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Abstract: Traditional intelligent frequency-hopping anti-jamming technologies typically assume
the presence of an ideal control channel. However, achieving this ideal condition in real-world
confrontational environments, where the control channel can also be jammed, proves to be challenging.
Regrettably, in the absence of a reliable control channel, the autonomous synchronization of frequency
decisions becomes a formidable task, primarily due to the dynamic and heterogeneous nature
of the transmitter and receiver’s spectral states. To address this issue, a novel communication
framework for intelligent frequency decision is introduced, which operates without the need for
negotiations. Furthermore, the frequency decision challenge between two communication terminals
is formulated as a stochastic game, with each terminal’s utility designed to meet the requirements
of a potential game. Subsequently, a two-agent deep reinforcement learning algorithm for best-
response policy learning is devised to enable both terminals to achieve synchronization while avoiding
jamming signals. Simulation results demonstrate that once the proposed algorithm converges, both
communication terminals can effectively evade jamming signals. In comparison to existing similar
algorithms, the throughput performance of this approach remains largely unaffected, with only a
slightly extended convergence time. Notably, this performance is achieved without the need for
negotiations, making the presented algorithm better suited for realistic scenarios.

Keywords: stochastic game; ordinal potential game; multi-agent reinforcement learning; intelligent
frequency decision; no control channel; deep reinforcement learning

1. Introduction

In wireless communication networks, the wireless channel serves as the transmission
path between the transmitter and receiver. It is profound to focus on their properties in
real-life situations despite the lack of tangible connections. However, wireless channels are
vulnerable to malicious jamming attacks [1], posing a nonnegligible challenge to reliable
communication. To address these challenges, spread spectrum technology [2], including
direct-sequence spread spectrum (DSSS), frequency-hopping (FH), and time-hopping (TH),
has emerged as an effective anti-jamming measure. The control competition over the
electromagnetic spectrum between communication terminals requires a decision-making
scheme that can assist or predict such struggles. Game theory [3] has become a valuable
mathematical tool to tackle anti-jamming issues. It enables the system to select the optimal
policies in confrontational or conflict situations. However, with the increasing complexity
and variability of the jamming environment in wireless communication channels, coupled
with advancements in artificial intelligence software and hardware, jamming technol-
ogy has become more intelligent and dynamic. Consequently, traditional anti-jamming
techniques struggle to effectively combat these challenges. Integrating machine learn-
ing with anti-jamming technology offers a promising solution. By developing intelligent
anti-jamming systems, we can cater to the specific demands of real-world scenarios. The
real-world scenario of this paper, that is, in the actual confrontation scenario, the reliability
and security of the communication are guaranteed, and the control channel is not affected
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by jamming. Therefore, the development of efficient and flexible intelligent anti-jamming
schemes has become a significant challenge [4,5].

The adversarial dynamics between jammers and communicators can be effectively
analyzed as a game. It has led to numerous research efforts in this domain. Jia et al. [6]
investigated anti-jamming communication in wireless networks from the perspective of
Stackelberg games. Jia et al. [7] explored the framework and challenges of game theory
in learning anti-jamming, providing an analysis of various anti-jamming game models.
Reinforcement Learning (RL) has also gained significant traction as an effective method
for addressing anti-jamming in communication. A common approach involves leveraging
the Q-Learning algorithm proposed in [8,9] to obtain the optimal anti-jamming policy by
querying the Q-value table. However, the traditional Q-Learning algorithm faces challenges
in solving high-dimensional spectrum state problems due to the complexity of the spectrum
environment. To overcome this issue, Liu et al. [10] introduced Deep Reinforcement
Learning (DRL) techniques in communication anti-jamming. The Recurrent Convolutional
Neural Network (RCNN) is involved in processing infinite spectrum environmental states
and extract relevant features. Compared with traditional RL methods, the optimized RCNN
significantly improves convergence speed, offering a more effective solution.

To combat unknown jamming threats and develop optimal anti-jamming policies,
intelligent frequency decision anti-jamming technology has been garnering significant
attention. In the pursuit of enhancing communication’s anti-jamming capabilities within
dynamic adversarial environments, Chang et al. [11] introduced an improved anti-jamming
method that leverages feature engineering and DRL. This method exhibits superior perfor-
mance and reduces computational complexity. Liu et al. [12] proposed a sequential DRL
algorithm without prior information to tackle the anti-jamming communication issues in a
dynamic, intelligent jamming environment. This algorithm enables the rapid and effective
selection of anti-jamming channels. Additionally, Li et al. [13] presented an anti-jamming
algorithm utilizing Parallel Policy Networks based on Deep Q-Networks (DQN). This
algorithm adjusts power levels and accesses idle channels simultaneously, aiming to resist
intense jamming attacks. Furthermore, it explores dynamic spectrum anti-jamming access.
Han et al. [14] investigated the application of DRL. With the help of a trained channel
decision network, the secondary users are expected to be guided, and they can flexibly
access the spectrum environment in the presence of jamming. In addition, Li et al. [15]
delved into the frequency selection problem in a jamming environment with a vast number
of available frequencies. They proposed a hierarchical DRL algorithm that effectively
addresses various jamming scenarios, even without prior knowledge of the jamming mode
and channel model. Collectively, these studies present various approaches that utilize DRL
to enhance intelligent anti-jamming techniques. They demonstrate promising policies that
adapt to dynamic jamming environments, optimize channel selection, and successfully
resist jamming attacks without prior knowledge of the jamming type or channel model.

While the intelligent frequency decision anti-jamming algorithms discussed in [11–15]
have shown promise in combating jamming, they share a common assumption: the existence
of an unjammed control channel for direct information transmission. However, in unknown
and dynamic environments where information is incomplete, maintaining a reliable control
channel is often impractical. It becomes difficult for communication terminals to exchange
policy information without a predetermined frequency change sequence. Consequently,
achieving FH synchronization autonomously becomes a significant challenge in the absence
of a control channel.

In consideration of the limitations associated with the ideal control channel in existing
intelligent frequency decision anti-jamming techniques, this paper focuses on studying an
intelligent frequency decision scheme that does not rely on an additional control channel.
The research objectives of this study are as follows:

• How to design a communication system without communication negotiation?
• How to design a game model to ensure that the two terminals involved in the commu-

nication can achieve convergence and converge to the optimal outcome?
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• How to design an algorithm that allows the two terminals to learn synchronously and
find an equilibrium?

The rest of the paper is organized as follows. In Section 2, we provide a review of
the related work in the field, discussing the existing research on intelligent frequency
decision communication. In Section 3, a framework for intelligent frequency decision
communication is introduced, which does not rely on a control channel. In Section 4, an
OPG model is constructed and analyzed. The NE existence of the model is proved. In
Section 5, a two-agent frequency decision learning algorithm based on the best-response
policy is proposed. The algorithm is designed to converge to the NE. In Section 6, the
simulation results are presented and thoroughly analyzed. In Section 7, conclusions are
shown. All the frequent abbreviations used in our work are shown in Abbreviations.

2. Related Work

The problem of anti-jamming, based on game theory, has been extensively researched.
Game theory provides a useful framework for modeling, implementing jamming coun-
termeasures, and determining optimal anti-jamming policies. Xu et al. [16] took a bird’s
eye view of the issue of multi-user anti-jamming spectrum access and developed a game
model to prove the existence of an NE. Jia et al. [17] presented a dynamic game approach
to dealing with the problem of anti-jamming channel selection. They propose a distributed
algorithm that converges to the NE of the game in a dynamic environment. However,
applying game theory methods to the intricate and ever-changing electromagnetic environ-
ment often requires access to upgrading precise jamming parameters and environmental
information, which can be challenging to obtain in real-world scenarios.

With the rapid development of artificial intelligence technology, the practical value of
RL is becoming more evident. In the dynamic jamming wireless channel, the jamming pa-
rameters are no longer necessary. Instead, the agent interacts directly with the environment
to learn how to implement counter-jamming and gain an advantage position in real-world
combat scenarios. In [18], Xiao et al. examined the problem of anti-jamming power control
for secondary users in large-scale cooperative cognitive radio networks. They utilized RL
methods, such as Q-learning [19], to achieve optimal anti-jamming power. However, as
the spectrum environment grows more complex, the curse of dimensionality may bring
extra difficulties for the RL algorithm. DRL leverages the powerful perception capabili-
ties of deep learning in vision and other areas. It is combined with the decision-making
abilities of RL and can enable end-to-end learning. This approach partially alleviates the
issue of dimensionality. Despite the increasing complexity of dynamic jamming in wire-
less channels, it has been successfully applied in the field of communication to handle
intelligent anti-jamming decision-making in high-dimensional, complex, and dynamic
environments, yielding significant results. Specifically, the literature [11–13] demonstrated
how the agent can effectively achieve intelligent anti-jamming communication by utilizing
the DRL algorithm to perceive environmental spectrum information.

However, as the number of wireless communication devices continues to grow, it
becomes increasingly challenging for agents to develop proficient policies, understand
tactics, and effectively collaborate in multi-user environments. Solely relying on a single
agent is insufficient to solve the coordination problem among multiple agents. Therefore,
many existing intelligent anti-jamming technologies have been extended to include research
on multi-agent systems. In [20], Yao et al. examined the problem of anti-jamming defense in
multi-user scenarios. They utilized a Markov Game framework for modeling and analysis
and proposed a cooperative multi-agent anti-jamming algorithm (CMAA) to obtain optimal
anti-jamming policies. In [21], a distributed multi-agent reinforcement learning (MARL)
anti-jamming algorithm was proposed to address the challenge of relying on a reliable
control channel for information exchange between users in multi-agent cooperative learning
algorithms. While some other works [20,21] have conducted research on the cooperative
anti-jamming problem in multi-user scenarios, they all rely on the control channel to
facilitate information interaction among users. However, it is often arduous to achieve an



Electronics 2023, 12, 4529 4 of 20

ideal control channel in real-world environments, and the decisions made by one agent
can greatly impact other agents. Consequently, studying an intelligent frequency decision
communication method without the strong limitations on a control channel. They are of
great importance of theoretical and practical value.

In response to the above challenges, an OPG model is introduced, and it is deeply
analyzed to prove the existence of NE in the game. To verify the model’s capability to
converge to an NE, a two-agent DRL algorithm is proposed based on the best-response
policy. The proposed method eliminates the need for information exchange among users,
allowing them to achieve FH synchronization via self-learning.

3. Intelligent Frequency Decision Communication Framework without Control
Channel Assistance

As illustrated in Figure 1, an intelligent frequency decision communication system
without a control channel is introduced. The system comprises a pair of intelligent nodes
and one or more jamming nodes. In this scenario, the communication terminals have
not prearranged a FH sequence and are all functioning within a jamming environment.
Each node in the system is equipped with a transmitter, receiver, agent, and sensing
device. Notably, node B utilizes a multi-channel receiver, enabling it to simultaneously
receive signals across multiple channels. Therefore, they increase the chances of capturing
the transmission frequency. The data transmission process between node A and node
B is illustrated in Figure 2. Node A serves as the primary node and is responsible for
initiating communication, while node B acts as a secondary node. During a round of data
transmission, the primary node A selects a communication frequency based on the sensing
information to initiate communication, while the secondary node B selects a group based
on the sensing information to await reception. If node B scans and identifies node A’s
transmission frequency within its selected group of frequencies, a successful frequency
is matched. If node B successfully receives the data information, it is expected a rapid
response by sending confirming information back to node A using the same frequency. If
node A also successfully receives the confirming information, it signifies the completion of
a normal round of communication under this circumstance.
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To facilitate modeling the transmission process, the continuous time is divided into a
series of equal-length time slots {t1, t2, · · · , ti}. The process within the whole simulation time
can be regarded as an iterative process, and the two communication terminals conduct a round
of communication in a time slot. As is shown in Figure 3, Each time slot ti =

{
tu
i , td

i

}
is further

divided into uplink and downlink time slots of equal duration. C = {1, 2, · · · , C} is considered
the number of wireless transmission channels that are available, with each channel having a
bandwidth of w. The set of communication frequencies are f = { f1, f2, · · · , fc}, and the entire
communication frequency band that is divided into distinct groups G =

{
G1, G2, · · · , Gg

}
.

In each group Gg, some frequencies are arranged in a group, such as G1 = { f1, f2, f3}. As
mentioned earlier, during a single round of data transmission, node A selects a frequency for
transmission. Therefore, we define the set of communication frequencies selected by node A
as G1 =

{
f 1

1
, f 1

2
, · · · , f 1

c

}
. However, node B utilizes a multi-channel receiver and can only

select one group for reception at a time; we define the set of groups selected by node B as
G2 =

{
G2

1
, G2

2
, · · · , G2

g

}
. Simultaneously, the jammer selects a jamming frequency to disrupt

data transmission. We define the set of jamming frequencies as f J =
{

f J
1

, f J
2

, · · · , f J
C

}
. PJ is

considered as a parameter representing the power of the jamming signal. Assuming that in
the time slot t, the received Signal-to-Interference-plus-Noise Ratio (SINR) of the receiver is
expressed as follows:

SINRt =
P× g

PJ × δ( f = f J) + N0
(1)

P is used as the transmit power, the link gain from transmitter to receiver is g; the back-
ground noise power is N0; and the function δ(x) represents an indicator that is equal to
one if the condition is true δ(x) = 1 and zero otherwise.
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In addition, SINRth represents the minimum detectable SINR threshold. If the output
SINR of the receiver is greater than or equal to this threshold, it indicates successful data
reception; otherwise, it denotes unsuccessful data reception. The reward function rt is
defined as follows:

r( ft) =

{
1, SINRt ≥ SINRth

0, SINRt < SINRth
(2)

Due to the dynamic properties of jamming, the agent is unable to determine the current
jamming state. To record the current jamming state, we make the assumption that the
spectrum vector detected by the sensing device in the time slot t is as follows:

ot = [ot,1, ot,2, · · · , ot,C] (3)

In the above Equation (3), ot,C = Pt × gt × δ( ft = ft,C).

4. Potential Game Model of Frequency Decision without Information Interaction

The Materials and Methods should be described with sufficient details to allow others
to understand that Stochastic games (SGs) are a combination of Markov Decision Processes
(MDP) and game theory. They provide a framework to describe dynamic game processes
where multiple decision-makers interact and make decisions repeatedly in various states.
MDPs are primarily utilized to address decision problems in uncertain environments,
while game theory offers tools to analyze the interactions among decision-makers. In
our intelligent frequency decision communication system, the decision is influenced by
the two intelligent nodes. They can be vividly illustrated and stimulated by using an SG
model [22]. This model captures the frequency decision problem for both the receiver
and the transmitter, taking into account the uncertainties and interactions involved in the
communication process.

Definition 1. The decision process of the two intelligent nodes is formulated as an SG, which is
defined by a quintuple 〈N, S, A, R, P, γ〉.
• N = {1, 2, . . . , n}denotes the set of decision-makers participating in the game. In this paper,

specifically whenn = 2, the decision-makers involved in the game are node A and node B.
• S =

{
o1, o2, · · · , on} denotes the state space. The global spaceSconsists of two different state

spaces of node A and node B. At timet, the set of global states formed by the corresponding
states of A and B is denoted as St =

{
o1

t , o2
t
}

.
• A =

{
a1, a2, · · · , an} denotes the joint selection policy anda =

{
a1, a2} denotes the joint

anti-jamming policy of node A and node B.a1 =
{

a1
1, a1

2, · · · , a1
C
}

represents the set of policies

available to node A, while a2 =
{

a2
1, a2

2, · · · , a2
g

}
represents the set of policies available to

node B.
• R =

{
r1, r2, · · · , rn} denotes the reward function.

• P(S′|S, a) : S× A× S→ [0, 1] denotes the state transition probability function of the SG.
• γ ∈ [0, 1] is the discount factor.

To analyze the evolution of the jamming state, we consider the Wth time slots and
define it as the state of a single agent represented by ot = [ot, ot−1, . . . , ot−W+1], where
it represents the length of the historical time slot [10]. In Figure 4, the non-convergence
of spectrum waterfall o1

t of node A, denoted as ot, is a two-dimensional matrix C ×W
consisting of channels and time slots. Not only is the distribution of the signal in the time
and frequency domains shown by this figure, but also the intensity of the signal is shown
by the color depth. At time t, the agent based on the current state ot, selects a policy from
the action set at, and receives a reward rt from the environment. Subsequently, the agent
transitions to the next state ot+1 according to the state transition probability P.



Electronics 2023, 12, 4529 7 of 20

Electronics 2023, 12, x FOR PEER REVIEW 7 of 20 
 

 

frequency domains shown by this figure, but also the intensity of the signal is shown by 
the color depth. At time t , the agent based on the current state to , selects a policy from 

the action set ta  , and receives a reward tr   from the environment. Subsequently, the 

agent transitions to the next state 1t+o  according to the state transition probability P . 

 
Figure 4. Sample signal distribution. 

In potential games, the change in the utility function of each decision-maker resulting 
from a strategy is proportionally mapped to the global potential function. In this paper, 
for the intelligent frequency decision communication scenario without a control channel, 
the utility of each node is designed to make it suitable for a potential game [23]. This en-
sures that the independent decisions of the communication terminals can ultimately con-
verge to the optimal joint anti-jamming strategy. In this context, the utility function is for-
mulated as an indicator function. Its value only depends on the reward function. Specifi-
cally, the reward is 1 when data is successfully received and −1 when it is not. The utility 
function nU  is defined as follows: 

( ) ( )n n n
n tU a , a = r a-  (4) 

In the above Equation (4), na-  represents the combination of strategies of other de-
cision-makers, excluding the decision-maker n . The decision-maker can adjust its own 
strategy by analyzing the strategies na-  of other decision-makers, aiming to maximize 

the value of its utility function nU : 

argma x ( )
n

n n
nU a , a , n N-

a
∀ ∈  (5) 

The decision-maker’s strategy will be iteratively adjusted, and the value of the utility 
function will demonstrate a monotonic change as the strategy is coordinated. Via a finite 
number of iterations, it will ultimately converge to a stable state known as NE. 

Definition 2. As previously defined, the strategy of node A is denoted as 1a  and the strategy of 
node B is denoted as 2a . In the non-cooperative game model, the strategies 1* 2*{ }*a = a ,a  exist 
where neither player in the satisfaction game can maximize their utility or payoff by unilaterally 
changing their strategies: 

( ) ( )n n n n n n
n n

* * *U a , a U a , a , a A , N- - n≥ ∀ ∈ ∈  (6) 

Figure 4. Sample signal distribution.

In potential games, the change in the utility function of each decision-maker resulting
from a policy is proportionally mapped to the global potential function. In this paper, for
the intelligent frequency decision communication scenario without a control channel, the
utility of each node is designed to make it suitable for a potential game [23]. This ensures
that the independent decisions of the communication terminals can ultimately converge
to the optimal joint anti-jamming policy. In this context, the utility function is formulated
as an indicator function. Its value only depends on the reward function. Specifically, the
reward is 1 when data is successfully received and −1 when it is not. The utility function
Un is defined as follows:

Un(an, a−n) = rn
t (a) (4)

In the above Equation (4), a−n represents the combination of policies of other decision-
makers, excluding the decision-maker n. The decision-maker can adjust its own policy by
analyzing the policies a−n of other decision-makers, aiming to maximize the value of its
utility function Un:

argmax
an

Un(an, a−n), ∀n ∈ N (5)

The decision-maker’s policy will be iteratively adjusted, and the value of the utility
function will demonstrate a monotonic change as the policy is coordinated. Via a finite
number of iterations, it will ultimately converge to a stable state known as NE.

Definition 2. As previously defined, the policy of node A is denoted as a1and the policy of node B is
denoted as a2. In the non-cooperative game model, the policies a∗ =

{
a1∗, a2∗} exist where neither

player in the satisfaction game can maximize their utility or payoff by unilaterally changing their
policies:

Un(an∗, a∗−n) ≥ Un(an, a∗−n), ∀an ∈ An, n ∈ N (6)

The set of policies a∗ is adopted to represent the NE of the game.

In the intelligent frequency decision communication system, for node A and node B,
the utility function is represented as U =

{
U1, U2}, U1 = r1, U2 = r2. The magnitude of

the utility function value is influenced by both policy a1 and policy a2. As the existence of
NE cannot be guaranteed, potential games are introduced to analyze the NE problem.

Definition 3. If there exists an ordinal potential function P : A→ R for ∀n, ∀a−n ∈ A−n and
∀an, an′ ∈ An:

P(an′ , a−n)− P(an, a−n) > 0 (7)
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then
Un(an′ , a−n)−Un(an, a−n) > 0 (8)

If such conditions are guaranteed, then it can be classified as an OPG.

A potential function is constructed to prove that the problem of intelligent frequency
decision communication without a control channel is an OPG [24] problem. It is ensured
that it can converge to an NE within a finite number of iterations.

Theorem 1. The intelligent frequency decision communication problem without a control channel
is an OPGP(an, a−n). An ordinal potential function is defined as the sum of the utility valuesUnof
all nodes:

P(an, a−n) = ∑
n∈N

Un(an, a−n) (9)

To establish that the aforementioned problem is an OPG, it is crucial to demonstrate
that the utility value increases when a player n updates their policy from an to an′ , conse-
quently elevating the overall situation function P(an′ , a−n) > P(an, a−n).

A proof of Theorem 1 is provided in Appendix A. By constructing the ordinal potential
function P, it is proven that the intelligent frequency decision communication problem
without a control channel is an OPG. Theorem 1 guarantees the existence of at least one
NE solution. Moreover, this equilibrium that maximizes OPG is also the Pareto optimal
solution [25,26]. Pareto optimality [27] refers to a combination of policies that maximizes
the utility of all players involved, thereby constituting the global optimal solution to
the problem.

5. Two-Agent Frequency Decision Learning Algorithm
5.1. Q-Learning and DQN Algorithm

Q-learning algorithm is a classical RL algorithm. Traditional Q-learning is presented in
the form of a Q-value table to store the Q-value of each state-action pair. The goal of RL is to
maximize long-term future rewards. The environment gives the agent a reward Rt+1after
taking an action at in each state st. The cumulative discounted return is defined as

Gt =
∞

∑
k=0

γkRt+k+1 (10)

In MDP, the agent takes an action at according to the policy π at the state st, and the
expected reward is defined as the state action value function:

Qπ(st, at) = Eπ [Gt|St = st, At = at] (11)

The optimal state action value function is to select the function with the largest state
action value from the state action value functions generated by all policies:

Q∗(st, at) = max
π

Qπ(st, at) (12)

In practice, however, Q-learning in tabular form is difficult to implement. Because
in practical applications, the number of states and actions is often very large, it requires
a lot of storage space and computing resources to maintain the Q-value table. To solve
this problem, neural networks emerged instead of Q-value tables. DQN uses deep neural
networks to approximate the optimal action-value function and successfully solves the
complex problem of huge states and action spaces. The update procedure for the q-function
can be defined as follows:

Qt(st, at)← (1− α)Qt(st, at) + α(rt + γmaxQt+1(st+1, a)) (13)
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Here, the function Q(s, a) fits the long-term payoff evaluation of a state-action pair. st
and at are denoted as the agent’s current state and action, respectively. Qt(st, at) denotes the
value of Q corresponding to the action performed in the current state st. maxQt+1(st+1, a)
is the maximum value of all Q values in the state at the next time. α is the learning rate of
the neural network and γ is the discount factor.

In DQN, the idea of function approximation is used to find a set of optimal parameters
and thus determine the best-fitting function. The whole training process can be viewed as
a process in which the Q-value is constantly approaching the target Q-value. The Q-value
represents the current Q-value, and the target Q-value is the score that the agent obtains
by interacting with the environment. During training, learning is performed by using the
target Q-value to update the original Q-value. The loss function can be defined as follows:

L(θt) = [Qt target −Qt(st, at, θt)]
2 (14)

In the above Equation (14), Qttarget = rt + γmaxQt+1(st+1, at+1, θ−t ). θt denotes the
parameters of the prediction network and θ−t denotes the parameters of the target network.
After the weight parameters of the prediction network are updated, the target network
replicates to update its weight parameters. In DQN, experience replay is used to train the
agent. The agent is allowed to explore the environment first, after which the experience
value is stored. After the experience value has accumulated to a certain extent, another
batch of experience is randomly selected for training.

In practice, agents often become stuck in local optima, resulting in poor learning. To
solve this problem, the ε-greedy policy is often used to make the agent fully explore the
environment to find the optimal decision. Each time the agent selects an action, it will select
the action with the largest Q-value with some probability and select a random action with
some probability. The value decreases as the agent explores. The greedy policy is defined
as follows:

at =

{
argmax

a
Q(st, a; θ), 1− ε

arandom, ε
(15)

5.2. Two-Agent Frequency Decision Learning Algorithm Flow

Multi-agent learning algorithms, such as MARL, provide a convenient approach to
verify the convergence of a game model toward NE. Therefore, this paper proposes a
two-agent RL algorithm based on best response (Algorithm 1). Our novel method aims to
investigate the optimal anti-jamming policy and equilibrium in the dynamic game between
the two terminals of communication. The fundamental concept of this algorithm is to
address the challenge that the two terminals of communication cannot acquire the global
state. Each node serves as an individual agent that interacts with the jamming environment
over multiple iterations. The ε-greedy policy was used to adjust the policy according to the
perceived environmental state information, and the corresponding channel was selected
to increase the utility value, and finally, the intelligent frequency decision was realized.
The policy is chosen randomly for the first I time slots, after which the ε-greedy policy is
adopted.

During the training process of the anti-jamming algorithm, each node n(n = 1, 2)
is equipped with two neural networks. An online Q network with parameters θn

t is
utilized for action reasoning, while a target Q network with parameters θn−

t is employed
for parameter update learning [28]. To enhance learning efficiency, an experience replay
technique is employed, which allows for the reuse of previous experiences stored in the
experience replay pool. This approach effectively breaks the correlation among experience
data and maximizes data utilization. During each iteration, a batch of experience values
are randomly sampled from the experience replay pool, and these experiences are used to
update the parameters of the neural network. The Q-value update is performed as follows:

Qn
t (o

n
t , an

t )← (1− α)Qn
t (o

n
t , an

t ) + α
(
rt + γmaxQn

t+1
(
on

t+1, an
t+1
))

(16)
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The loss function of the online Q-network is minimized as follows:

L(θn
t ) = [Qn

t target −Qn
t (o

n
t , an

t , θn
t )]

2 (17)

In the above Equation (17), θn
t represents the weight parameter of the online Q-network,

and the target Q-network Qn
t target prediction is compared to the true observation in order

to determine the reward rt.

Qn
t target = rt + γmaxQn

t+1(o
n
t+1, an

t+1, θn−
t ) (18)

θn−
t represents the weight parameter of the target Q-network.

Stochastic Gradient Descent (SGD) is utilized to train the parameters of the online
Q-network. The gradient of the loss function L with respect to θ is calculated as follows:

∇θn
t

L(θn
t ) = [rt + γmaxQn

t+1(o
n
t+1, an

t+1, θn−
t )−Qn

t (o
n
t , an

t , θn
t )]∇θn

t
Q(on

t , an
t , θn

t ) (19)

τ ∈ [0, 1] is adopted as the update rate to adjust the parameters in the target Q-network.
After enough iterations, the weight parameters of the target Q-network are updated by
applying a soft update, which is between the current target Q-network parameters and the
online Q-network parameters:

θn−
t ← (1− τ)θn−

t + τθn
t (20)

After the training process, the parameters θn
t of the neural network are saved. In a com-

plex and dynamic jamming environment, both terminals involved in the communication
only need to load their neural network parameters locally after the training process. This
allows them to respond to the observed local environment state without rapid extensive
training.

Algorithm 1: Two-agent DRL Algorithm Based on best-response (Training Phase)

Input: Experience replay pool Dn, network parameters θn
t , θn−

t , state on
t , n = 1, 2.

Output: Parameters of the trained network θn
t , θn−

t .

1: for t = 1 to T do
2: if t ≤ I
3: Nodes n(n = 1, 2) randomly select an anti-jamming policy an

t
based on the current state on

t of the game;
4: else
5: The anti-jamming policy on

t is selected according to
the ε-greedy policy;

6: Node A performs the action a1
t , node A performs the action a2

t , the utility value U1, U2 is
obtained according to Equation (4) and transferred to the next game state on

t+1;
7: The experience values

(
on

t
, an

t
, rn

t
, on

t+1
)

are put into the experience replay pool Dn of node n,
respectively;

8: for n = 1, 2 do
9: Batch experience values

(
on

t
, an

t
, rn

t
, on

t+1
)

are randomly sampled
from the experience replay pool Dn;

10: Gradient descent is performed on the loss function L(θn
t ) to update θn

t
according to Equation (19);

11: The target network parameters are updated at intervals θn−
t = θn

t ;
12: end for
13: end for
14: until reaching a NE

5.3. Computational Complexity Analysis

Considering the memory limitation and computational power scheduling, the algo-
rithm complexity of the network model is thoroughly analyzed. The online Q-network and
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the target Q-network are set to have the same structure, consisting of one convolutional
layer and two fully connected layers. In the convolutional layer, 16 convolution kernels of
size 10 × 4 are utilized and the stride is set to 2. The first fully connected layer consists of
512 neurons, while the number of neurons in the second fully connected layer matches the
size of the action space for a single agent. The overall computational complexity for one
forward propagation is represented as O(Time) and can be calculated as follows [29]:

Time ∼ O(
L

∑
l=1

M2
l × K2

l × Hl−1 × Hl +
V

∑
v=1

2×Yv × Zv − 1) (21)

where L represents the number of convolutional layers in the neural network; l represents
the lth convolutional layer; the time complexity of a single convolutional layer is determined
by the dimensions of the output feature map M2; the dimensions of the convolution kernel
is represented by K2; the number of input feature map channels is denoted as Hl−1; and
output feature map channels is denoted as Hl . Similarly, V represents the number of fully
connected layers in the neural network, v represents the v-th fully connected layer, and
the time complexity of each fully connected layer is determined by the number of input
neurons Y and the number of output neurons Z.

When updating the network parameters, minibatch samples can be selected for node
n randomly from the experience replay pool Dn to update the neural network parameters.
During the gradient descent process using the loss function L(θn

t ), it requires 2 ·minibatch
forward propagations and backward propagations. As a result, each round of the game
involves a computational complexity of O(2 · (minibatch + 1) · Time).

5.4. Description of Simulation Parameters

In this paper, the simulation experiment utilizes the tensorflow2.8.0 deep learning
development framework for building the network model. Python 3.9 is used in Windows
11 for our simulations. The simulation is run on a PyCharm platform with a GeForce RTX
4060 GPU. The CPU used in the experiments is Intel Core i5-13500HX. Adam is chosen as
the optimizer during the training process of the neural network. During the simulation, the
number of nodes N is 2, and both the nodes and jammers deployed in the same environment
transmit data in each channel. The bandwidth w is 1 MHz. The transmit power of the
two nodes is 100 dBm, the length of each time slot t is 10 ms, the history duration W of
the spectral waterfall is 100 ms, the transmit power of the jammer is 1000 dBm, the SINR
threshold SINRth is 6 dB, and the background noise power is −80 dBm. The learning
rate α of the algorithm is set to 0.5, the discount factor γ is set to 0.8, the greedy factor ε
is set to 1.0, and the soft update coefficient τ is set to 0.01. When updating the network
parameters, each node is trained by randomly sampling a batch of 128 samples from the
experience replay pool D, which has a capacity of 5000. Different simulation conditions are
established by adjusting the simulation time T, the element combination of a single group
Gg in the group set G, the number of groups g, and the number of available channels C.
The parameters for the rest part of the simulation experiment are shown in Table 1.

Table 1. Simulation parameter setting.

Parameter Name Symbol Parameter Value

Number of nodes N 2
Grouping collections G {[1, 2, 3], [4, 5, 6], [7, 8, 9]}

Group numbers g 3
Bandwidth w 1 MHz

Duration of history W 100 MHz
Transmit power P 100 ms
SINR threshold SINRth 6 dB
Time slot length t 10 ms
Jammer power PJ 1000 dBm
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Table 1. Cont.

Parameter Name Symbol Parameter Value

Background noise power N0 −80 dBm
Discount factor γ 0.8
Greedy factor ε 1.0

Soft update coefficient τ 0.01
Learning rate α 0.5

Sampling batch size minibatch 128
Experience pool capacity D 5000

6. Simulation Results and Analysis

To verify the effectiveness of the proposed algorithm, simulation experiments are
conducted in three typical jamming environments: sweeping jamming, comb jamming, and
dynamic jamming:

(1) Sweeping jamming

In this scenario, the jammer performs the sweeping jamming at a specific frequency.
The frequency sweep rate is 1 MHz/ms.

(2) Comb jamming

In this scenario, the jammer simultaneously implements jamming at multiple frequen-
cies. The specific frequencies 2 MHz, 6 MHz, and 9 MHz for jamming are selected.

(3) Dynamic jamming

In this scenario, the jamming environment is dynamic. It periodically alternates
between comb jamming and sweep jamming. Once selected, a jamming mode will remain
unchanged within a certain duration of time, which is 10 ms. If switching to comb jamming,
the specific frequencies 1 MHz, 5 MHz, and 9 MHz for jamming are selected.

Firstly, Figures 5 and 6 illustrate the spectrum waterfall in the initial and convergent
states, respectively, for a channel number of 9 and a group number of 3, under different
jamming environments. The figures reveal that the sweeping jamming technique executes
a periodic linear scan of each channel, resulting in narrowband jamming with the jamming
frequency exhibiting a linear variation. During the uplink time slot, node A transmits the
signal, while node B acts as the receiver. Conversely, during the downlink time slot, node B
becomes the transmitter, and node A takes on the role of the receiver.

It can be observed that two figures exist for each jamming environment. The left figure
represents the spectral waterfall of node A, while the right figure represents the spectral
waterfall of node B. The horizontal axis of each node’s spectrum waterfall represents
the time slot, while the vertical axis represents the channel. The figures provide a clear
visualization of the available idle channels at each node, as well as the changes in the
user’s uplink signal, downlink signal, and jamming signal over time. The user signal is
represented by a pair of yellow-green rectangular color blocks. The yellow rectangular
block indicates that the node is transmitting a signal during that time slot, while the green
rectangular block represents the node receiving a signal. If the color blocks overlap, it
indicates jamming with the user signal. Figure 5 illustrates the initial state, where fewer
pairs of yellow-green blocks are observed, suggesting that the two communicating nodes
have not yet synchronized or have been disrupted by jamming during the communication
process. In contrast, Figure 6 displays the convergence state, where all the yellow and green
blocks appear in pairs without overlapping with other color blocks. This indicates that both
node A and node B have achieved frequency decision synchronization in various dynamic
jamming environments. Although the two terminals of communication are not aware of the
specific changes in the jamming environment, they can effectively avoid jamming via the
convergence decision after learning, which demonstrates the effectiveness of the algorithm.
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Secondly, in order to evaluate the influence of the number of available channels on the
proposed algorithm, the number of channels was increased to 12, 15, and 18, respectively,
while keeping the number of groups unchanged, and comparative experiments were
carried out. By conducting these experiments, we aimed to evaluate the performance
of the algorithm in scenarios with an increased number of channels. The results of the
experiments are presented in Figures 7–10. From the figures, it can be observed that
in all cases, the convergence state is achieved after a certain number of iterations (4000,
10,000, and 12,000). As the number of channels increases, the decision-making complexity
for the two terminals of communication also increases. The environment becomes more
intricate, and the probability of achieving synchronization decreases, resulting in a slower
convergence speed. Nevertheless, despite these challenges, it is worth noting that the two
terminals of communication are still able to converge to the optimal decision even with the
increased number of channels. This result demonstrates the effectiveness and applicability
of the proposed algorithm in scenarios with a higher number of channels. In conclusion,
our experiments indicate that the algorithm proposed in this paper can effectively handle
scenarios with different numbers of channels, maintaining its superior performance and
showing its potential in real-world applications.
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Finally, the performance of the proposed algorithm in three different jamming envi-
ronments is compared with that of the method using the presence of control channels:

(1) PPQN-AJ [13]: An anti-jamming algorithm based on a DQN parallel policy network
is proposed, which adaptively selects power and channel.

(2) ADRLA [10]: The proposed method takes the spectrum environment as the input
state and uses DQN to continuously try different actions and sense the spectrum
environment in order to learn the optimal anti-jamming policy.

In Table 2, it can be seen that the normalized throughput performance of different
methods under different jamming environments. In the comb-jamming environment, the
throughput of the communication system is relatively high. This is because the pattern of
comb jamming is relatively stable, and if the uplink is not jammed, then the downlink is
necessarily not jammed either. Meanwhile, Table 2 also provides the number of iterations
required to reach the convergence state. It can be observed that there is no significant
difference between the proposed algorithm and the method with control channels in terms
of performance. The convergence speed of the proposed algorithm is relatively slow. This
is mainly because, in the proposed method, both terminals of communication cannot ex-
change information and need to realize tacit communication via continuous learning and
mutual cooperation. Nevertheless, the strength of the proposed method lies in abandon-
ing the conventional approach of relying on control channels for interaction to achieve
synchronization and instead realizing a more independent decision-making process.
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Table 2. The performance comparison between the proposed algorithm and the existing control
channel method.

Method
Sweeping Jamming Comb Jamming Dynamic Jamming

Throughput Iterations Throughput Iterations Throughput Iterations

Ours 0.74 4000 0.92 4000 0.78 4000
PPQN-AJ 0.80 1200 0.94 1200 0.75 1200
ADRLA 0.79 1200 0.93 1200 0.75 1200

Experimental results show the efficiency and feasibility of this method. The proposed
algorithm exhibits strong robustness and adaptability in typical jamming environments, in-
cluding sweeping jamming, comb jamming, and dynamic jamming. It effectively mitigates
the influence of various jamming signals, ensuring reliable and stable communication.

7. Discussion and Conclusions

In this paper, we focus on the problem of intelligent frequency decisions in the absence
of control channels. Our proposed framework avoids the need for a control channel by
enabling continuous iteration and adjustment within the communication system. By trans-
forming the frequency decision problem between the transmitter and receiver, we introduce
an SG model. Additionally, we design the utility of each node to meet the requirements of
OPG, ensuring the attainment of global optimal decision and equilibrium in the dynamic
game. To solve the equilibrium policy of a two-agent game, a novel DRL algorithm based
on the best response is proposed. Via iterative updates of the policies of both terminals of
communication, the algorithm can eventually converge to an NE, even in scenarios where
the jamming parameters are unknown. The purpose of introducing RL into the algorithm is
to search for the optimal decision. Due to the dynamically changing environment of the two
communication terminals, directly determining the optimal decisions that both terminals
can reach is challenging. RL is well-suited for exploring unknown environments. Hence,
the DRL method is employed to enable the two communication terminals to eventually
converge to the same policy consistently via trial and error. Simulation experiments are
conducted to verify the anti-jamming performance of the proposed scheme in various
jamming scenarios. The results confirm the effectiveness of the scheme.

In future research, there will be ongoing efforts to study and develop a more efficient
and flexible intelligent frequency decision communication scheme. This will enable both
terminals of communication to rapidly select the optimal joint anti-jamming policy. At
the same time, the more complex situation will be considered, that is, how to realize the
frequency decision synchronization in the frequency decision network with three nodes or
even multiple nodes participating.
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Abbreviations Descriptions
FH Frequency-Hopping
RL Reinforcement Learning
DRL Deep Reinforcement Learning
DQN Deep Q-Networks
MARL Multi-agent reinforcement learning
NE Nash equilibrium
SG Stochastic game
OPG Ordinal-potential game
MDP Markov Decision Process

Appendix A

Proof of Theorem 1. By combining Equations (2) and (4) in this paper, we can deduce the
relationship between the utility values of node A and node B:

U1(a1, a2) =

{
1, U2(a2, a1) = 1
0, U2(a2, a1) = 0 or 1

(A1)

In Equation (A1), U1(a1, a2) represents the utility value of node A, while U2(a2, a1)
represents the utility value of node B. This equation implies that if node A has a utility
value of 1, then node B must also have a utility value of 1. On the other hand, when node A
has a utility value of 0, node B can have a utility value of either 0 or 1. This indicates that
for node A to successfully receive feedback data information, node B must also successfully
receive data and feedback data information at the same frequency. Otherwise, there is no
possibility for node A to receive the feedback information. Furthermore, if node A fails to
receive the feedback, two cases can arise:

(1) Node B fails to receive in the uplink, resulting in no further feedback data information.
(2) In the downlink, node A suffers from jamming, resulting in a failure to receive the

feedback information.

U2(a2, a1) =

{
1, U1(a1, a2) = 0 or 1
0, U1(a1, a2) = 0

(A2)

In contrast, Equation (A2) indicates that when the utility value of node B is 0, the
utility value of node A must be 0. Node A can have a utility value of either 0 or 1, whereas
node B has a utility value of 1. This means that if node A fails to receive in the uplink, it
will not provide feedback data information. On the other hand, when node B successfully
receives the feedback, it ensures the success of the uplink transmission. However, it is
difficult to guarantee whether node A can successfully receive the feedback information in
the downlink.

In summary, in the OPG, when the policy of any node changes, the policies of the
other nodes must remain unchanged. Based on this, we can deduce the conditions for
the changes in the utility values of node A and node B, as well as the existence of these
conditions:
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node A : U1(a
1
, a2)

0
→ U1(a1′ , a2

1
)


U2(a2, a1)

0
→ U2(a2, a1′

0
), dosn′t exist

U2(a2, a1)
1

→ U2(a2, a1′), exist
1

node B : U2(a2, a1)
0

→ U2(a2′, a1)
1


U1(a1, a2)

1
→ U1(a1, a2′

1
), dosn′t exist

U1(a1, a2)
0

→ U1(a1, a2′

0
), exist

(A3)

For node A, assuming that the policy of node B remains unchanged when the utility
value of node A increases from 0 to 1, the utility value of node B also remains unchanged.
There are two cases: 0 to 0 or 1 to 1. This means that node A transforms from failure to
success in receiving feedback information to success in receiving feedback data. However,
when node A succeeds in receiving feedback information, there is no possibility for node B
to fail in receiving data. Therefore, it is impossible for node B to have utility values 0 to 0.
The same is true for node B. Assuming that the policy of node A does not change when the
utility value of node B is increased from 0 to 1, the utility value of node A can go from 0
to 0 or from 1 to 1. This means that node B has changed from receiving data information
failure to receiving data information success. However, when node B fails to receive data
information, there is no possibility for node A to receive feedback information. Therefore,
it is impossible for node A to have utility values from 1 to 1.

The same reasoning applies to node B. Assuming the policy of node A remains
unchanged when the utility value of node B increases from 0 to 1, the utility value of node
A can transition from 0 to 0 or from 1 to 1. This signifies that node B has transitioned
from a failure to receive data information to a successful reception of data information.
However, when node B fails to receive data information, it implies that node A will not
receive feedback information. Therefore, it is impossible for node A to have utility values
of 1 to 1.

Therefore, two cases are supposed to be discussed separately:

(1) When node A a1 → a1′ , U1(a1, a2)→ U1(a1′ , a2) , a2 remains unchanged.

The policy of node B is given and denoted as a2, and the utility value U2(a2, a1) is 1. If
we update the policy of node A from a1 to a1′ , the utility value of node A increases from 0
to 1. However, the policy of node B remains unchanged, and its utility value remains the
same: U1(a1′ , a2)−U1(a1, a2) > 0.

P(a1′ , a2)− P(a1, a2)

= (U1(a1′ , a2) + U2(a2, a1′))− (U1(a1, a2) + U2(a2, a1))
= (1 + 1)− (0 + 1)
= 2− 1
= 1 > 0

(A4)

(2) When node B a2 → a2′, U2(a2, a1)→ U2(a2′, a1)) , a1 remains unchanged.

The policy of node A is given and denoted as a1 and the utility value U1(a1, a2) is 0. If
we update the policy of node B from a2 to a2′, the utility value of node B increases from 0 to
1. However, the policy a1 of node A remains unchanged, and the utility value is unchanged:
U2(a2′, a1)−U2(a2, a1) > 0.

P(a2′, a1)− P(a2, a1)
= (U1(a1, a2′) + U2(a2′, a1))− (U1(a1, a2) + U2(a2, a1))
= (0 + 1)− (0 + 0)
= 1− 0
= 1 > 0

(A5)

�
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