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Abstract: Delay-tolerant networks face challenges in efficiently utilizing network resources and
real-time sensing of node and message statuses due to the dynamic changes in their topology. In this
paper, we propose a Multi-Decision Dynamic Intelligent (MDDI) routing protocol based on double
Q-learning, node relationships, and message attributes to achieve efficient message transmission.
In the proposed protocol, the entire network is considered a reinforcement learning environment,
with all mobile nodes treated as intelligent agents. Each node maintains two Q-tables, which store
the Q-values corresponding to when a node forwards a message to a neighboring node. These
Q-values are also related to the network’s average latency and average hop count. Additionally, we
introduce node relationships to further optimize route selection. Nodes are categorized into three
types of relationships: friends, colleagues, and strangers, based on historical interaction information,
and message forwarding counts and remaining time are incorporated into the decision-making
process. This protocol comprehensively takes into account the attributes of various resources in
the network, enabling the dynamic adjustment of message-forwarding decisions as the network
evolves. Simulation results show that the proposed multi-decision dynamic intelligent routing
protocol achieves the highest message delivery rate as well as the lowest latency and overhead in all
states of the network compared with other related routing protocols for DTNs.

Keywords: delay-tolerant network; double Q-learning; node relationships; network resources

1. Introduction

Future wireless networks must continually evolve to adapt to changing wireless com-
munication environments. In harsh and complex scenarios such as wilderness exploration
and underwater sensor deployments, the high mobility of nodes leads to frequent changes
in network topology, resulting in message loss or significant delays. Traditional routing
protocols are often unreliable and ineffective in such circumstances. To facilitate networking
and communication in these challenging environments, researchers have introduced a spe-
cialized network paradigm that relies on the mobility of nodes to relay information: Delay
Tolerant Networks (DTNs) [1]. As an innovative communication approach, DTNs provide
a new method to address the instability of connections in wireless networks. They no
longer depend on the connectivity requirements of traditional networks but instead utilize
cognitive data transmission between mobile nodes. In DTNs, traditional network connec-
tivity requirements do not apply, as they rely on opportunistic encounters between mobile
nodes for data transmission. This allows nodes to relay messages when they come into
contact with each other, even in resource-constrained environments. Store-carry-forward
routing [2] is one of the key mechanisms for addressing routing challenges in DTNs. If a
node is not connected to other nodes, it stores messages in its buffer until another node
enters its communication range. Once this occurs, the message is forwarded to that node,
with the hope that intermediate nodes can relay the message to the destination node.

Based on this concept, researchers have proposed various DTN routing protocols. DTN
research focuses on the design of message routing and forwarding protocols, which play a
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key role in DTN message transmission. There are three main types of routing protocols:
historical information-based routing protocols, community-based routing protocols, and
reinforcement learning-based routing protocols.

In history-based routing protocols, protocols utilize historical information about nodes
to assess the probability of encounters between nodes, enabling the selection of the next-
hop node for message forwarding. The Prophet protocol [3] calculates the probability of
nodes encountering the destination node based on their historical information and uses this
encounter probability as a utility value to evaluate the likelihood of successfully forwarding
messages to the destination node. Ref. [4] proposes a privacy-preserving protocol for utility-
based routing (PPUR) in Delay Tolerant Networks (DTNs). The protocol aims to address
privacy concerns while optimizing routing decisions based on utility. Ref. [5] presents the
Flooding and Forwarding History-Based Routing (FFHBR) algorithm, which determines
the best relay node by analyzing the node encounter history and deciding whether to
flood propagate the message or forward it directly to the target node. Ref. [6] proposed
an Enhanced Message Replication Technique (EMRT) for DTN routing protocols, where
EMRT dynamically adjusts the number of message replicas to minimize overhead and
maximize the delivery rate based on encounter-based routing metrics, network congestion,
and capacity.

In terms of community attributes, ref. [7] proposes an opportunistic social network
routing algorithm (UADT) based on user-adaptive data transmission that takes into account
factors such as user preferences, social relationships, and network conditions to improve the
efficiency and effectiveness of data transmission in opportunistic social networks. Ref. [8]
introduces an adaptive multiple spray-and-wait routing algorithm based on social circles
in delay-tolerant networks (DTNs). The algorithm dynamically adjusts the number of
message copies sprayed based on the encounter history and social relationships between
nodes. Ref. [9] presents a Hybrid Social-Based Routing (HSBR) protocol that utilizes social
characteristics, such as community structure and social similarity, to make forwarding
decisions. Ref. [10] presents the Community Trend Message Locking (CTML) routing
protocol. The protocol locks messages to specific communities based on their content
and trends, improving message delivery efficiency in DTNs. However, these routing
protocols struggle to adapt quickly to node mobility and changes in network topology. In
recent years, researchers have increasingly recognized the application of reinforcement
learning [11] in DTNs. Q-learning [12] is a value iteration-based reinforcement learning
algorithm that learns a value function called the Q-function. The double Q-learning
proposed in [13] is an enhanced version of the Q-learning algorithm. Existing routing
algorithms based on reinforcement learning models often depend on the reward function,
which significantly influences the effectiveness of the learning strategy. Depending on
different routing optimization criteria, tailored reward functions are designed for use during
the training and learning processes. Ref. [14] evaluates the probability of encounter between
nodes using the Q-learning algorithm for packet casting in vehicular opportunity networks
and decides the choice of next-hop node together with relative velocity. Ref. [15] introduces
an adaptive routing protocol based on improved double Q-learning, where the algorithm
determines the next-hop node for data packets based on a hybrid Q-value. Although the
above-proposed Q-learning-based DTN protocol has good results, the algorithm is difficult
to learn sufficiently under the extreme conditions of the network to ensure that the best
route can be guaranteed to be found in all situations. Ref. [16] proposes a delay-tolerant
network routing algorithm called Double Q-learning Routing (DQLR); it utilizes a double Q-
learning algorithm to address the issue of packet delivery delay in DTNs. Ref. [17] proposes
a Double Q-learning-based routing protocol for opportunistic networks called Off-Policy
Reinforcement-based Adaptive Learning (ORAL). The protocol utilizes a weighted double
Q-estimator to make routing decisions, addressing the limitations of existing protocols.
Table 1 compares the types and drawbacks of the DTN routing protocols mentioned above.
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Table 1. Comparison of related routing protocols.

Name of Protocol Routing-Based Shortcomings

Prophet [3] history High drop ratio
PPUR [4] history Low delivery rate when network resources are limited

FFHBR [5] history High overhead
EMRT [6] history Low delivery rate when network resources are limited
UADT [7] community Buffer congestion

SC-AMSW [8] community High overhead
HSBR [9] community High overhead when network resources are limited

CTML [10] community Performs poorly when the network topology
changes rapidly

Proposed in [14] Q-learning Low delivery rate
ARSIDQL [15] Double Q-learning Low delivery rate

DQLR [16] Double Q-learning Low delivery rate when network resources are limited
ORAL [17] Double Q-learning Low delivery rate when network resources are limited

On the basis of the above, we employ a reinforcement learning algorithm, double
Q-learning, to adapt to the rapid changes in the network, in addition to defining the
relationships between nodes in the DTN and synthesizing the information attributes. By
performing multi-decision routing for the forwarding nodes based on the above factors,
the nodes can more effectively decide whether the next hop will successfully forward the
message to the destination node.

Most existing routing protocols lack real-time awareness during network transmission
and struggle with efficient message forwarding. In response, we designed a Multi-Decision
Dynamic Intelligence (MDDI) routing protocol. This protocol combines reinforcement
learning algorithms with node relationships and message attributes to achieve a multi-
decision routing selection. Its goal is to maintain good message transmission performance
in various states of the network. In MDDI, the Q-values in the Q-tables within the nodes are
continuously adjusted with network changes, and a double Q-updating strategy is used to
avoid overestimation and provide more accurate Q-values for evaluating the performance
of the nodes. Meanwhile, in order to adapt to each state of the network, we also take the
node relationship into account to decide the best next hop when routing based on the node
interaction information as well as the message attributes to provide the overall performance
of the DTNs.

The main contributions of this paper are as follows:
(1) Real-time sensing of network performance. In calculating the reward value and

the discount factor, we use the average delay of the network, the average number of hops,
and the message attributes of the nodes after forwarding the message as the learning
training content.

(2) Introducing node relationships to improve routing decisions. Combining the
historical interaction information between nodes and considering the global network,
nodes are classified into three types of relationships: friends, colleagues, and strangers.

(3) Reinforcement learning is combined with node relationships as well as message
attributes to decide the best next hop during the routing process to achieve dynamic
intelligent routing decisions.

The rest of this paper is organized as follows: In Sections 2 and 3, routing decisions in
a double Q-learning environment and dynamic decisions based on node relationships in
DTNs are described, and a multi-decision dynamic intelligent routing protocol is proposed.
The performance of the proposed protocol is evaluated and compared with conventional
protocols in Section 4. Section 5 discusses the impact of the proposed protocol and some
potential limitations. Finally, Section 6 concludes this work and proposes future research
directions. To clearly describe the proposed routing protocols in the following sections, we
provide a list of notations and abbreviations in Table 2.
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Table 2. List of notations and abbreviations.

Notations/Abbreviations Description Notations/Abbreviations Description

Q Future rewards S State
S′ The next state A Action
A′ The next action α Learning rate

Q(S, A)
Future rewards of taking the

action A to the state S DTN Delay Tolerance Network

a, b, c, d, e, j, x, y Node T∗ The total lifetime of the message

mi
d

Message i, whose destination node
is d Ra(b, mi

d)
Actual reward for forwarding mi

d
from node a to node b

γa(mi
d)

Discount factor corresponding to
mi

d in node a Tavg
The average delay in the network

at the moment

tb

The time it takes for mi
d to reach

node d after being forwarded to
node b

Hopsb

The number of hops it takes for mi
d

to reach node d after being
forwarded to node b

Hops
Number of hops of the message

from the source node to the
destination node

TTL The remaining time to live of the
message

γ∗ Discount factor constant CT Number of contacts

ET Duration of encounters MS The number of messages
successfully forwarded each other

rel Relationship FTh Friend threshold
CTh Colleague threshold NT Encounter interval

MDDI Multi-Decision Dynamic
Intelligent N

The number of periods during
which the nodes have not

encountered

SDDQ Single-Decision based on double
Q-Learning DDNR Dynamic decision based on node

relationship
Na The set of contact nodes for node a C(a, b) Contact values for nodes a, b
T Time period of recoding CT,ET MS T′ Time period of recoding NT

2. Routing Decision in Double Q-Learning Environment

In this section, we will explore the application of Q-learning algorithms for routing
decisions in DTNs. Our main focus will be on two key components: the dual Q-learning
algorithm and the Q-table update.

2.1. Double Q-Learning Algorithm in DTNs

Q-Learning is a value-based algorithm in the field of reinforcement learning, and its
core involves constructing a table called the Q-table. In this table, each row corresponds
to a state, each column corresponds to an action, and the value in each cell represents
the maximum expected future reward for taking a specific action in a particular state. By
progressively updating the Q-Table, the algorithm can gradually learn the optimal action
strategy for each state. In this way, by selecting the action with the maximum value in
the corresponding row for each state, the goal of maximizing cumulative rewards can be
achieved. The Q-learning model iteratively trains through various components, including
agents, states, actions, rewards, episodes, and Q-values. The update formula for the state-
action values in the Q-learning algorithm is shown in (1). S and A represent a state and an
action, respectively. Q represents the Q-value for taking action A in state S, S′ represents
the next state, A′ represents the next action, R represents the actual reward obtained
from taking that action, α is the learning rate, γ is the discount factor, and max(Q(S′, A′))
represents the Q-value of the action with the highest Q-value among all possible actions in
state S.

Q(S, A) = Q(S, A) + α(R + γ max(Q(S′, A′))−Q(S, A)) (1)

The significance of (1) is to gradually establish the optimal policy by updating the Q-
value in the Q-table for the action that yields the highest reward in the current state S. The
discount factor γ takes into account future rewards, making the algorithm more focused on
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long-term benefits rather than short-sighted strategies. It also results in smoother updates
of Q-values, avoiding abrupt changes. It can be observed that the Q-learning algorithm’s
update is a typical application of temporal difference methods.

During the message delivery process from source nodes to destination nodes, the
entire network provides the necessary information for message forwarding. Therefore, in
this paper, we consider the entire mobile network as a reinforcement learning environment,
where nodes that relay messages are treated as intelligent agents. The action space of these
agents consists of forwarding data packets to the next-hop nodes, and selecting the appro-
priate next-hop to forward the message is considered an action choice in reinforcement
learning. All nodes in the network can serve as storage nodes for data packets, so the
collection of all nodes in the network forms the state space of the agents. When a message
is successfully forwarded to the next-hop node, the agent receives an immediate reward
value from the environment, which is used for updating the Q-values.

Figure 1 depicts a typical reinforcement learning example within a delay-tolerant
network. In this illustration, a message resides at node a, which can be regarded as a state.
mi

d represents message i whose destination node is d. Nodes b, c, and e represent the next
action choices made by node a to forward mi

d to the destination node d. The Q-table stores
the Q-values associated with node a by choosing nodes a, b, and e as forwarding nodes for
mi

d. When the message eventually reaches its destination node d, we update the rewards
associated with node a of choices of nodes a, b, and e as forwarding nodes for mi

d.

a

Learning Environment

State

Q table

�� �,��
�  Update

�� �,��
�  Update

Update
......

�� �,��
�  

Node

��
�

Action

b

c

e

d

Action b c e …

� ��
� ��

� ��
�

…

Figure 1. Q-learning in DTN.

In the proposed protocol, each node in the network stores and maintains two Q-tables,
denoted as QA and QB. These Q-tables consist of columns and rows, storing reward lists
for the best actions for each state. When a node in the network begins to move without
having forwarded any messages yet, it initializes the corresponding Q-values in its Q-tables
to 0 upon encountering other nodes. Whenever a message is successfully relayed to the
destination node by a node that has relayed the message, it updates its two Q-tables and
shares its local information only with neighboring nodes. The two Q-values stored in
the respective Q-tables are used for predicting the optimal action for the next step and
predicting the optimal action for the termination state (successfully forwarding the message
to the destination node). One Q-value is used for selecting the best action, and the other is
used to estimate the maximum Q-value. Double Q-learning is employed to address the
problem of overestimation that may lead to routing local optima. The two Q-values change
with variations in the network’s topology and node states, allowing the proposed algorithm
model to adapt to highly dynamic environments.
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2.2. Q-Value Update

In DTNs, the dynamic movement of nodes allows for opportunistic connections
between nodes. Messages are transmitted hop by hop towards the destination node,
starting from the source node, following routing protocols, and leveraging opportunistic
contacts between nodes. During this process, the Q-value update formula is used to
establish and update the corresponding state-action values. In this reinforcement learning
environment, the learning task is assigned to each node, and as a result, the learning process
involves updating the Q-tables; QA and QB learn from each other, and they represent future
reward values for the same action and state with the same update formula but different
values. Their update formulas are shown in (2) and (3).

QA
a (b, mi

d) = (1− α)QA
a (b, mi

d)+

α(Ra(b, mi
d) + γa(mi

d)max(QB
a (x, mi

d)))
(2)

QB
a (b, mi

d) = (1− α)QB
a (b, mi

d)+

α(Ra(b, mi
d) + γa(mi

d)max(QA
a (x, mi

d)))
(3)

QA
a and QB

a represent node a selecting node b as the destination node for mi
d, it

represents the expected reward value for the next-hop node, which is the Q-value of node a
selecting node b for relaying. α represents the learning rate of a node in the network, which
is used to control the extent to which Q-values change with dynamic network variations.
Ra
(
b, mi

d
)

represents the actual reward obtained by node b after forwarding mi
d to node b.

γa(mi
d) is the discount factor associated with node a of forwarding of mi

d. By adjusting γ, we
can control the degree to which the node considers short-term and long-term consequences
when selecting the next hop. In extreme cases, when γ = 0, it only considers the current
outcome of the action, whether the next hop is the message’s destination node. When
γ approaches 1, it places more emphasis on previous learning results. max(QA

a
(

x, mi
d
)
)

and max(QB
a
(
y, mi

d
)
) refer to the highest expected reward values when node a forwards to

all possible nodes, with x and y representing the corresponding relay nodes at that time.
x, y ∈Na and Na represent the set of contact nodes for node a, indicating all nodes that node
a encounters during its movement. From the equation, it can be observed that Q-value
updates primarily depend on the learning coefficient, the actual reward value, and the
discount factor.

When mi
d reaches the destination node d, the R values of all nodes along its forwarding

path are updated. The actual reward value R reflects the advantages and disadvantages of
one-time forwarding. End-to-end delay represents the time it takes from when a data packet
is sent from the source node until it is received by the destination node. The magnitude
of delay directly impacts the availability range of DTN and is an important metric to
consider in the design of routing protocols. The average hop count is the total sum of hops
experienced by copies of all messages in DTNs, divided by the total number of messages
generated in the network. The average hop count, along with end-to-end delay, reflects the
overall performance of routing protocols, with fewer hops and a lower delay indicating
more efficient routing protocols. Therefore, in this paper, when calculating reward values,
consideration is given to both hop count and delay to control energy consumption. The
update formula for the reward value R is defined as follows in (4).

Ra(b, mi
d) = e

(
1+

Tavg
tb

+ 3
Hopsb

)
(4)

Tavg represents the average delay in the network at the moment. tb signifies the time
it takes for mi

d to reach the destination node after being forwarded from node a to node b.
Tavg

tb
represents the contribution of node a’s choice of node b as the next hop to reducing

the average network delay. The smaller the value of tb, indicating a greater contribution to
reducing the average network delay, the larger the reward value. Hopsb signifies the hops
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it takes for mi
d to reach the destination node after being forwarded from node a to node

b. 3
Hopsb

, which denotes the contribution of node a’s selection of node b as the next hop to
reducing the average number of hops in the network. The smaller value of Hopsb signifies
a greater contribution to reducing network overhead, resulting in a higher reward value.
In this context, the definition of 3 represents the average number of hops obtained through
multiple simulations and emulations of the prophet routing algorithm.

The discount factor will affect the likelihood of selecting the node previously chosen
for forwarding. In this paper, the discount factor is defined to be updated when mi

d is
forwarded or reaches the destination node. It is calculated by (5)

γa(mi
d) = γ∗e−

(
Hops

3 + T∗
TTL

)
(5)

γ∗ is a discount factor constant, T∗ represents the total lifetime of the message, and
TTL indicates the remaining time to live for the message. Hops denotes the number of
times mi

d has been forwarded at this time. The larger the value of Hops, the more frequently
mi

d will be forwarded, indicating that the efficiency of previously selected forwarding
nodes is moderate. The smaller the value of TTL, the shorter the remaining lifetime of mi

d,
emphasizing that node a should prioritize the results obtained from selecting the current
next hop.

Incorporating the relationship between nodes and messages, as well as real-time
performance metrics in the network, such as average message hops and average latency,
enables the double Q-learning algorithm to accurately assess the corresponding Q-values
when nodes forward messages through learning from the network environment.

3. Proposed Routing Protocol

In this section, we introduce a dynamic decision-making routing approach based on
node relationships and combine it with the algorithms introduced in Section 2 to propose
and elaborate a multi-decision dynamic intelligent routing protocol.

3.1. Dynamic Decision Based on Node Relationships

In the design of community-based routing schemes, the primary challenge lies in
defining the social relationships between nodes and determining the mechanism for mes-
sage propagation. Due to intermittent connections between nodes, there is a need for
opportunistic message routing. In other words, message exchange occurs only when two
nodes are within each other’s range, and one node has a lower probability of delivery than
the other. Node features can serve as metrics for quantifying node social relationships.
Previous research has mainly relied on historical encounter information to derive social
relationship attributes. However, depending solely on social relationships can lead to
an uneven distribution of loads on nodes with higher degrees of connectivity. Moreover,
most have primarily focused on node attributes and have not comprehensively considered
message attributes and interaction quality. In this paper, when defining network node rela-
tionships, we take into account both the global knowledge of nodes and the comprehensive
node interaction information. The network node relationships are defined as the following
three types:

Friendship Relationship: A friend node, compared with other nodes in the network,
interacts with the local node more frequently, and the quality of interaction is higher.

Colleague Relationship: A colleague node, compared with other nodes in the net-
work, has occasional contact with the local node within a certain timeframe, but the quality
of interaction is generally lower, indicating a less intimate connection.

Stranger Relationship: A stranger node, compared with other nodes in the network,
has minimal or almost no social interaction with the local node.

Figure 2 illustrates that when nodes a and d established a connection at time t0, they
also connected at moments t1, t2, t3, and t4 within the past time interval T. When they are
in the process of connecting, both nodes update their historical interaction information,
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including the average number of encounters within a period T, the average encounter
duration, and the average number of forwarded messages.

t=t0

t=T

d

a

R

R

t=t1

d

a

R

R

t=t3

d

a

R

R

t=t2

d

a

R

R

t=t4

d

a

R

R

Figure 2. The encounter history between node a and node d within the time interval T.

Next, let’s take nodes a, b, and mi
d as an example, suppose we now need to decide

whether to forward mi
d from node a to node b or not. First, the historical encounter

information between node a and node b is computed. Node-to-node relationships are
determined by historical encounter information and interaction data. Nodes a and b have
encounters within the time interval T, and each encounter lasts for a duration of ETb

a . The
number of encounters is CTb

a . The average encounter duration is as in (6)

ETb
a =

∑CTb
a

i=1 ETb
a

CTb
a

(6)

The quality of interaction between node a and node b is evaluated based on the number
of messages successfully forwarded to each other. The number of messages forwarded at a
time is MSb

a. The average message forwarding quantity between nodes a and b within the
time interval T is calculated by (7).

MSb
a =

∑CTb
a

i=1 MSb
a

CTb
a

(7)

Within the time interval t, the total sum of historical encounters between node a and
other nodes it has come into contact with, the total sum of historical average encounter
times, and the total sum of historical average forwarded message quantities are calculated
by (8), (9), and (10), respectively.

allCTa = ∑
j∈Na

CT j
a (8)

allETa = ∑
j∈Na

ET j
a (9)

allMSa = ∑
j∈Na

MSj
a (10)



Electronics 2023, 12, 4528 9 of 20

Substitute (8)–(10) into the (11) to calculate the contact value C(a, b).

C(a, b) =
CTb

a
allCTa

+
ETb

a
allETa

+
MSb

a
allMSa

(11)

Relationship between node a and node b is defined by (12):

rel(a, b) =


f riend, FTh ≤ C(a, b)
colleague, CTh ≤ C(a, b) < FTh
stranger, 0 ≤ C(a, b) < CTh

(12)

In (12), FTh and CTh represent the friend threshold and colleague threshold, and after
multiple simulation verifications, the network performs best when FTh and CTh are set to
0.15 and 0.09, respectively.

Based on node relationships, integrating message remaining time and message for-
warding count as one of the decision factors allows for more accurate and efficient forward-
ing decisions. When nodes a and b establish a connection, if nodes a and b have a friend
relationship with the message destination node, then compare their relationship values and
forward the message to the node with a greater relationship value.

If nodes a and b have a colleague relationship with the message destination node, not
only consider the relationship value but also take into account the message forwarding
count, remaining message time, and historical encounter interval. The encounter interval
between node a and node b is NTb

a , and their average encounter interval within the period
T′ (T′ < T) is calculated by (13), and n is the number of intermittent encounters between
them within the period T′.

NTb
a =

∑n
i=1 NTb

a
n

(13)

If two nodes have not encountered each other for more than one period T′, then the
historical encounter interval is updated to:

NTb
a = (NTb

a )Te−N + T′(1− e−N) (14)

(NTb
a )T represents the average encounter interval within the period T. N represents

the number of periods during which the nodes have not encountered. (NTb
a )T is equal to 0

when two nodes have not encountered each other for more than one period T. Compare the
TTl of mi

d with the historical average encounter interval. If the hop count of mi
d is less than

3 and the remaining time is greater than the NTd
a and NTd

b , then perform a relationship
value comparison; otherwise, forward the message to node b.

If nodes a and b have a stranger relationship with the message destination node d,
meaning that the probability of nodes a and b transmitting the message to the destination
node is low, then the message is not forwarded and remains at node a, awaiting the
next connection.

3.2. Multi-Decision Dynamic Intelligent Routing Protocol

This section combines the double Q-learning algorithm with node relationships and
message attributes to propose a multi-decision dynamic intelligent routing protocol. In
this protocol, Q-values and node relationship values serve as the primary decision criteria
for nodes to determine whether to forward messages. Additionally, it takes into account
changes in message states to ensure effective message transmission. Within the double
Q-learning framework, reward computation considers the network’s overall average delay
and average hops, effectively controlling the number of message duplicates and reducing
message delivery latency during the intelligent learning process.

Figure 3 shows the general workflow of the proposed MDDI routing protocol. The
MDDI protocol consists of two main parts: a single decision based on double Q-values



Electronics 2023, 12, 4528 10 of 20

(SDDQ) and a dynamic decision based on node relationship (DDNR). SDDQ mainly uses
the Q-value in the Q-learning algorithm to make decisions, and the discount factor changes
dynamically and is determined by the state of the message in the node. While the actual
reward value is updated after the message reaches the destination node. When the connect-
ing node is not the destination node of the message, SDDQ protocol is applied first; if the
message cannot be forwarded according to SDDQ protocol, then DDNR is further used.
DDNR uses node relationships and message attributes to make a dynamic decision, and
the node relationship is derived according to the interaction information between nodes
and then integrated with the state of the message at this point in time to make a decision
on whether to forward or not. Finally, the Q value and relationship value are updated.

Connected 
nodes are 
destination 

nodes
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relationship value
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Calculating Q-values
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Figure 3. Workflow of Proposed MDDI Protocol.

The following section provides a detailed description of the application process of
this routing algorithm within the network. In this multi-decision dynamic intelligent
routing model, each node in the network stores and updates four tables: two Q-tables, a
dynamic node attribute table for participating in routing decisions, and a dynamic message
attribute table. The updating of the Q-tables is based on the description in Section 2.2. The
dynamic node attribute table contains global information related to the node. It stores
encounter information about all the connected nodes for this node, including the number of
historical connections within time interval T, average connection duration, average message
forwarding count, and average encounter interval. The Dynamic Message Attribute Table
stores message and node-related attributes, including the time and number of hops that a
message is forwarded from that node to the next-hop node until it reaches the destination
node, and the discount value used by that node in calculating the Q-value of the node that
determines the next-hop node for that message. As an example, let’s consider a general
node a within the network. As shown in the tables below, In Table 3, b, c, d denote the
nodes that have established a connection with node a. The table stores their historical
number of encounters with node a during the period T, the average encounter duration,
the average number of forwarded messages, and the average encounter interval during the
period T′. In Table 4, me, m f , mg are the messages stored in node a, and their corresponding
dynamic attributes are γ(m) , Hopm , tm, where γ(m) is the discount factor corresponding
to different messages, and Hopm and tm correspond to the number of hops and time to
reach the destination node after the message is forwarded to different nodes
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Table 3. Dynamic node attribute.

History b c d

Contact times CTb
a CTc

a CTd
a

Connection time ETb
a ETc

a ETd
a

Forward count MSb
a MSc

a MSd
a

Contact interval NTb
a NTc

a NTd
a

Table 4. Dynamic message attribute.

Attribute me m f mg

Hopm
Hopme

b Hopm f

b Hopmg

b
... ... ...

Hopme

j∈Na
Hopm f

j∈Na
Hopmg

j∈Na

tm
tme

b tm f

b tmg

b
... ... ...

tme

j∈Na
tm f

j∈Na
tmg

j∈Na

γ(m) γ(me) γ(m f ) γ(mg)

In Figure 4, when nodes a and b establish a connection, they examine their respective
dynamic attribute tables (Table 3) when deciding whether to forward a message. They
determine their relationship with the message’s destination node based on node relationship
values. Simultaneously, node a uses the content of its dynamic message attribute table
(Table 4) to calculate the corresponding R-value and discount value for forwarding the
message to d and compute the corresponding Q-value. The message state is considered at
nodes a and b when they share a simultaneous relationship with the destination node.

Dynamic node 
attribute table

Dynamic message 
attribute table

�
�

Determine node 
relationships

friend

colleague

stranger

��

��

�table message 
status

b

a
R

R

b

a

R

R
Hop

TTL

Figure 4. Multi-Decision Dynamic Intelligent Routing.

Algorithm 1 provides a detailed description of the specific decision process of this
protocol. When node a has established a connection with node b, the message m is pending
forwarding within node a. First, it is checked whether node d is the destination node for
message mi

d. If it is not, then a Q-table is randomly selected, and the corresponding Q-value
for the connected node is checked to see if it is the maximum. If the Q-table does not exist or
the value is not the maximum, a further decision is made based on the node relationships.
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Algorithm 1: Actions when node a establishes a connection with node b
Input: Node a connects to node b
Output: Update Qtable, C(a, b)

1 for The message m destined for node d stored in node a do
2 if node b is the destination node for message m then
3 node a forwards m to node b
4 end
5 else
6 if max Qa(x, m) = Qa(b, m) then
7 node a forwards m to node b
8 end
9 end

10 else
11 if rel(b, d) = friend then
12 Compare C(a, d) , C(b, d)
13 if C(a, d) < C(b, d) then
14 node a forwards m to node b
15 end
16 end
17 end
18 else
19 if rel(b, d) = colleague then
20 if rel(a, d) = colleague then
21 if Hopsm < 3 and avgNTd

Ta
< avgNTd

Tb
< TTLm then

22 Compare C(a, d) , C(b, d)
23 if C(a, d) < C(b, d) then
24 node a forwards m to node b
25 end
26 end
27 end
28 if rel(a, d) = Stranger then
29 node a forwards m to node b
30 end
31 end
32 end
33 end

If both nodes have a friend relationship with the destination node, only the relationship
values are compared, and the message is forwarded to the node with the higher relationship
value. If node b has a colleague relationship with the destination node, and node a also has
a colleague relationship with the destination node, then their contact with the destination
node is not frequent enough, so decisions cannot be based solely on encounter information.

The forwarding hop count and remaining message time are compared. If the forward-
ing count is less than three and the remaining message time is greater than the average
encounter interval between the two nodes and the destination node, then further relation-
ship value comparisons are performed. If node a and the destination node are strangers,
the message is forwarded to node b.

If both node a and node b are strangers to the message destination node, meaning
that the probability of both node a and node b transmitting the message to the destination
node is low, then the message is not forwarded and remains in node a, awaiting the
next connection.
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4. Simulation Results Evaluation

In this section, we will verify the execution performance of the proposed multi-decision
dynamic intelligent routing protocol in the network through experimental simulation and
analyze the simulation results in detail.

4.1. Simulation Environment

The proposed model in this paper will be simulated and analyzed using the Oppor-
tunistic Network Environment Simulator (ONE) [18], which is a simulation tool designed
for use in Delay-Tolerant Networking (DTN) environments. The default parameter settings
applied in this paper are presented in Table 5 below. The simulation environment includes
126 nodes divided into six groups: two pedestrian groups, one car group, and three tram
groups. The pedestrian and car groups consist of 40 nodes each, while the tram groups
consist of 2 nodes each. Regarding node movement speeds, the pedestrian groups move at
speeds ranging from 0.5–1.5 m/s, the car group moves at speeds ranging from 2.7–13.9 m/s,
and the tram groups move at speeds ranging from 7–10 m/s. In terms of motion models,
the pedestrian and car groups utilize map-based shortest path motion models, whereas
the tram groups use predetermined map-based motion models. In terms of waiting times,
the pedestrian groups wait for 0–30 s, the car group waits for 0–60 s, and the tram groups
wait for 0–120 s. The communication medium for pedestrian and car groups is a Bluetooth
interface with a speed of 250 kb/s and a range of 50 m. The subway train group uses a
Bluetooth interface with a transmission range of 800 m and a speed of 20 MB/second. Each
experiment is conducted ten times by altering the random seed values for node distribution.

Table 5. Simulation parameters setting.

Parameters Values

Simulation time 43,200 s
Simulation map Helsinki (4500 km × 3400 km)

Number of nodes 126
Buffer size 5 M–50 M

Message size 500 k
Moving speed 0.5 m/s–1.5 m/s

Transmission range 30 m
Message generation interval 25 s–35 s

Message TTL 30 min–90 min

When evaluating network performance in this paper, several key metrics are employed
to assess the quality of the network. These metrics include message delivery rate, network
overhead, and average latency [19].

Message delivery rate: It measures the success rate of message transmission within
the network during the simulation.

End-to-end average latency: It calculates the average time it takes for successfully deliv-
ered messages to travel from the source node to the destination node during the simulation.

Network overhead: It is another crucial metric used to evaluate network performance.
In the double-Q learning algorithm, the learning rate and discount factor constants

are crucial parameters for updating Q-values. Consequently, we initially determine the
optimal values for these two parameters through experimentation and assess their impact
on network performance using the message delivery rate. Figure 5 shows the variation of
the delivery rate in MDDI for different α and γ∗. In Figure 5a, we observe that as the value
of α varies within the range of 0 to 1, the message delivery rate initially increases and then
decreases. The message delivery rate reaches its maximum when α is set to 0.9. On the
other hand, Figure 5b illustrates the behavior of the message delivery rate as the discount
factor constant changes within the range of 0 to 1. The message delivery rate exhibits a
fluctuating pattern of increase followed by a decrease, with the highest rate occurring at
γ∗ = 0.8.
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Based on these simulation results, we can conclude that for the MDDI during the
simulation, the optimal learning rate is 0.9 and the discount factor constant is 0.8 to achieve
the best network performance.

(a) Delivery ratio vs. α (b) Delivery ratio vs. γ∗

Figure 5. Performance of delivery ratio under different α and γ∗ in MDDI protocol.

4.2. Simulation Result

In this section, we will conduct a network performance evaluation of the proposed
MDDI protocol. In addition to comparing it with the typical Epidemic [20] and Prophet [3]
routing protocols, Epidemic [20] is based on flooding, with which nodes transmit data
packets to every encountered node, resulting in high overhead. We will also compare it with
the single decision based on double Q-values (SDDQ) proposed in Section 2 and a dynamic
decision based on node relationships (DDNR) proposed in Section 3.1. The values of α and
γ∗ in SDDQ are the same as the values in MMDI. We will assess the impact of variations
in network scenarios across three aspects: node caching, message survival duration, and
message generation interval, on the network performance of the routing protocols.

Delivery ratio: The five protocols in Figures 6a, 7a, and 8a all show an upward trend
in delivery rates. The performance of different protocols in terms of delivery rates under
various network conditions is described in detail below.

In Figure 6a, MDDI exhibits the most significant advantage, while the Epidemic
algorithm performs the worst in terms of delivery rate. The delivery rates of SDDQ and
Prophet are comparable, and MDDI outperforms DDNR in terms of delivery performance.
SDDQ achieves adaptive learning and can adapt well to the dynamic changes in the
network. However, under conditions of limited node cache space, making decisions solely
based on Q-values can lead to inaccurate estimations, resulting in average delivery rates in
low-cache conditions. DDNR, on the other hand, makes forwarding decisions based on
the dynamic attributes of nodes and messages, hence performing well in terms of delivery
rates under various cache states. The proposed MDDI not only adapts to dynamic changes
in the network through adaptive learning but also dynamically makes decisions based on
the attributes of nodes and messages, resulting in the best performance.

In Figure 7a, the delivery rates of the five protocols all exhibit an upward trend and
eventually stabilize at a relatively high level. This is because the longer the message’s
lifetime, the wider the range over which the message is forwarded in the network. Therefore,
the majority of messages can be delivered to their destination nodes within their lifetime.
DDNR’s delivery rate increases as the message’s lifetime increases because it takes into
account the impact of the message’s remaining lifetime when selecting forwarding nodes.
Consequently, it achieves a high delivery rate even in scenarios with low message lifetimes.
As the message’s lifetime increases, both MDDI and SDDQ perform well across various
message lifetime states. This is because they quickly find suitable next hops for messages
through reinforcement learning. MDDI, which also incorporates node relationships into its
decision-making, can find more efficient relay nodes compared with SDDQ, resulting in
superior delivery performance.
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(a) Delivery ratio vs. Buffer size (b) Overhead vs. Buffer size

(c) Average delay vs. Buffer size

Figure 6. Performance of protocols with different Buffer size.

In Figure 8a, at lower message generation intervals, there is a large volume of messages
in the network, resulting in high buffer occupancy and an increased risk of congestion,
leading to a higher rate of message loss. Consequently, the delivery rates of all five protocols
are relatively low during this period. As the message interval increases, the number of
messages in the network decreases, and the pressure on the buffers decreases as well.
Therefore, in such scenarios, the delivery performance of the Epidemic protocol, which
does not limit the number of copies, surpasses that of Prophet. SDDQ performs less
effectively in congested network conditions due to its poor learning environment, resulting
in a lower delivery rate. However, both MDDI and DDNR maintain high delivery rates even
when node buffers are limited because they consider the quality of interactions between
nodes, making their node selections more appropriate. Additionally, in scenarios with a
lower number of messages in the network, MDDI outperforms DDNR. This is because,
under favorable network conditions with suitable reinforcement learning environments,
MDDI achieves a higher delivery rate during such periods.

Overhead: The network overhead of the five protocols in Figures 7b and 8b all exhibit
an increasing trend, while in Figure 6b, they all show a decreasing trend. The performance
of different protocols in terms of overhead under various network conditions is described
in detail below.

In Figure 6b, DDNR performs less effectively than MDDI and SDDQ because it
fails to maintain decision effectiveness when the network topology changes. In contrast,
both MDDI and SDDQ use Q-values to decide whether to forward messages. Therefore,
with sufficient cache resources, Q-values are updated dynamically with network changes,
resulting in lower message loss and effectively reducing network overhead.
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(a) Delivery ratio vs. TTL (b) Overhead vs. TTL

(c) Average delay vs. TTL

Figure 7. Performance of protocols with different TTL.

In Figure 7b, epidemic and prophet exhibit a noticeable upward trend, with signifi-
cantly higher network overhead compared with the other three algorithms. As message
survival time increases, the number of network copies also grows. MDDI, DDNR, and
SDDQ all employ strict decision criteria for routing and forwarding, which not only control
the number of copies but also increase the probability of messages reaching their destina-
tion. Both MDDI and DDNR consider the remaining message survival time when deciding
the next hop, which outperforms SDDQ, which relies solely on Q-values. Additionally,
MDDI can adapt to network dynamics and learn from them when there is ample message
survival time, resulting in lower network overhead compared with DDNR.

In Figure 8b, as the message survival interval increases and the total number of
messages decreases, cache resources become more abundant. Consequently, the number of
message copies on the network increases. Epidemic shows the most significant increase in
network overhead, while Prophet, relying solely on encounter information, also forwards
more message copies. SDDQ, when message survival intervals are short and network
congestion is high, performs less effectively in deciding the next hop due to limited learning
opportunities, resulting in higher network overhead compared with DDNR. However, both
MDDI and DDNR consider message forwarding hops, ensuring successful message delivery
with fewer intermediate relays when there are many messages in the network. When the
total number of messages is low and network resources are abundant, MDDI demonstrates
a distinct advantage in dynamic network environments.

Average delay: In Figures 6c and 8c, the average latency of the five protocols shows a
general decreasing trend, while in Figure 7c, it shows an increasing trend. The performance
of different protocols in terms of average delay under various network conditions is
described in detail below.
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(a) Delivery ratio vs. Generation interval (b) Overhead vs. Generation interval

(c) Average delay vs. Generation interval

Figure 8. Performance of protocols with different Generation interval.

In Figure 6c, although Prophet and DDNR can determine the next forwarding node
for messages based on historical information, they cannot find a suitable complete path
for messages when the network topology changes. Therefore, their performance in terms
of average delay is mediocre. MDDI and SDDQ consider the network’s average delay in
the discount factor when calculating the Q-value. This not only enables them to effectively
find paths to forward messages to their destination nodes by continuously learning in
the network but also reduces the overall average delay in the network. Dynamic multi-
decision making in MDDI, compared with SDDQ, considers relay node selection more
comprehensively and reasonably, resulting in MDDI having the best delay performance.

In Figure 7c, as the message’s lifetime increases, messages that are farther from the
destination node are successfully delivered, increasing the transmission delay. Epidemic
uses a flooding mechanism to forward messages, so when message lifetimes are extended,
the number of message copies increases, and they reach the destination node faster, out-
performing Prophet, which relies solely on encounter information for decision-making.
Both MDDI and SDDQ apply reward values that consider average delay when calculating
Q-values, effectively reducing network delay. However, when message lifetimes are shorter,
MDDI and DDNR perform better because they both use dynamic attributes of nodes and
messages to make decisions, resulting in less time for messages to reach their destination
nodes. As message lifetimes increase, MDDI, through effective learning of the network
environment, can find more accurate next hops, resulting in the lowest average delay.

In Figure 8c, when message generation intervals are short, there are many messages in
the network due to node congestion, resulting in higher average delays. However, when
message generation intervals are small, both DDNR and MDDI maintain good performance,
as they consider average delay when deciding whether to forward messages. Thus, they can
maintain lower average delays even with a high number of messages. As the generation
interval increases and the number of messages decreases, with sufficient buffer space,
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SDDQ and MDDI can fully learn the network environment, while DDNR excels due to
its dynamic decision-making capabilities for selecting relay nodes, resulting in the best
delay performance.

5. Discussion

In Delay Tolerant Networks (DTN), nodes can only transmit messages through op-
portunistic connections, posing a challenge in effectively utilizing network resources for
message forwarding. In previous protocol studies, achieving both high delivery rates
and low overhead has been a difficult balance. Our protocol employs dynamic multi-
decision-making, ensuring excellent performance in various network states. In Section 4,
validated through simulations, the MDDI routing protocol’s ability to fully utilize network
resources and enhance message transmission efficiency in mobile network environments
is demonstrated.

Compared to other routing protocols introduced in Section 1, our proposed protocol
has significant advantages in multiple aspects. Firstly, even in situations where network
resources are limited, the MDDI routing protocol maintains high delivery rates and low
latency. This protocol utilizes dynamic changes in node and a message attributes during
network topology changes, ensuring outstanding performance regardless of whether the
network has few nodes or experiences network congestion. Secondly, the MDDI routing
protocol consistently incurs lower network overhead. In contrast to some routing protocols
discussed in Part Two, which also maintain high delivery rates but generate numerous
message duplicates due to flooding, the MDDI routing protocol, through multiple decision-
making solutions, precisely selects the next hop for messages, ensuring message delivery
to the destination node while effectively controlling the number of message duplicates.

However, despite the numerous advantages of the MDDI routing protocol, there are
potential limitations that need consideration. One potential limitation lies in the complex
implementation of MDDI routing protocol attributes. Each node in the network needs to
maintain four tables (two Q tables, a node attribute table, and message attribute table). In
intermittent connection routing environments, these table values require real-time updates,
potentially consuming significant node energy. Moreover, frequent interactions between
nodes may lead to security issues, making them susceptible to attacks from malicious
nodes. For instance, a malicious node might attempt to simulate another node to access its
private information.

In addition to the potential limitations discussed above, the protocol has not been
widely deployed in practical networks. Implementing this protocol in real-world scenarios
may face various challenges. One challenge is that the protocol might not always maintain
high performance in different scenarios. For instance, in disaster and emergency rescue
scenarios, historical connections among nodes might not follow strong patterns, and urgent
messages should be assigned a higher security level, not solely based on encounter history.
Another challenge is privacy and security. In military scenarios, selecting nodes with high
trust levels for data transmission is crucial.

Addressing these challenges requires a comprehensive consideration of the character-
istics of different scenarios and flexible adjustment of the MDDI protocol’s parameters and
strategies. In disaster and emergency rescue scenarios, adopting more flexible message pri-
ority algorithms ensures the timely transmission of urgent messages. In military scenarios,
establishing trust models, selecting trustworthy nodes for data transmission, and enhancing
network encryption and identity verification measures can improve data security.

To sum up, the introduction of the MDDI routing protocol not only underwent thor-
ough theoretical exploration but also received validation through practical simulations. Its
advantages, including high delivery rates, low latency, and minimal network overhead,
make it an ideal choice in mobile network environments. These research findings not
only supplement the existing knowledge base but also provide valuable insights for the
development of more advanced network systems in the future.
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6. Conclusions

In this paper, we propose a Multi-Decision Dynamic Intelligent (MDDI) routing
algorithm for delay-tolerant networks. The algorithm fully considers the characteristics of
nodes interacting with information and messages and the variability of network topology.
Firstly, we introduce the intelligent double Q-learning algorithm, enabling nodes to learn
throughout the entire network. Each node maintains two Q-tables and decides whether to
forward a message based on the Q-values in the tables. If the connected node does not have
the maximum Q-value in the Q-table, decisions will be made based on the relationship
between the nodes, at which point we first determine the relationship between the nodes,
i.e., whether they are friends, colleagues, or strangers, and combine the message attributes
to make a final decision. Through multiple decisions and intelligent algorithms, we can
effectively utilize various resources of the network and sense the states of nodes and
messages in real-time, thus improving the network performance.

The simulation results show that our proposed protocol consistently maintains the
highest delivery rate as well as the lowest latency and network overhead for different
cache sizes, as well as different message survival times and generation intervals. Moreover,
analyzing the result graphs, it can be seen that the network overhead of MDDI remains low
in all network states, while the message delivery rate can be high even in extreme cases,
such as node congestion and short message survival time.

In the next step of our research, we plan to enhance the cache management component
in our subsequent research to minimize message loss. Additionally, we will design a node
authentication mechanism to enhance data transmission security. Moreover, we intend
to implement a confirmation mechanism to promptly discard duplicates of messages that
have already been successfully transmitted in the network.
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