone Network 
Feature extraction is a layer-by-layer process of mining image data. Due to its fixed 

convolution kernel and small receptive field, standard convolution operation may result 
in missed detection in multi-class transmission line fault detection. This article adds a 
Channel Attention to C2f [16], which can focus on more effective features. We adopt the 
Triplet Attention [20] to better extract the features of small targets. Finally, a lighter-weight 
Light Conv [16] is used to unify the number of channels after feature extraction, making 
it easier for subsequent feature fusion. 

2.2.1. Channel Attention 
The attention mechanism can effectively improve the sensitivity of the module to the 

fault target and make it pay attention to more effective features. Due to the strong back-
ground interference of the fault image, we introduce the Channel Attention module in 
C2f. The Channel Attention sub-module is shown in Figure 3. Firstly, the feature map 
saves the feature information of C × W × H as W × H × C through the arrangement opera-
tion and then gains a new feature map through the inverse arrangement and activation 
function after passing through the perceptron. 

The output of each bottleneck of C2f will be concat because the low-level feature map 
contains more detailed information but lacks semantic and context information. At the 
same time, the high-level feature map has richer semantic information and context infor-
mation. Then, we introduce the channel attention mechanism before the fusion of low-
level feature maps and high-level feature maps, which can improve the accuracy and ro-
bustness of target detection. The improved C2f* is shown in Figure 4.  

 
Figure 3. Channel Attention. 

 
Figure 4. Improved C2f*. 

2.2.2. Triplet Attention 
The feature extraction process for small target feature maps is typically intricate, ne-

cessitating the establishment of inter-dependencies between spatial and channel dimen-
sions. This article employs Triplet Attention as a novel method to compute attention 
weights by capturing cross-dimensional interactions through a three-branch structure. It 
can improve the restriction of the input feature map or focus on the area of concern 
through multidimensional interaction, as well as its inherent ability to broadly understand 
more contextual information that is discriminative for a certain target class. 

Figure 5 shows the three branches of the Triple Attention. Within the first branch, we 
utilize pooling technology, the convolution layer, and the activation layer with no rotation 
in any dimension. We employ 7 × 7 filters as they have an effective receptive field and 
cover more areas on the input feature map to extract features. In the second branch, the 
interaction is carried out over the W axis. We rotate the input feature 90 degrees counter-
clockwise and perform the same operation as branch one. Finally, we rotate the output 90 
degrees clockwise around the W axis to maintain the original shape of the feature. In the 

Figure 3. Channel Attention.

The output of each bottleneck of C2f will be concat because the low-level feature
map contains more detailed information but lacks semantic and context information. At
the same time, the high-level feature map has richer semantic information and context
information. Then, we introduce the channel attention mechanism before the fusion of
low-level feature maps and high-level feature maps, which can improve the accuracy and
robustness of target detection. The improved C2f* is shown in Figure 4.
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2.2.2. Triplet Attention

The feature extraction process for small target feature maps is typically intricate, neces-
sitating the establishment of inter-dependencies between spatial and channel dimensions.
This article employs Triplet Attention as a novel method to compute attention weights by
capturing cross-dimensional interactions through a three-branch structure. It can improve
the restriction of the input feature map or focus on the area of concern through multidi-
mensional interaction, as well as its inherent ability to broadly understand more contextual
information that is discriminative for a certain target class.

Figure 5 shows the three branches of the Triple Attention. Within the first branch, we
utilize pooling technology, the convolution layer, and the activation layer with no rotation
in any dimension. We employ 7× 7 filters as they have an effective receptive field and cover
more areas on the input feature map to extract features. In the second branch, the interaction
is carried out over the W axis. We rotate the input feature 90 degrees counterclockwise
and perform the same operation as branch one. Finally, we rotate the output 90 degrees
clockwise around the W axis to maintain the original shape of the feature. In the third
branch, the interaction is carried out over the H axis, and the reactions between the channel
and spatial dimensions have been established. Then, the rotation features are averaged and
pooled to obtain two feature maps of spatial dimension. Then, the features are combined
by the convolution layer and the activation function to maintain the original shape of the
features, and finally, we add and average the output features of the three branches.
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The article improves the original TA by changing the convolution layer to a lighter
Light Conv structure, which achieves lightweight by using the combination of deep sepa-
rable convolution and point-by-point convolution. In the activation layer, ReLU is used
to activate function instead of Sigmoid to reduce the amount of calculation and achieve
faster convergence.

2.2.3. Light Conv

Light Conv in YOLOv8 is a lightweight convolution operation that can be used to
reduce the number of parameters and calculations of the model. Light Conv realizes
lightweight by using a combination of deep separable convolution and pointwise convo-
lution, as shown in Figure 6. Deep separable convolution [25] is calculated through 1 × 1
and then decomposes the standard convolution into multiple convolutions. The number of
convolutions is equal to the number of channels. Finally, concat is performed.
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2.3. Improved Neck Network

The backbone network is utilized for feature extraction, while the neck structure is re-
sponsible for fusing the extracted feature vectors. In the case of multi-scale object detection,
small target objects inherently possess fewer pixels, and with subsequent downsampling,
their features are more prone to be lost. To address this issue, the BiFPN fusion mechanism
is introduced to enhance the detection capability of multi-scale objects.

2.3.1. BiFPN Network

FPN [26] is the earliest algorithm to propose feature fusion in the direction of object
detection. Its structure can be divided into three parts: bottom-up pathway, top-down
pathway, and lateral connections. Multiple levels of FPN have their own output layers,
and each output layer has a different scale receptive field. YOLOv3 of the YOLO series
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first adopts this feature pyramid structure, which provides a more powerful semantic
information capture capability for the feature map of each layer by fusing the deep semantic
information and the shallow texture information. However, this top-down FPN network
is limited by one-way information flow. In recent years, numerous approaches have been
proposed to enhance FPN. The neck structure of YOLOv4 and YOLOv5 incorporates the
Path Aggregation Network (PANet) [27] structure, which introduces a bottom-up pathway
in addition to FPN. Three models are shown in Figure 7. YOLOv8 also leverages the PANet
structure for network feature fusion, but it removes two convolutional connection layers
and adjusts the block count of the C2f module.
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The BiFPN [21] structure used in this article is an improvement on the basis of FPN
and PANet. The node with only one input edge and no feature fusion is deleted, which
simplifies the two-way network without affecting the feature network. If the original input
node and output node are on the same layer, we will add an additional edge between the
two. That is—jump connection, which can integrate more features without adding too
much cost. In order to fuse features with different resolutions, BiFPN adds an additional
weight. The fast normalized fusion Formula (1) is adopted to keep the weight at 0–1, which
improves the running speed of the model on GPU, and the formula is as follows:

O = ∑i
ωi

ε + ∑j ωj
· Ii (1)

ωi—weight size that can be learned;
Ii—input features size;
ε—a small value to avoid numerical instability.
Based on the idea of BiFPN, this article extracts the features of the YOLOv8s network

with a size 40 × 40, 80 × 80 feature map being connected across layers, which can more
accurately locate and obtain feature information and increase the ability of the network to
detect fault targets in complex backgrounds. The specific network structure is shown in
Figure 8.
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2.3.2. Improved BiFPN Fusion Mode

In addition to the fast normalized fusion, the fusion structure in the BiFPN network
can also carry out expanded convolution through different expanded convolution rates.
When the convolution kernel size is 3 × 3, and the expanded convolution rate is 1, 3, and 5,
there can be fusion modes (a), (b), and (c), as shown in Figure 9 below. Methods (a) and (c)
are weighted fusion and concatenation operations, respectively. They add feature mapping
on the spatial dimension and channel dimension directly. Method (b) is a self-adaptive
fusion method. Specifically, assuming that the size of the input can be expressed as (bs,
C, H, W), we can obtain the spatial adaptive weight of (bs, 3, H, W) through convolution
concatenation and SoftMax. The three channels correspond to three inputs in turn, and their
outputs can aggregate context information by calculating weighting. It can be concluded
from the literature [21] that (c) is more suitable for small object detection, while method (b)
has the greatest improvement for large and medium-sized targets, and the improvement
brought by method (a) is basically between the two. In the experimental part of this article,
the three fusion methods will be compared with BiFPN, and the fusion method that most
conforms to the data set in this article will be obtained.
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2.4. WIoU

The tag allocation of YOLOv8s adopts a dynamic matching strategy, which is used to
allocate tags to the anchor of the ground truth feature map constructed by calculating loss.
The loss part is changed from anchor-based to anchor-free, and the loss function of DFL [22]
and Complete-IoU (CIoU) [28] is introduced as the regression branch, which makes the
classification and regression tasks have high consistency.

Transmission line fault detection belongs to multi-category detection tasks, and the
difficulty of classification and position in the detection phase is greater than that of single-
category detection, so the positioning ability of the network should be strengthened. There-
fore, this article uses the combination of distributed focus loss function DFL improved by
focus loss and WIoU [23] as regression loss.

DFL is to optimize the probabilities of the two positions closest to the label y in the form
of cross-entropy so that the network can focus on the distribution of the adjacent area of
the target position faster. These two positions can be defined as yi and yi+1(yi < y < yi+1).
Therefore, DFL is shown in Formula (2).

DFL(Si, Si+1) = −((yi+1 − y) log(Si) + (y− yi) log(Si+1)) (2)

si(s i+1
)
—ensure that the estimated regression target y is infinitely close to label y.

IoU represents the overlap ratio between the predicted box and the real box, which
refers to the ratio of the intersection and union of the two boxes. We will record the
corresponding position of the anchor box (x, y, w, h) in the target box as (xgt, ygt, wgt, hgt).
Assuming that the predicted box overlaps with the real box, then Figure 10 shows the
minimum closed box and the connection between the center point.
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WIoU is an optimized strategy for bounding box loss and classification loss. When
the training dataset contains low-quality examples, geometric factors such as distance
and aspect ratio can increase the penalty on low-quality examples, which then affects
the generalization of the model. WIoU v1 builds a distance attention mechanism to pre-
vent slow convergence through a two-layer attention mechanism, reducing the harmful
gradient generated by low-quality examples thereby improving the generalization of the
model.RWIoU represents the loss of a high-quality anchor frame, the WIoU v1 formula is
as follows:

LWIoUv1 = RWIoU LIoU (3)

RWIoU = exp

(
(x− xgt)

2 + (y− ygt)
2

(W2
g + H2

g)
∗

)
(4)

LIoU—the degree of overlap between the predicted box and the actual box;
Wg—width of the minimum enclosed box;
Hg—height of minimum enclosed box;
xgt—the abscissa of the center point of the real box;
ygt—the vertical coordinate of the center point of the real box.
On this basis, to avoid large harmful gradients generated by low-quality samples, a

small gradient gain is introduced to focus the bounding box regression on the anchor box of
normal quality. WIoU v2 and WIoU v3 have incorporated monotonic and non-monotonic
focus mechanisms based on the construction of bounding box losses, respectively. WIoU
v2 constructs monotonic focusing coefficients Lγ∗

IoU ; the formula is as follows:

LWIOUv2 = Lγ∗
IOU LWIOUv1, γ > 0 (5)

Lγ∗

IoU—the gradient gain will decrease as the overlap decreases.
WIoU v3 constructs a non-monotonic focusing mechanism by defining outliers β

to describe the quality of the anchor frame and a non-monotonic focusing coefficient is
constructed by using outliers and being applied to WIoU v1, as shown below:

LWIOUv3 = rLWIOUv1 (6)

r =
β

δαβ−δ
(7)

r—non-monotonic focusing coefficient;
α, γ—hyper-parameters.
WIoU uses a dynamic non-monotonic focusing mechanism to evaluate the quality of

anchor frames and uses gradient gain to construct attention-based bounding box loss. This
article will conduct comparative experiments on the three types of loss functions v1, v2,
and v3 in the experimental analysis section to obtain the most suitable loss function for the
dataset in this article.
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2.5. Summary

This chapter focuses on the improvement of the benchmark model YOLOv8. Firstly,
the use of improved Mosaic data augmentation increases the sample of each batch of image
training, resulting in higher training efficiency. Secondly, in the feature extraction part, the
improved TA structure is added to calculate attention weights, which are applied to key
features. Next, two skip connections are added in the feature fusion part to perform cross-
layer fusion on feature maps of sizes 80 and 40, and new fusion methods and deformable
convolutions are introduced to compare and observe network performance. Finally, the
WIoU optimization is introduced to optimize the bounding box loss and classification loss,
improving the generalization performance of the model.

3. Experimental Testing and Analysis
3.1. Experimental Environment

In this experiment, the Pytorch framework is used to call GPU for the experiment. The
experimental environment and basic training parameters are shown in Table 1.

Table 1. Experimental environment.

Name Configuration

Operating system Windows 10
Development environment CUDA 11.7

GPU NVIDIA GeForce RTX 3080 Ti
Epochs 100

Batch-size 16

3.2. Dataset

The dataset for transmission line fault detection is composed of images taken by
unmanned aerial vehicles for inspection and data-enhanced images using image augmenta-
tion techniques (https://github.com/ppuff-lily/exxx1.git, 31 October 2023). We use the
LabelImg annotation tool in the Python environment to manually annotate the collected
fault images. The experiment requires identifying three types of defects: broken insulators,
flashover insulators, and birds’ nests, so we set up four types of labels, namely: insulator,
broken, pollution-flashover, and nest.

Performing a series of random transformations on the original images through crop-
ping, flipping, and translating can balance the dataset category. As for different label data,
since both flashover and broken defects are based on insulator defects, the broken and
pollution-flashover labels are then included under the anchor box of the insulator label.
Compared to the nest and insulator labels, flashover and broken defects of the former (the
broken and pollution-flashover labels) are smaller and relatively ambiguous and complex,
and there are 1–3 flashover defects or 1–2 broken defects in one image. In order to avoid the
occurrence of sample imbalance, we balance the number of labels with insulator flashover,
insulator damage, and bird nest defects.

The preprocessed transmission line fault detection dataset consists of 2528 pieces of
images. Firstly, the test set is divided based on a 9:1 ratio, and then the training set and
validation set are divided into the same ratio from the divided 2275 images. The number
of transmission line fault datasets and the number of four types of labels are shown in
Tables 2 and 3.

Table 2. Dataset distribution.

Category Quantity

Training Datasets 2047
Validation Datasets 228

Test Datasets 253

https://github.com/ppuff-lily/exxx1.git
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Table 3. Label distribution.

Category Quantity/Piece

broken 1093
pollution-flashover 1592

nest 1272

3.3. Experimental Evaluation Index

The main evaluation indexes of the target detection algorithm include detection
accuracy and model complexity. In order to comprehensively and objectively evaluate the
performance of the improved YOLOv8s model, the indexes of Precision (P), Recall (R), F1
(F1-score), average Precision (AP), and mean average Precision (mAP) are measured. The
specific calculation formula is as follows:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

F1 =
2 · P · R
P + R

(10)

AP =
∫ 1

0
PdR (11)

mAP =
∑N

i=1 APi

N
(12)

TP—Number of positive samples correctly identified as positive samples;
FP—Number of negative samples incorrectly identified as positive samples;
FN—Number of positive samples incorrectly identified as negative samples;
N—Total number of categories of detection targets;
AP—Area under P-R curve;
mAP—Average value of total AP of various faults detected.

3.4. Contrast Experiments

In order to obtain the best fusion architecture for the BiFPN network for fault detection
in this article, we compare the accuracy impact of four fusion methods, “bifpn,” “concat,”
“weight,” and “adaptive,” on the overall model. The experimental results are compared
through five metrics: Inference, Precision, Recall, GFLOPs, and mAP50. The specific values
are shown in Table 4 below.

Table 4. Performance comparison of four fusion methods.

Methods Precision % Recall % mAP50 % GFLOPs Inference/ms

bifpn 93.2 86.6 91.5 52.2 1.9
concat 90.0 90.4 91.6 56 2.3
weight 89.2 89.7 91.1 57.6 2.5

adaptive 90.8 90.3 91.0 60.2 3.3

According to the analysis based on the data below, the highest Precision among the
four types of fusion structures is the “concat” structure, with an mAP of 91.6%; then the
“bifpn” structure is followed, which reaches 91.5%, although mAP in the “bifpn” structure
is slightly lower than the previous structure, its Inference and GFLOPs are the lowest. After
fusing 80 × 80 and 40 × 40 feature maps across layers, the depth and width of the network
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model will gradually increase. Therefore, this article chooses the relatively lightweight
“bifpn” as the fusion method for the neck network.

Figure 11 shows the heatmap of the Triplet Attention output after passing through P9.
The color regions indicate the feature intervals that the network focuses on. The redder
the color, the higher the degree of attention of the network. At this point, the network
gradually focuses its attention on defect features.
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Since the classification and positioning of multi-category detection are more difficult
than those of single-category detection, the positioning ability of the network should be
strengthened. The WIoU used in this article has three versions: v1, v2, and v3. WIoU v1
constructs a boundary box loss based on attention, while WIoU v2 and v3 add a focus
mechanism by constructing a gradient gain calculation method. v2 adopts a monotonic
focus mechanism, while v3 adopts a non-monotonic focus mechanism. Through compari-
son of four metrics, Precision, Recall, Inference, and mAP, the specific values are shown in
Table 5 below. Due to the addition of BiFPN, our model has a large network depth, so we
use WIoU v2 with a monotonic focusing mechanism to optimize the bounding box loss
and classification loss.

Table 5. Comparison of three types of losses.

Methods Precision % Recall % mAP50 % Inference/ms

WIoU-v1 90.8 89.5 92 1.9
WIoU-v2 91.6 88.8 92.1 1.8
WIoU-v3 92.3 86.6 91.5 1.8

3.5. Ablation Experiments

All ablation experiments are conducted on the same dataset, and all convolutional
training starts from scratch without using weight files. To verify the impact of the proposed
improved module on detection performance, we conduct ablation experiments using
YOLOv8s as a benchmark model, including TA, BiFPN, and WIoU.

Detection results of the ablation study detection model are shown in Table 6. The
improved model mAP increases from 88.3% to 92.4%, and Precision has also been improved
from 89.8% to 92.1%. The addition of Triplet Attention calculates attention weights and
applies them to key features. Additionally, the two cross-layer connections are introduced
in the improved BiFPN, specifically target feature maps with sizes of 80 × 80 and 40 × 40,
resulting in improved detection accuracy for the three defects. Lastly, the incorporation of
the WIoU loss function optimizes bounding box loss and classification loss and improves
model performance.
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Table 6. The detection results of ablation study detection models in this study.

Group YOLOv8 TA BiFPN WIoU Precision % Recall % mAP50 % Inference/ms

1
√

89.8 85.9 88.3 1.8
2

√ √
89.2 88.5 90.7 1.7

3
√ √ √

90.3 91 91.6 2.2
4

√ √ √ √
92.1 88.4 92.4 2.3

In addition to verifying the effectiveness of the three improved algorithms through
fusion experiments, this article visualizes the regression loss data during the training
process, as shown in Figure 12. We use different symbols to position the data every ten
epochs. It can be clearly seen that the introduction of WIoU greatly optimizes the bounding
box regression loss.
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3.6. Verification of Prediction Results
3.6.1. Model Performance Analysis

To clearly reflect the detection effect of the improved algorithm in power transmission
line fault detection in this article, we plot the training loss and validation loss after training
in the same graph to analyze the performance of the model. Figures 13 and 14 show the
classification loss and DFL loss of the original model and the improved model during
the training and validation rounds, respectively. From the graphs, it can be seen that the
coincidence degree of the improved model training and verification curve is better than that
of the original model, indicating that the improved model can better prevent the occurrence
of overfitting and has good performance.

We use 5-fold cross-validation to evaluate the robustness of the model and the quality
of the data. We randomly divided the 2528 images into five groups: 505, 507, 505, 506, and
505. We convolve the five sets of data into the improved model, and the results are shown
in Table 7. Although the accuracy of the model trained on the reduced dataset is not as
high as that on the complete dataset, the mAP of the five sets of data is not significantly
different, indicating that the improved model has good robustness. However, the effect on
the reduced dataset is not as good as that on the complete dataset, which may be due to the
low quality of individual images. In the future, we will focus on solving possible problems
to improve the model performance.
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Table 7. Five-fold cross-validation.

Groups Precision % Recall % mAP50 % F1 %

1 90.9 83.8 88.2 87.2
2 90.2 86.9 89.9 88.5
3 90.3 84.8 90.0 87.5
4 90.8 83.9 89.1 87.2
5 89.7 84.6 89.0 87.1

3.6.2. Defect Detection Results

Table 8 shows the detection results of 253 defect images in the test set. The mAP of
all defects of the improved model is higher than that of the original model, in which the
mAP of pollution-flashover defect increases from 67.3% to 79%, and the mAP of broken
and nest are also improved. Therefore, the total map rises from 84.2% to 90.1%, with an
increase of 5.9%. It shows that the improved YOLOv8 model can identify and locate defects
more effectively.

Table 8. Detection results of various defects.

Defect
Improved YOLOv8s YOLOv8s

Precision % Recall % mAP % Precision(Val) % Recall % mAP %

Total 86.7 88.4 90.1 86.2 83.5 84.2
broken 81.7 88.7 89.5 80.7 79.2 81.6

insulator 97.7 100 99.5 98.2 99.8 99.5
pollution-flashover 86.1 72.9 79 84.7 63 67.3

nest 81.4 91.9 92.3 81.1 92.1 88.6
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Since dealing with multiple categories of failures, class-specific metrics are used to
verify the performance of the model on each individual class. Table 9 shows the Precision,
Recall, mAP, and Inference of the three defects in the improved model. The detection
accuracy of the single category is higher than that of multiple categories in Table 8, in which
the mAP of broken is improved by 1.9%, and the mAP of nest and pollution-flashover are
improved by 7.2% and 8.6%; this shows that our model still has good performance for
single-category detection.

Table 9. Class-specific metrics.

Class Precision % Recall % mAP50 % Inference/ms

broken 94.3 86.5 91.4 3.3
pollution-flashover 89.5 76.6 87.6 3.7

nest 99.9 100 99.5 3.0

3.6.3. Visualization of Defect Characteristics

To verify the detection performance of the proposed algorithm, we randomly select
pollution-flashover, broken, and bird nest defects in the dataset for comparison experiments
in a complex background. The detection results are shown in Figure 15. In the case of dense
defect targets in a complex background, the original YOLOv8s model has the problem of
low accuracy. Under the improved YOLOv8s model in this article, the number of prediction
boxes for pollution flashover defect detection ranges from 7 to 10. The detection accuracy of
nest defects has increased from 87% to 91%. The detection accuracy of small target defects
in complex backgrounds is also a major factor affecting interference detection accuracy. TA
and BiFPN used in this article have significantly optimized the detection of small targets,
with the accuracy of damage defects increasing from 41% to 69% in Figure 15 below.
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In order to observe the location information of defects more conveniently, we use a
heatmap to visualize feature extraction, as shown in Figure 16. The color on the improved
YOLOv8s is redder on the heatmap, indicating that the improved algorithm has enhanced
attention to defects. Therefore, the improved algorithm can be well applied to transmission
line fault detection tasks under complex backgrounds.
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4. Discussion and Conclusions

This article analyzes the impact of complex backgrounds in images collected by electric
power inspection on the training of YOLOv8, showing that the extraction of multi-scale
discriminative features and cross-layer fusion can improve detection accuracy. At the same
time, in order to make power inspection more comprehensive in detecting faults, we have
added birds’ nests for multi-scale fault detection.

In order to improve the accuracy of defect detection for transmission line insulators
and birds’ nests, this article mainly makes improvements in three aspects: (1) we propose an
improved TA structure to calculate new attention weights, which enhances the network’s
ability to extract discriminative features. (2) Using two cross-layer connections to fuse
more information, thereby improving the model’s accuracy in detecting defects in complex
backgrounds. (3) Since the tasks performed belong to multiple categories, we introduce
WIoU v2 to optimize the bounding box loss and classification loss, allowing the model to
focus on difficult examples and obtain better model performance. The experimental results
show that the mAP of the improved YOLOv8 in transmission line fault detection is 92.4%,
and the model has certain advantages for insulator and bird nest fault detection under
complex backgrounds.

Defect detection in transmission lines is still an emerging research area with a large
number of challenges. The existing fault dataset still suffers from interference from complex
backgrounds. Therefore, expanding the dataset by synthesizing data or introducing various
background interferences to make the model better adapt to different complex background
situations is one goal of future work. Meanwhile, further optimizing the model structure
and improving the overall performance of the model is another goal of our future work.
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Abbreviations

UAV unmanned aerial vehicle
WIoU Wise-IoU
FPN Feature Pyramid Network
BiFPN Bidirectional Feature Pyramid Network
DFL Distribution Focal Loss
CIoU Complete-IoU
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