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Abstract: The decision tree is one of the most important and representative classification algorithms
in the field of machine learning, and it is an important technique for solving data mining classification
tasks. In this paper, a decision tree classification algorithm based on granular matrices is proposed
on the basis of granular computing theory. Firstly, the bit-multiplication and bit-sum operations
of granular matrices are defined. The logical operations between granules are replaced by simple
multiplication and addition operations, which reduces the operation time. Secondly, the similarity
between granules is defined, the similarity metric matrix of the granular space is constructed, the
classification actions are extracted from the similarity metric matrix, and the classification accuracy is
defined by weighting the classification actions with the probability distribution of the granular space.
Finally, the classification accuracy of the conditional attribute is used to select the splitting attributes
of the decision tree as the nodes to form forks in the tree, and the similarity between granules is
used to judge whether the data types in the sub-datasets are consistent to form the leaf nodes. The
feasibility of the algorithm is demonstrated by means of case studies. The results of tests conducted
on six UCI public datasets show that the algorithm has higher classification accuracy and better
classification performance than the ID3 and C4.5.

Keywords: classification; decision tree; granular computing; granular structure; granular matrix;
similarity metric matrix; classification accuracy

1. Introduction

Classification is not only a common problem in life but also a hot problem for research
in fields such as machine learning and data mining. The main task of classification is to build
a model that reflects the mapping relationship between samples and labels by generalizing
and learning a series of sample data with labels [1]. The decision tree is one of the most
important and representative classification algorithms, and it is an important technique to
solve classification tasks in data mining. With the advantages of fast classification speed,
a simple rule generation process, and strong interpretive power, the decision tree has
received broad interest.

The core idea of the decision tree algorithm is to find the appropriate splitting attributes
as the nodes of the tree, divide the dataset to form a fork in the tree, and recursively call
the forking process for each subset of data. The final decision tree is generated after all
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subsets contain the same type of data. The constructed decision tree can then classify
new data samples. The key to the decision tree classification algorithm is selecting the
splitting attributes. The information gain, Taylor’s formula, the Gini coefficient, and
granular computing are the most commonly used attribute selection operators. The splitting
attributes were selected through information gain and its improvements in classical ID3,
C4.5, E-ID3, R-C4.5, etc. To simplify the logarithmic process, many mathematical methods
have been used in the literature to select the splitting attributes, such as Taylor’s formula,
McLaughlin’s formula, and equivalence substitution instead of the entropy function [2,3].
The splitting attributes were selected through the Gini coefficient and its improvements
in CART [4], SLIQ [5], SPRINT [6], FS-DT [7], model decision trees [8], etc. The splitting
attributes were selected through granular computing in FDT [9], IFDT [10], decision trees
based on fuzzy sets [11], ordered decision trees [12,13], and decision tree algorithms based
on approximation accuracy [14,15], the purity of attributes [16], and the importance of
attributes [17], among others. In order to further optimize the classification performance
of decision trees, many optimized decision tree classification models have been proposed
through the integration of commonly used attribute selection operators with other theories.
Examples include a decision tree integrating information gain and the Gini index [18], a
decision tree integrating information entropy and the correlation coefficient [19] or the
covariance [20], a decision tree based on ant colony optimization [21], and a decision tree
with parallelization [22]. These optimized decision tree models extended the decision tree
classification method and improved decision tree theory.

Granular computing is a new computing paradigm in the current field of intelligent
information processing [23] and is a new method of solving complex problems with multi-
granularity, multi-perspective, and multi-level aspects in the form of knowledge granules.
Granular computing has attracted much attention because it is in line with the basic idea
of human processing and solving complex problems [24]. Granular computing plays an
important role in decision tree classification algorithms such as fuzzy sets, rough sets, word
computation, quotient spaces, cloud models, etc. [25–28]. The granular matrix [29] is a new
mathematical model proposed on the theoretical basis of granular computing. A granular
matrix is a binary representation of the granular structure that presents the classification
ability of knowledge and can well solve problems with an incomprehensible nature and
poorly intuitive operations.

Based on the above analysis, in this paper, we aim to integrate the algebraic operations
of granular matrices into the decision tree algorithm, propose a decision tree classification
algorithm based on granular matrices, and give a new decision tree division method based
on the similarity measure matrix of the granular structure. The test results show that the
algorithm has higher classification accuracy and better classification performance than the
ID3 and C4.5.

The main innovative works of this paper are as follows:

(1) A division of attributes is considered as a granular structure. The “bit-multiplication”
and “bit-sum” operations of the granular matrix are defined. The similarity measure
matrix of the granular structure is given.

(2) The method of extracting the classification decision matrix and calculating the classifi-
cation accuracy of conditional attributes is given and used as the principle of decision
tree splitting. This is a new decision tree construction method.

(3) The process is simplified by the operation mode of binary granules that applies from
the mathematical operation of theoretical description to the practical operation of the
computer model.

The article is structured as follows.
In Section 2, the granular structure of the decision information system is introduced

in detail, these operation rules of the “bit-multiplication” and “bit-sum” are given, and
the similarity measure matrix of the granular structure is given. In Section 3, the decision
tree classification algorithm based on granular matrices is introduced in detail, and the
efficiency of the algorithm is analyzed. In Section 4, a comparative test is given between the
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presented algorithm and the classical ID3 and C4.5; the test results are analyzed in detail.
Finally, a summary is given for the decision tree classification algorithm based on granular
matrices, and subsequent research contents are proposed.

2. Basic Concepts

Granular computing is recognized as a new conceptual and computational paradigm
for information processing [30]. Granulation, granules, and granularity are the most
fundamental concepts in granular computing. Granulation is the division of a theoretical
domain by indistinguishable relations, a granule is a block formed by this division, and
granularity is a homogenized measure of the coarseness of information.

2.1. Information System

Definition 1 [31]. An information system is of the form K = (U, AT, V, f ), abbreviated as
K = (U, AT), where U is a dataset, referred to as the domain; AT is the attribute set; and
V = ∪a∈ATVa is the domain of values, i.e.,∀x ∈ U, a ∈ AT, we have fa(x) ∈ Va. f : U → V is
called the information function.

In particular, if AT contains the conditional attributes set C and the decision attributes
set D, i.e., AT = C ∪ D, C ∩ D = φ, then K = (U, AT) is a decision information system or
decision table, abbreviated as K = (U, C ∪ D).

For example, Table 1 presents a decision information system. Here, U = {1, 2, 3, 4, 5, 6},
conditional attributes set C = {color, price, size}, and decision attributes set D = {Buy}.

Table 1. A decision information system, K = (U,C∪D).

U
C D

Color Price Size Buy

1 White High Full No
2 White Low Compact Yes
3 Black Low Compact No
4 Black Low Full Yes
5 Grey High Full Yes
6 Grey High Compact No

Definition 2 [31]. In K = (U, AT), ∀R ⊆ AT, an indistinguishable relation IND(R) is
defined: IND(R) = {(x, y) ∈ U ×U|∀a ∈ R, fa(x) = fa(y)}. The domain U is divided into
U/IND(R) =

{
XR

1 , XR
2 , · · · , XR

m
}

, 1 ≤ m ≤ |U|, under the effect of IND(R). Here, XR
i is

the information granule determined by R, abbreviated as a granule; U/IND(R) is the granular
structure; PR

i =
∣∣XR

i

∣∣/|U| is the probability distribution of U/IND(R); and |∗| denotes the
number of elements contained in the granule.

For example, if R = {Colour}, then we have the granular structure U/IND(R) =
{{1, 2}, {3, 4}, {5, 6}}; X1

R = {1, 2}, X2
R = {3, 4}, and X3

R = {5, 6} are the information
granules determined by R; and PR

i =
∣∣XR

i

∣∣/|U| = 1/2, i = 1, 2, 3, from Table 1.
In particular, in a decision information system K = (U, C ∪ D), XP

i is the conditional
granule determined by P ⊆ C, and XQ

i is the decision granule determined by Q ⊆ D.

Definition 3 [32]. In K = (U, AT), U/IND(R) =
{

XR
1 , XR

2 , · · · , XR
m
}

is the granular struc-

ture determined by R ⊆ AT, and GD(R) =
m
∑

i=1

∣∣XR
i

∣∣2/|U|2 is called the granularity of R.
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For example, if R = {Colour}, then GD(R) =
m
∑

i=1

∣∣XR
i

∣∣2/|U|2 =
(
22 + 22 + 22)/62 =

1/3, from Table 1.
In granular computing, information systems are also called knowledge bases, and

attributes are called knowledge considered as a classification capability. The stronger the
classification capability of the knowledge (attributes R), the finer the division of the domain,
the smaller the granularity GD(R), and the more important the attributes R. Particularly, if
U/IND(R) =

{
u1, u2, · · · , u|U|

}
, then U/IND(R) is the finest division of the domain U,

and GD(R) = 1/|U|. If U/IND(R) = U, then U/IND(R) is the coarsest division of the
domain U, and GD(R) = 1.

2.2. The Granular Matrix and Its Operations

The granular structure and the classification ability of knowledge are intuitively
presented in the form of a Boolean matrix in granular computing, which can well solve these
problems of knowledge with incomprehensible nature and poorly intuitive operations. The
“bit-multiplication” and “bit-sum” operations of the granular matrix are defined, instead of
intersection and concatenation operations on the information granules, in this section.

Definition 4. In K = (U, AT), U/IND(R) =
{

XR
1 , XR

2 , · · · , XR
m
}

, 1 ≤ m ≤ |U| is the granu-

lar structure determined by R ⊆ AT. If the mapping xR
ij =

{
1, uj ∈ XR

i
0, uj /∈ XR

i
, j = 1, 2, · · · , |U| is de-

fined, then XR
i can be represented by a Boolean row

(
xR

i1, xR
i2, · · · , xR

i|U|

)
, i.e.,

→
XR

i =(
xR

i1, xR
i2, · · · , xR

i|U|

)
. MR =

( →
XR

1 ;
→

XR
2 ; · · · ;

→
XR

m

)
is then the granular matrix induced by R.

For example, if R = {Colour}, then
→

XR
1 = (1, 1, 0, 0, 0, 0),

→
XR

2 = (0, 0, 1, 1, 0, 0),
→

XR
3 =

(0, 0, 0, 0, 1, 1), and MR =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

, from Table 1.

In particular, if GD(R) = 1, then MR = (1, 1, · · · , 1) is a row vector; if GD(R) = 1/|U|,
MR = I is a unit matrix.

In K = (U, AT), suppose that MP =

( →
XP

1 ;
→
XP

2 ; · · · ;
→

XP
m

)
and MQ =( →

XQ
1 ;
→

XQ
2 ; · · · ;

→
XQ

n

)
are granular matrices induced by P, Q(P, Q ⊆ AT), respectively, where

→
XP

i =
(

xP
i1, xP

i1, · · · , xP
i|U|

)
and

→
XQ

j =
(

xQ
j1, xQ

j1, · · · , xQ
j|U|

)
, 1 ≤ i ≤ m ≤ |U|, 1 ≤ j ≤ n ≤

|U|.
The “bit-multiplication” and “bit-sum” operations of these granular matrices are

defined as follows:

Definition 5. MP ⊗ MQ =

(
→
XP

i ⊗
→

XQ
j

)
mn×|U|

is called “bit-multiplication” between the

granular matrices MP and MQ, where
→
XP

i ⊗
→

XQ
j =

(
xP

i1 · x
Q
j1, xP

i2 · x
Q
j2, · · · , xP

i|U| · x
Q
j|U|

)
.

In the “bit-multiplication, ⊗“operation between MP and MQ, all elements of each
row in MP are multiplied by the corresponding elements of all rows in MQ. Each row

vector
→
XP

i ⊗
→

XQ
j in MP ⊗ MQ is identical to the Boolean row vector of the information

granules XP
i ∩ XQ

j . The matrix MP ⊗MQ obtained through the “bit-multiplication” opera-
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tion between MP and MQ is identical to the granular matrix MP∪Q induced by P ∪Q, i.e.,
MP∪Q = MP ⊗MQ.

For example, if P = {Price} and Q = {Size}, then
→
XP

1 = (1, 0, 0, 0, 1, 1),
→
XP

2 =

(0, 1, 1, 1, 0, 0),
→

XQ
1 = (1, 0, 0, 1, 1, 0),

→
XQ

2 = (0, 1, 1, 0, 0, 1), MP =

(
1 0 0 0 1 1
0 1 1 1 0 0

)
,

and MQ =

(
1 0 0 1 1 0
0 1 1 0 0 1

)
, from Table 1.

Based on Definition 5, MP ⊗MQ =


1 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 1 0 0 0

.

Definition 6. MP ⊕MQ =

(
→
XP

i +
→

XQ
j

)
mn×|U|

is called the “bit-sum” between the granular

matrices MP and MQ, where
→
XP

i +
→

XQ
j =

(
xP

i1 + xQ
j1, xP

i2 + xQ
j2, · · · , xP

i|U| + xQ
j|U|

)
.

In the “bit-multiplication, ⊕“operation between MP and MQ, all elements of each row

in MP are added to the corresponding elements of all rows in MQ. The row vector
→
XP

i +
→

XQ
j

is the element of MP ⊕ MQ in row (i− 1)n + j.
→
XP

i +
→

XQ
j −

→
XP

i ⊗
→

XQ
j is the element of

MP ⊕ MQ − MP ⊗ MQ in row (i− 1)n + j and is consistent with the row vector of the
information granules XP

i ∪ XQ
j .

For example, if P = {Price} and Q = {Size}, then based on Definition 6, MP ⊕MQ =
2 0 0 1 2 1
1 1 1 0 1 2
1 1 1 2 1 0
0 2 2 1 0 1

 and MP ⊕MQ −MP ⊗MQ =


1 0 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 0
0 1 1 1 0 1

, from Table 1.

2.3. The Similarity Measure Matrix

In information systems, the division U/IND(R) determined by R is also called a
granular structure. From the perspective of granular computing, neither information
entropy nor knowledge granularity is able to measure the differences between granular
structures [33]. Equivalence is not implied for one granular structure and another with the
same granularity, i.e., granularity cannot portray the differences [34] or similarities between
granular structures.

For example, if P = {Price} and Q = {Size}, then GD(P) = GD(Q) = 1/2, but
IND(P) 6= IND(Q).

The distance of knowledge was proposed in the literature to measure the difference
between granular structures [34,35]. The similarity measure is defined between information
granules based on set similarity [35], and the similarity measure matrix for granular
structures is constructed in this section.

In K = (U, AT), suppose that MP =

( →
XP

1 ;
→
XP

2 ; · · · ;
→

XP
m

)
and MQ =

( →
XQ

1 ;
→

XQ
2 ; · · · ;

→
XQ

n

)
are granular matrices induced by P, Q(P, Q ⊆ AT), respectively, where

→
XP

i =
(

xP
i1, xP

i1, · · · , xP
i|U|

)
and

→
XQ

j =
(

xQ
j1, xQ

j1, · · · , xQ
j|U|

)
, 1 ≤ i ≤ m ≤ |U|, 1 ≤ j ≤ n ≤ |U|.

The similarity measure between information granules and the similarity measure
matrix for granular structures are defined as follows.
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Definition 7. s
(

XP
i , XQ

j

)
=
∣∣∣XP

i ∩ XQ
j

∣∣∣/∣∣∣XP
i ∪ XQ

j

∣∣∣ is called the similarity between XP
i and

XQ
j . If the row vectors of the information granules XP

i and XQ
j are

→
XP

i =
(

xP
i1, · · · , xP

i|U|

)
,
→

XQ
i =(

xQ
i1, · · · , xQ

i|U|

)
, respectively, then the similarity is

s
(

XP
i , XQ

j

)
=

∣∣∣∣∣ →XP
i ⊗

→
XQ

j

∣∣∣∣∣∣∣∣∣∣ →XP
i +

→
XQ

j −
→
XP

i ⊗
→

XQ
j

∣∣∣∣∣
=

∑
|U|
k=1 xP

ik · x
Q
jk

∑
|U|
k=1

(
xP

ik + xQ
jk − xP

ik · x
Q
jk

) .

If
→
XP

i =
→

XQ
j , then s

(
XP

i , XQ
j

)
= 1. If

→
XP

i ·
→

XQ
j = 0, then s

(
XP

i , XQ
j

)
= 0. In particular,

if ∀XP
i , XP

j ⊆ U/IND(P), then s
(

XP
i , XP

j

)
= 0, i 6= j.

Definition 8. Ms(P·Q) =

( →
s1(P ·Q); · · ·

→
; sm(P ·Q)

)
is called the similarity measure matrix

between U/IND(P) and U/IND(Q), where
→

si(P, Q) =
(

s
(

XP
i , XQ

1

)
, · · · , s

(
XP

i , XQ
n

))
.

For example, if P = {Price} and Q = {Size}, then
→
XP

1 = (1, 0, 0, 0, 1, 1),
→
XP

2 =

(0, 1, 1, 1, 0, 0),
→

XQ
1 = (1, 0, 0, 1, 1, 0), and

→
XQ

2 = (0, 1, 1, 0, 0, 1). Based on Definition 7,

s
(

XP
1 , XQ

1

)
= 1/2, s

(
XP

1 , XQ
2

)
= 1/5, s

(
XP

2 , XQ
1

)
= 1/5, and s

(
XP

2 , XQ
2

)
= 1/2. Based on

Definition 8, Ms(P·Q) =

(
1/2 1/5
1/5 1/2

)
, from Table 1.

In particular, if U/IND(P) = U/IND(Q), then MP = MQ, and the similarity mea-
sure matrix Ms(P·Q) = I is the unit matrix.

The similarity measure matrix portrays the correlation between attribute divisions. The
element at each position in the matrix presents the degree of similarity between information
granules.

3. A Decision Tree Classification Algorithm Based on Granular Matrices

The decision tree classification algorithm based on granular matrices (GMDT) is a
new decision tree construction method. In this algorithm, the classification accuracy of
conditional attributes is used to select the classified attributes as the nodes of the tree,
and it is calculated by weighting classification actions using the probability distribution
determined by conditional attributes.

3.1. Selection Criteria of Classification Attributes

The key technique of a decision tree classification algorithm is how to select the
appropriate splitting attribute to determine the nodes of the tree. The classification accuracy
of conditional attributes is defined and used to select the splitting attribute.

In K = (U, C ∪ D), suppose that Ms(P·D) =

( →
s1(P · D); · · ·

→
; sm(P · D)

)
is the sim-

ilarity measure matrix between U/IND(P), P ⊆ C and U/IND(D), where
→

si(P, D) =(
s
(
XP

i · XD
1
)
, · · · , s

(
XP

i · XD
n
))

.
The classification accuracy of conditional attributes is then defined as follows.

Definition 9. In K = (U, C ∪ D), if the mapping si(P · D) = max
{

s
(
XP

i · XD
1
)
, · · · , s

(
XP

i · XD
n
)}

is defined in
→

si(P · D), then a(P · D) = (s1(P · D), s1(P · D), . . . , sm(P · D)) is called the classifica-
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tion action of P, and α(P,D) =
m
∑

i=1
PP

i · ai(P · D) is called the classification accuracy of P relative to the

decision attributes D.

For example, if P = {Price} and D = {Buy}, then
→
XP

1 = (1, 0, 0, 0, 1, 1),
→
XP

2 =

(0, 1, 1, 1, 0, 0),
→

XD
1 = (1, 0, 1, 0, 0, 1), and

→
XD

2 = (0, 1, 0, 1, 1, 0). Based on Definition 7,
s
(
XP

1 , XD
1
)
= 1/2, s

(
XP

1 , XD
2
)
= 1/5, s

(
XP

2 , XD
1
)
= 1/5, s

(
XP

2 , XD
2
)
= 1/2, and PP

i =∣∣XP
i

∣∣/|U| = 1/2, i = 1, 2. Based on Definition 8, Ms(P·D) =

(
1/2 1/5
1/5 1/2

)
. Based on Defini-

tion 9, the classification action of P is a(P · D) = (1/2, 1/2), and the classification accuracy
of P relative to the decision attributes D is α(P,D) = 1/2, from Table 1.

The classification accuracy α(P,D) of P relative to D portrays the cognitive ability
of U/IND(D) based on U/IND(P). In particular, α(P,D) = 1 shows that the cognition
(division) of U/IND(P) to U/IND(D) is identical. When the splitting attribute of the
decision tree is selected according to α(P,D), a splitting attribute highly consistent with the
classification result of the decision attribute can be extracted from the many classification
attributes as the node of the tree, and the classification accuracy of the decision tree can
thus be improved.

In addition, GD(P) = 1 indicates that the attribute has no classification ability and
cannot be used as a splitting attribute of the decision tree.

3.2. Selection Method of Leaf Nodes

In the decision tree branching process, the dataset is divided into multiple subsets by
the splitting attribute, and the branching process is recursively invoked for each subset
until each subset contains only the same type of data, at which point the classification
ends. In granular computing, the elements contained in each information granule are
indistinguishable; that is to say, the data types are consistent. In GMDT, if s

(
XP

i , XD
j

)
=∣∣∣XP

i ∩ XD
j

∣∣∣/∣∣∣XP
i ∪ XD

j

∣∣∣ = ∣∣XP
i

∣∣/∣∣∣XD
j

∣∣∣ between XP
i and XD

j , then XP
i ⊆ XD

j . This indicates

that the conditional attribute cannot further subdivide the decision granule XD
j , and XP

i
will be made a leaf node of the decision tree.

3.3. Algorithm Description and Analysis

The core idea of GMDT is to select the conditional attribute with the highest classifi-
cation accuracy as the node of the tree through the operation of the granular matrix; the
branching process is recursively invoked for each subset until each subset contains only
the same type of data, at which point the classification ends. The specific algorithm flow is
shown in Algorithm 1.

3.4. Time and Space Complexity

Time complexity: Assuming that the data-set has n samples and m attributes, in
phase 1, the computational effort of the algorithm is mainly to calculate the granular
matrix induced by each attribute, which produces a time complexity of O(m × n2). Next,
according to the granular matrices induced by the attributes, bit-multiplication and bit-sum
operations are performed to calculate the similarity matrix between each information grain
and the decision grain in the categorical attributes. Assuming that there are k classification
attributes, the time complexity is O(k × n2). Finally, in the classification accuracy function,
for each attribute, its classification accuracy must be calculated. Assuming that there are n
data samples and m attributes, the time complexity of computing the classification accuracy
for each attribute is O(n × m). In the second stage, the amount of calculation is mainly due
to recursive calls. If the data-set is not empty, the classification accuracy function and the
whole algorithm are called recursively. Assuming that the size of the data-set is p and the
recursive depth of the algorithm is d, the time complexity of the recursive calls is O(p × d).
Thus, the time complexity of this algorithm is O(m × n2).
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Space complexity: The process of recursively calling the classification accuracy func-
tion and the whole process of the algorithm involve the use of stack space. Assuming that
the recursion depth is d, each recursive call needs to save the local variables and parameters
of the function, so the space complexity of this algorithm is O(d).

Algorithm 1: Decision Tree Algorithm Based on Granular Matrices

Input: K = (Data: the set of training samples, Attributes: the set of conditional and decision
attributes)
Output: Tree

1: Classification accuracy(k,data,attributes)
2: if k >= len(attributes)

return
3: if Granular Degree(data, conditional attributes, k) == 1

Classification accuracy[k] = 0
else

Granular Matrix (Data, Attributes)
Similar Matrix = Granular Matrix (conditional) ⊗ Granular Matrix(decision)
Classification Action = max (Similar Matrix, axis = 1)
Classification accuracy[k] = Classification Action*Granular Degree
Classification accuracy (k + 1,data,attributes)

4: select Node = max (Classification accuracy)
5: Tree = Tree + Node
6: update (data, attributes), Classification accuracy = {}
7: if data! = null
8: go to 1
9: else
10: return tree

3.5. Calculation Example

The decision information system K = (U, C ∪ D) is shown in Table 2.

Table 2. A decision information system, K = (U,C∪D).

U
C D

Color Root Stroke Texture Umbilical Touch Good

1 D-green Curl up Turbid Clear Depressed Smooth Yes
2 Jet-black Curl up Dull Clear Depressed Smooth Yes
3 Jet-black Curl up Turbid Clear Depressed Smooth Yes
4 D-green Curl up Dull Clear Depressed Smooth Yes
5 Plain Curl up Turbid Clear Depressed Smooth Yes
6 D-green Slightly curl Turbid Clear Concave Soft Yes
7 Jet-black Slightly curl Turbid S-vague Concave Soft Yes
8 Jet-black Slightly curl Turbid Clear Concave Smooth Yes
9 Jet-black Slightly curl Dull S-vague Concave Smooth No
10 D-green Stiff Melodious Clear Flat Soft No
11 Plain Stiff Melodious Vague Flat Smooth No
12 Plain Curl up Turbid Vague Flat Soft No
13 D-green Slightly curl Turbid S-vague Depressed Smooth No
14 Plain Slightly curl Dull S-vague Depressed Smooth No
15 Jet-black Slightly curl Turbid Clear Concave Soft No
16 Plain Curl up Turbid Vague Flat Smooth No
17 D-green Curl up Dull S-vague Concave Smooth No

Based on Definition 7, the similarity measure matrices of Mc, Mr, Ms, Mte, Mu, and
MD are
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Ms(c,D) =

 3/11 3/12
4/10 2/13
1/12 4/10

, Ms(r,D) =

 5/11 3/14
3/12 4/12

0 2/9

, Ms(s,D) =

 6/12 4/15
2/11 3/11

0 2/9


Ms(te,D) =

 7/10 2/16
1/12 4/10

0 3/9

, Ms(u,D) =

 5/10 2/14
3/11 3/12

0 4/9

, Ms(to,D) =

(
6/14 6/15
2/11 3/11

)
The classification decision actions are as follows:

a(c, D) =

(
3
11

,
4

10
,

4
10

)′
a(r, D) =

(
5
11

,
4

12
,

2
9

)′
a(s, D) =

(
6

12
,

3
11

,
2
9

)
a(te, D) =

(
7
10

,
4
10

,
3
9

)′
a(u, D) =

(
5

10
,

3
11

,
4
9

)′
a( to , D) =

(
6

14
,

3
11

)
The classification accuracies of Color, Root, Stroke, Texture, Umbilical, and Touch

relative to D are α(c,D) = 0.3551, α(r,D) = 0.3773, α(s,D) = 0.4005, α(te,D) = 0.5471, α(u,D) =
0.4067, and α(to,D) = 0.3827.

Obviously, α(te,D) = 0.5471 is the highest value, so Texture is selected as the splitting
attribute to form a node in the tree to divide the data-set.

Similarly, the classification accuracies of the conditional attributes in each sub-dataset
are calculated, and the attribute with the highest accuracy is selected as the division
attribute for recursion; the constructed decision tree is shown in Figure 1.
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Figure 1. Decision tree constructed by GMDT.

4. Experiments and Result Analysis
4.1. Experimental Environment

The computer hardware and environment configuration were an AMD Ryzen 75800H
3.20 GHz processor with Radeon Graphics, 16.0 GB of RAM, a Windows 10 operating
system, and Python version 3.10.

Many existing decision tree models were developed and optimized by combining
other theories based on commonly used operators such as the information gain, Taylor’s
formula, the Gini coefficient, granular computing, etc. The basis of these decision tree
models is these commonly used operators. The decision tree classification algorithm
based on granular matrices proposes a new splitting attribute selection operator, i.e., the
classification accuracy of the splitting attribute relative to the decision attribute, changing
the core of the classification algorithm. Therefore, the classical ID3 and C4.5 were selected
for comparison with GMDT in this paper.

In our experiments, more than 20 sets of classification data were selected from UCI
through a “classification” keyword search to test the effectiveness of the classification
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algorithm, including Iris, Heart Disease, Breast Cancer, Adult, Win, CRX, Wine Quality,
Car Evaluation, Acute Inflammations, Krkogt, dermatology, etc. In the actual situation
where these experimental data were not preprocessed, the classification accuracy of the
GMDT, ID3, and C4.5 algorithms on all but the Acute Inflammations, Iris, Breast Cancer,
CRX, Mushrooms, and Adult datasets was less than 60%. Therefore, only the experimental
results on datasets with classification accuracy higher than 60%, as shown in Table 3, are
presented.

Table 3. Description of UCI datasets.

No. Dataset Samples Attributes Class

1 Acute
Inflammations 121 6 2

2 Iris 151 4 3
3 Breast Cancer 286 9 2
4 CRX 654 15 2
5 Mushrooms 8125 21 2
6 Adult 32,561 14 2

4.2. Algorithm Comparison Experiment

(1) Comparison of classification accuracy

The six experimental datasets in Table 2 were selected and partitioned into 70% for
the training set and 30% for the test set. ID3, C4.5, and GMDT were run. The classification
accuracies calculated in the experiment are shown in Table 4.

Table 4. Classification accuracy.

No. Data
Classification Accuracy

ID3 C4.5 GMDT

1 Acute
Inflammations 0.64 0.64 0.64

2 Iris 0.80 0.87 0.90
3 Breast Cancer 0.46 0.53 0.61
4 CRX 0.31 0.34 0.63
5 Mushrooms 0.80 0.87 0.90
6 Adult 0.27 0.45 0.75

In order to intuitively present the experimental results, “blue” was chosen to represent
the experimental calculation results of ID3, “red” was chosen to represent the experimental
calculation results of C4.5, and “orange” was chosen to represent the experimental calcula-
tion results of GMDT. A histogram of the experimental results of the three classification
algorithms was drawn, as shown in Figure 2.
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The following can be clearly observed: À The accuracy of the GMDT classification
algorithm was higher than that of the classical ID3 and C4.5, especially on the CRX and Adult
datasets. Á The classification accuracies of all three algorithms were affected by the data
type, the classification accuracies for different data types were different, and the classification
accuracies of the three algorithms were basically at the same level in the same data. The
maximum variance of the classification accuracy was only 0.0392, as shown in Figure 3, which
indicates that the robustness of the GMDT decision tree classification algorithm and that of
the classical ID3 and C4.5 classification algorithms are basically consistent.
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(2) Error analysis

To further compare and analyze the classification performance of ID3, C4.5, and GMDT,
the numbers of correctly classified, unclassified, and misclassified samples in the test set
were extracted from the experimental calculation results and expressed as a ternary ordered
array (correct classification, no classification, and classification error), as shown in Table 5.

Table 5. Error analysis.

No. Data
Error Analysis

ID3 C4.5 GMDT

1 Acute
Inflammations (23, 0, 13) (23, 0, 13) (23, 0, 13)

2 Iris (36, 7, 2) (39, 3, 3) (41, 3, 1)
3 Breast Cancer (35, 10, 31) (40, 6, 30) (46, 0, 30)
4 CRX (64, 110, 34) (70, 101, 37) (131, 20, 57)
5 Mushrooms (1950, 340, 148) (2126, 168, 144) (2197, 0, 241)

6 Adult (2679, 5937,
1153) (4396, 4662, 738) (7352, 33, 2384)

In order to intuitively present the experimental results, “blue” was chosen to represent
the experimental calculation results of ID3, “red” was chosen to represent the experimental
calculation results of C4.5, and “orange” was chosen to represent the experimental calcula-
tion results of GMDT. Histograms of the experimental results from the three classification
algorithms in terms of the rate of unclassified data, the rate of classification errors, and the
classification potential are plotted in Figure 4, Figure 5, and Figure 6, respectively.
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Since the model training of the GMDT classification algorithm requires the classi-
fication results of split attributes to be highly consistent with the decision classification,
the completed training decision tree classification model showed slight overfitting in the
test set. The specific performance was as follows: 1© The unclassified proportion of the
GMDT classification algorithm was much smaller than those of ID3 and C4.5. As shown in
Figure 4, the unclassified ratio of GMDT was 0.096 in the CRX dataset, while the unclassi-
fied ratios of ID3 and C4.5 were as high as 0.53 and 0.49, respectively. In the Adult dataset,
the unclassified ratio of GMDT was only 0.0034, while the unclassified ratios of ID3 and
C4.5 were as high as 0.61 and 0.48, respectively. The difference became more prominent
as the sample size of the dataset increased. 2© The classification error rate of the GMDT
algorithm increased with increasing data volume and data diversity. As shown in Figure 5,
the classification error rate of the GMDT classification algorithm was greater than those of
ID3 and C4.5 in both the CRX and Adult datasets.

(3) Comparison of classification potential
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The set-pair potential [36] is used to portray the developmental trend of a system by
comparing the same degree with the opposition degree. In this paper, the classification
accuracy was taken as the same degree, while the error rate was regarded as the oppo-
sition degree; the classification potential of ID3, C4.5, and GMDT was thus compared.
As shown in Figure 6: the classification potential was basically consistent, even though
the classification error rate of GMDT was higher than those of ID3 and C4.5 in the two
large-sample datasets, CRX and Adult, which indicates that the slight overfitting did not
affect GMDT’s classification performance. GMDT’s classification potential in the Adult
dataset was much higher than that of ID3 and C4.5, which indicates that GMDT has better
classification performance than ID3 and C4.5.

5. Conclusions

In this paper, a decision tree classification algorithm based on granular matrices was
proposed and introduced in detail. Experiments were performed to compare GMDT and
the classical ID3 and C4.5; the test results showed that the proposed algorithm has higher
classification accuracy and better classification performance than ID3 and C4.5. These
studies further optimized the classification performance and extended the classification
method. Further research is needed on the operational laws of granular matrices; research
following on from this paper will focus on constructing multivariate decision trees and
random forests based on similarity granular matrices.
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