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Abstract: This paper presents a novel development methodology for artificial intelligence (AI)
analytics in energy management that focuses on tailored explainability to overcome the “black box”
issue associated with AI analytics. Our approach addresses the fact that any given analytic service is
to be used by different stakeholders, with different backgrounds, preferences, abilities, skills, and
goals. Our methodology is aligned with the explainable artificial intelligence (XAI) paradigm and
aims to enhance the interpretability of AI-empowered decision support systems (DSSs). Specifically,
a clustering-based approach is adopted to customize the depth of explainability based on the specific
needs of different user groups. This approach improves the accuracy and effectiveness of energy
management analytics while promoting transparency and trust in the decision-making process. The
methodology is structured around an iterative development lifecycle for an intelligent decision
support system and includes several steps, such as stakeholder identification, an empirical study on
usability and explainability, user clustering analysis, and the implementation of an XAI framework.
The XAI framework comprises XAI clusters and local and global XAI, which facilitate higher adoption
rates of the AI system and ensure responsible and safe deployment. The methodology is tested on a
stacked neural network for an analytics service, which estimates energy savings from renovations,
and aims to increase adoption rates and benefit the circular economy.

Keywords: machine learning; optimization; explainable artificial intelligence; energy management;
energy transition; circular economy

1. Introduction

The energy sector undergoes significant transformations that impact all its stake-
holders, collectively known as “Energy Transition”. This term refers to the shift from
fossil-fuel-based energy production, such as oil, natural gas, or coal, to more sustainable
and eco-friendly sources like solar energy, wind energy, hydrogen-based energy, or the
use of lithium-ion batteries. Indeed, since the Paris Agreement [1,2], there is increasing
international concern and action taken with regard to climate change and the viability of
Earth. More specifically, the Paris Agreement focuses on the design and application of
viable, effective, socially acceptable, and fair policies to fight and possibly reverse climate
change on a global level [3].

Energy transition is not restricted to decarbonization only, but it also incorporates
multiple social, technological, and environmental targets [4]. The concept is based on four
fundamental principles, known as the 4Ds of the energy sector, which include decarboniza-
tion, digitization, decentralization, and democratization.
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In more detail, decarbonization is a key pillar of energy transition [5], referring to the
reduction in dependence on carbon for energy production and its gradual replacement
with other sources such as renewable energy sources (RESs) [6]. The ultimate goal of
decarbonization is a world economy that does not produce CO2 emissions. Decentralization
is another pillar of energy transition, focusing on the construction of energy production
systems near energy consumers, reducing the dependence on fossil fuels and promoting
the use of RESs [7].

The success of decentralization depends on the existence of active consumers, also
known as “prosumers,” who produce, store, and manage the energy that they consume [8].
Democratization follows decentralization, as prosumers and small and medium-sized
enterprises gain reliable access to low-cost energy [9]. Digitization is the fourth pillar,
involving the use of electronic tools, systems, and devices to process data and extract
meaningful information to optimize energy processes [10,11], as energy data exhibit the
so-called 5Vs, i.e., very high volume, variety, velocity, veracity, and value [12,13].

The shift from a producer/provider-centered energy system to a consumer/household-
centered system poses significant challenges [14]. Fortunately, advancements in artificial
intelligence (AI) have provided a powerful tool to facilitate this transition and achieve
associated ecological and social objectives [15]. However, transitioning to autonomous AI-
empowered systems requires addressing their impact on stakeholders and understanding
how the underlying functions achieve prediction goals [16]. It is essential for all energy
stakeholders to be actively involved in decision making regarding the production, distri-
bution, and management of energy. Stakeholder-tailored decision support systems (DSSs)
that provide decision support at various levels and forms need to be developed.

These DSSs need to integrate predictive models and optimization algorithms that rely
on state-of-the-art machine learning (ML) and AI technologies. Additionally, they need to
incorporate explainable and responsible AI (XAI and RAI, respectively) technologies to
be adopted by various user classes and to exclude unacceptable decisions. XAI and RAI
technologies provide system users with justification for recommended actions [17,18]. As
the explainability and responsibility of an AI system are concepts related to a particular
audience, i.e., to a class of users or even specific individuals [17], the identification of
various stakeholder classes is necessary.

The pivotal attributes of explainable artificial intelligence (XAI) include fairness, ethics,
transparency, privacy, security, accountability, and safety. System transparency is impera-
tive, equally weighed with the demand for data privacy and security [19]. Ensuring users
comprehend the characteristics of utilized models and providing a transparent representa-
tion of the deployed algorithms are crucial [17]. The predominant issue pertains to estab-
lishing user trust in machine learning (ML) models for predictions and decision support,
while developers must furnish adequate descriptions and decision-making roadmaps [20].

XAI is deemed vital due to the growing social impact of intelligent systems. Indeed,
XAI promotes system adoption and could integrate familiarity with technology and AI
literacy into its framework and design process, combining scientific and simplified expla-
nations per user comprehension and mental capacity [21]. The concept of XAI is divided
into global explainability, providing overarching understanding of model predictions, and
local explainability, elucidating individual classifier decisions, Both global and local ex-
plainability are pivotal for assessing AI system fairness and transparency [22]. Further
divisions of explainability can be assumed with regard to model architecture, benchmarks,
and semantic grouping. All of these themes are examined in the following sections.

In view of the above, this paper presents a novel methodology that focuses on develop-
ing customized XAI analytics for energy management, which are specifically tailored to meet
the needs of various groups of energy stakeholders. This methodology aims to resolve the
issue of the “black box” phenomenon associated with AI decision making by ensuring the
transparency and interpretability of the analytics results. To support this methodology, the
paper introduces an intelligent decision support system (IDSS) that constitutes a software
tool consisting of energy services.
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Specifically, the IDSS is developed using an iterative agile life cycle, which is a method
for software development that breaks down the work into smaller sprints. The IDSS uses
AI and optimization algorithms to provide optimal solutions for energy management
and efficiency in buildings under specific constraints. The aim of the IDSS is to help
energy stakeholders make informed decisions about energy management and efficiency in
buildings by combining AI and optimization algorithms.

The methodology for developing the XAI analytics involves several processes, starting
from identifying key stakeholders in the energy sector and conducting an empirical study
to determine the usability and explainability needs of the IDSS. This includes creating an
appropriate questionnaire, conducting a survey among key stakeholders, and performing a
user clustering analysis to define the necessary depth of AI explainability in terms of AI
literacy score, acceptance, and perceived usefulness.

Finally, an XAI framework is implemented based on the outcomes of the analysis,
which includes XAI clusters and local and global XAI. This framework is designed to ensure
a responsible and safe deployment of the AI system, while enabling higher adoption rates
by promoting trust and reliability in the analytics results.

The ultimate goal of this methodology is to provide a cutting-edge solution for decision
support analytics for energy management and efficiency in buildings that is trustworthy,
reliable, and meets the specific needs of energy stakeholders.

In summary, the key contributions of this paper are the following:

• Agile development and implementation of an IDSS, prioritizing XAI tailored to specific
user needs.

• Testing of the methodology on a stacked neural network.
• Emphasis on explainability not only as an ethical approach but also as a crucial tool

for building user trust and ensuring rapid adoption rates in the energy sector, thus
contributing to a more sustainable future.

• Utilization of the technology acceptance model (TAM) to cluster stakeholders based
on their perceptions of usefulness and ease of use, where:

– Perception of usefulness is associated with AI literacy.
– Perceived ease of use is linked with usability.

• Identification that varying perceptions necessitate different explanation approaches,
therefore grouping XAI tools accordingly to ensure broader and accelerated adoption
rates.

The main body of the paper is structured as follows: Section 2 discusses energy-related
issues and introduces the IDSS developed through an agile process. Section 3 introduces a
novel methodology for tailored AI explainability in energy management IDSSs. Section 4
identifies and discusses key energy sector stakeholders. Section 5 describes the creation
of a stakeholder questionnaire, designed considering AI explainability, energy market
trends, and the TAM. Section 6 presents the empirical study and user-based clustering
analytics conducted through an actual survey of stakeholders, which specifies requirements
for the tailored explainability of energy DSS analytics taking into account AI literacy and
levels of abstraction. Section 7 describes the actual implementation and testing of personal-
ized/tailored XAI in the IDSS, highlighting its utility and adoption implications. Lastly,
Section 8 summarizes the findings and conclusions and proposes future research directions.

2. Energy Management IDSS with Analytics Services Using an Agile
Development Process

The energy sector is navigating through three primary challenges: (1) management and
optimization of renewable energy sources, (2) handling distributed energy resources, and
(3) enhancing building energy efficiency [23,24]. Managing distributed energy resources
involves addressing issues like predicting energy demand and optimizing loads and energy
storage [25–30]. Additionally, the circular economy model seeks to intertwine sustainability
with economic growth through strategies focusing on resource reusability and recycling
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and backed by regulatory frameworks and incentives [31–35]. ML and AI present robust
avenues to address these multifaceted challenges in the energy sector.

2.1. Agile Software Life Cycle in Sprints of Energy Management IDSS

The development of analytics services for a model energy management intelligent
decision support system (IDSS) has previously progressed iteratively within an agile life
cycle, incorporating sprints illustrated in Figure 1. The agile methodology emphasizes
continuous delivery and iterative development, and encompasses stages such as planning,
design, development, testing, deployment, revising, and releasing, all within time-bound
sprints, each yielding a functional software increment [36–38]. The energy management
IDSS, utilized as a research testbed, comprises eight analytics services, each constructed in
a sprint within the agile framework.

Figure 1. Agile life cycle of energy management IDSS consisting of 8 analytics services released
in sprints.

2.2. Analytics Services for Energy Management IDSS

In this section, eight analytical services (ASs) [39–41] constituting the energy manage-
ment intelligent decision support system (IDSS) are briefly described, with their intercon-
nection depicted in Figure 2.

Figure 2. AI/ML/optimization-based analytics services.

1. AS01: Focuses on photovoltaic (PV) production forecasting using PV production time
series and weather data to estimate short- to mid-term PV system energy generation.
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2. AS02: Addresses building-level consumption forecasting, utilizing building consump-
tion time series to estimate future energy use.

3. AS03: Concentrates on grid load forecasting, using building consumption and weather
data to predict future grid loads.

4. AS04: Estimates energy savings from renovations, utilizing pre- and post-renovation
consumption time series of the building, weather data, and measurements.

5. AS05: Pertains to financing energy conservation measures, using historical project
records, building characteristics, and cost data, outputting a renovation class (A, B, or
C) indicating potential against cost.

6. AS06: Optimizes distributed energy resources in micro-grids, using forecasts and
profiles from PV production, building consumption, loads, and storage systems to
output optimal scheduling and sizing, interlinking with AS01 and AS02.

7. AS07: Involves flexible load scheduling for peak shaving at the grid level, using
forecasts and profiles from PV production and grid load, interlinking with AS01
and AS03.

8. AS08: Manages thermal comfort with dynamic energy management, utilizing room-
level consumption, humidity, and temperature data to schedule HVAC systems,
connecting directly with AS02.

Later on, in Figure 5, the interconnections between the defined analytics services and
key stakeholders of the energy sector (identified in Section 4) will be illustrated.

3. Overview of the Novel Methodology for Tailored Explainability of AI in Energy
Management IDSS

Toward facilitating the adoption of IDSS in energy management applications, the
analytic services that they provide need to be more understandable and comprehensible
by each associated stakeholder. The methodology described in this paper offers a novel
approach to designing a tailored explainability solution for AI analytics services in the
energy management sector. It incorporates multiple processes that are informed by the
stakeholders’ specific needs and preferences, and it applies established frameworks such as
the TAM and human–computer interaction (HCI) principles to ensure the effectiveness of
the solution.

One of the key contributions of this methodology is that it takes into account the
diverse needs and preferences of stakeholders in the energy management sector. By
conducting a survey and analyzing the data, the methodology is able to identify the
different clusters of stakeholders with varying levels of AI literacy, acceptance, perceived
usefulness and ease of use, and energy market trends. This helps to ensure that the tailored
explainability solution is designed to meet the specific needs of each stakeholder group.

Another contribution of this methodology is that it incorporates both local and global
levels of implementation. This ensures that the tailored explainability solution is accessible
to all stakeholders who require it. This is particularly important in the energy management
sector, where stakeholders may vary significantly in their backgrounds and needs.

In general, the novelty and contribution of this methodology lie in its comprehensive
approach to designing a tailored explainability solution for AI analytics services in the
energy management sector. By taking into account the stakeholders’ specific needs and
preferences and applying established frameworks, the methodology is able to develop an
effective solution that meets the diverse needs of stakeholders in this sector.

In more detail, the methodology consists of five processes aimed at developing a
tailored explainability solution for AI analytics services in the energy management sector,
as follows.

Process 1: Identification of key stakeholders and AI analytics services. The first process
involves identifying the key stakeholders in the energy management sector and the required
AI analytics services. This step is critical because it helps to understand the ecosystem in
which the AI analytics services will be deployed and identify the stakeholders who will be
impacted by these services. By understanding the interconnection between the stakeholders
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and the analytics services, it becomes possible to design a tailored explainability solution
that addresses their specific needs.

Process 2: Creation of tailored explainability requirements questionnaire. The second
process involves creating a tailored questionnaire to gather requirements for explainability.
This questionnaire is designed to capture the stakeholders’ perceptions of the ease of use
and usability of the AI analytics services, their level of AI literacy, and their understanding
of the energy market trends. The questionnaire applies the TAM and HCI principles, which
help to ensure that the stakeholders’ needs are fully addressed.

Process 3: Conducting a survey among energy management stakeholders. The third
process involves conducting a survey among the energy management stakeholders to
collect data on their demographics and relation to the energy sector. The survey is designed
to ensure that the tailored explainability solution is informed by the specific needs of the
stakeholders. This step also helps to ensure that the stakeholders are involved in the process
and that their voices are heard.

Process 4: User-based clustering analysis to determine the required depth of explain-
ability. The fourth process involves user-based clustering analysis to determine the required
depth of explainability. This is carried out in terms of the stakeholders’ AI literacy, ac-
ceptance, perceived usefulness and ease of use, and energy market trends. By analyzing
the survey data, it becomes possible to group the stakeholders based on their needs and
preferences. This step helps to ensure that the tailored explainability solution is effective in
providing the required level of transparency and understanding.

Process 5: Implementation of tailored XAI. The final process involves implementing the
tailored explainability solution for AI analytics services at both the local and global levels.
This step involves developing a solution that meets the specific needs of the stakeholders
and is effective in providing the required level of transparency and understanding. The
solution is implemented at both the local and global levels to ensure that it is accessible to
all stakeholders who require it.

This methodology, which is summarized in Figure 3, is designed to ensure that the
explainability of AI analytics services in the energy management sector is tailored to the
specific needs of stakeholders and is effective in providing the required level of transparency
and understanding. It is a comprehensive approach that involves multiple steps and is
informed by data collected from the stakeholders themselves.

Figure 3. The five processes and subprocesses of the methodology for tailored explainability in
energy management IDSS.
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4. Identification of Key Energy Stakeholders

In the energy sector, there are various stakeholders with different roles and responsi-
bilities, and each stakeholder group has specific needs and requirements. Therefore, it is
essential to identify these stakeholders and understand their interconnection to effectively
implement any energy management system.

However, identifying stakeholders can be challenging as they can vary depending on
the context, location, and type of project. Additionally, stakeholders may have conflicting
interests, which can further complicate the process. Hence, it requires a systematic and
comprehensive approach to identify all stakeholders and understand their requirements
and needs.

It is important to note that stakeholders range from energy producers, suppliers,
balance responsible parties, transmission and distribution system operators, regulatory
bodies, electricity customers, consumers, residents of buildings, project developers, invest-
ing funds, governmental institutions, aggregators, facility managers, and energy managers.
Each stakeholder group plays a significant role in the energy sector and requires different
types of analytics services to meet their needs.

In this subsection, we outline eleven (11) key stakeholders, which are associated with
stakeholders and have been fully implemented. Figure 4 illustrates key energy stakeholders
along with their corresponding importance and Figure 5 illustrates the interconnection
between the key stakeholders and the analytics services defined previously. The description
and the roles of these stakeholders are analyzed as follows:

1. KS01—Producers (PDs): Producers generate energy, either conventionally or through
renewable sources, and include entities like individual park owners and aggregators
of several production sites.

2. KS02—Suppliers (SPs): Suppliers sell energy to various consumers and may not
necessarily be producers, especially in competitive energy markets.

3. KS03—Balance Responsible Party (BRP): BRPs oversee the balance of one or more
access points to the transmission grid.

4. KS04—Transmission System Operator (TSO): TSOs transport electricity from pro-
ducers to distribution networks or direct to consumers and are obliged to ensure the
overall balance of the network.

5. KS05—Distribution System Operators (DSOs): DSOs handle the construction and
management of medium- and low-voltage/pressure networks, connecting transmis-
sion networks to private properties.

6. KS06—Regulatory Bodies (REGs): These bodies regulate the energy market, en-
suring transparency and competition, defending consumer interests, and certifying
energy markets’ operations.

7. KS07—Electricity Customers, Consumers, Residents of Buildings, Occupants (BUIs):
This group consists of entities consuming energy at various scales.

8. KS08—Project Developers, Investing Funds, Governmental Institutions (INVs):
Entities focusing on financing opportunities in energy efficiency projects aiming
to reduce carbon emissions at various scales.

9. KS09—Aggregators (AGGs): Aggregators manage the electricity consumption of a
consumer group, responding to total grid demand, and sell flexibility to DSOs, BRPs,
and TSOs.

10. KS10—Facility Managers, Building Operators (FMBs): FMBs manage the heating,
cooling, and mechanical equipment of a building to ensure efficient operation.

11. KS11—Energy Managers (ENMs): ENMs manage the HVAC systems of large build-
ings to maintain acceptable thermal comfort levels.
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Figure 4. Key energy stakeholders.

Figure 5. Interconnection between key stakeholders and analytics services.

5. TAM for Tailored Questionnaire in an Empirical Study

The next step in the process entails the development of a customized empirical study
aimed at obtaining information on explainability requirements. The empirical study is
specifically designed to elicit feedback from stakeholders on the user-friendliness and
functionality of the AI analytics services, their level of familiarity with AI, and their grasp
of current energy market trends. Therefore, the empirical study is based on a survey with
a questionnaire that has been created to serve the purposes of the empirical study. As
such, the questionnaire is grounded on the principles of the TAM and HCI, which serve to
guarantee that the stakeholders’ needs are comprehensively met.

According to the TAM developed by Davis in 1989, the acceptance of a new computer
system is linked to two external factors, namely perceived usefulness and perceived ease of
use. Perceived usefulness refers to the users’ belief that a certain technology can deliver
value. Perceived ease of use refers to the level of effort that a user would be required to
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undertake to use the technology. TAM is extracted from the theory of reasoned action [42],
which assumes that, to predict user behavior, those two external variables should be linked
to specific intentions. These factors are viewed as indicators of an individual’s willingness
to use a particular technology and, consequently, impact the probability of its adoption.

The TAM is a suitable framework for creating questions aimed at determining energy
stakeholders’ willingness to use new technology such as AI. This is because perceived
usefulness and perceived ease of use are two factors that align with common concerns that
energy stakeholders may have when considering the adoption of AI.

Firstly, energy stakeholders may question the usefulness of AI in energy management
because they may not fully understand how the technology works and what benefits it can
provide. Additionally, they may have concerns about the reliability and accuracy of AI
algorithms and models, as well as potential ethical implications and risks associated with
the use of AI in decision-making processes.

In the context of energy management, stakeholders may also be more familiar with
traditional methods and practices, and therefore may be skeptical about the effectiveness of
AI in improving energy efficiency, reducing costs, or enhancing sustainability. Furthermore,
they may have specific requirements and constraints that they believe cannot be addressed
by AI technology.

To address these doubts and concerns, it is important to gather stakeholders’ per-
ceptions and expectations about the usefulness of AI in energy management, as well as
to educate them about the potential benefits and limitations of the technology. Utilizing
a framework such as the TAM can help in assessing stakeholders’ perceptions and in
identifying areas where further education and clarification may be needed. The question-
naire designed to gather stakeholders’ perceptions on AI’s usefulness can aid in assessing
whether the technology meets the expectations and needs of the stakeholders.

Secondly, stakeholders may be apprehensive about the ease of use of AI. The TAM
framework emphasizes that the technology must be perceived as easy to use to ensure its
successful adoption. The questionnaire can help in assessing the stakeholders’ perception of
the user-friendliness of AI and simplicity of its operations. Therefore, the TAM framework
is used in developing a questionnaire that can help to ensure that stakeholders’ concerns
and expectations are accurately captured. It can provide valuable insight into the likelihood
of the successful adoption of AI technology in the given context of energy management, as
illustrated in Figure 6.

Figure 6. Technology acceptance model.

The questionnaire is divided into three sections. The first one is related to the de-
mographic characteristics of the participants, including age, gender, educational level,
occupation, and employment space (public, private, or both). The aim of the second section
is to define the AI literacy level (perceived usefulness) of the participants, while the third
section attempts to define the perceived ease of use of the provided AI tools. In the second
and third sections, both qualitative and quantitative questions were included. The quan-
titative questions were used as scoring components and facilitated the clustering of the
specialists that participated in the survey. On the other hand, the qualitative questions were
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used as descriptors of the market trends and the general attitude toward AI infusion in the
energy sector. In Tables 1–3, the different questions are separated in a way that reflects the
described process.

Table 1. Perceived usefulness and AI literacy level.

Question Perceived Usefulness

Q1 Competency level in the English language
Q2 Level of literacy in AI and related expertise
Q3 Years of Experience in the sector
Q4 In the system use, were you adequately informed for every change that

the system performs?
Q5 In the system use, to what extent your previous knowledge on the use of

information systems has helped you understand how to use the present
system?

Q6 In the system use, to what extent you needed a button for help?
Q7 To what extent were the system messages informative?
Q8 To what extent did you need to learn new functions to operate the

system?
Q9 To understand the results, did you need more information that was

missing from the system?
Q10 Did you need more automatic recommendations on how to use the

results of the system?
Q11 Did you need more explanations on how the results of the system were

generated?
Q12 Did you trust the systems results?
Q13 Did you cross-check the results using other methods?
Q14 Were the results satisfying?

Table 2. Perceived ease of use and AI usability.

Question Perceived Ease of Use

Q1 In the system use, how easily can you predict what results are given by
the functions of the system (e.g., what happens if you press a button)?

Q2 In the system use, how easily can you understand what the current
situation of the system is based on your previous actions in the system?

Q3 In the system use, how easily could you predict what actions you needed
to perform in similar situations within the system

Q4 In the system use, were menus and figures easy to understand in the
whole of the system?

Q5 In the system use, how easy was to undo some action when needed?
Q6 In the system use, to what extent could you see the results of each of

your actions?
Q7 Were the results compatible with other external sources and expertise?
Q8 Did you find the overall system useful?
Q9 Did you find the overall system easy to use?
Q10 Was the experience of using the system satisfying for you?
Q11 Would you use this system in the future?
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Table 3. Qualitative questions to define trends.

Question Determining Perception of AI

Q1 AI incorporation in the energy sector will result in (mark as many as appro-
priate)

Q2 Suggested level of explainability of a software and decision support system
incorporating AI in the energy sector (mark only one)

Q3 Suggestions of potential actions towards safer, more efficient, user-friendlier,
and faster incorporation of AI in the energy sector

Q4 AI will radically transform the energy sector (mark only one)
Q5 AI incorporation in the energy sector imposes threats and ethical concerns

with regard to (mark as many as appropriate)
Q6 Which one of the following do you believe is the most likely cause impeding

the incorporation of AI in the energy sector (mark only one)?

5.1. Questions Concerning AI Literacy for the Perceived Usefulness

Indeed, we use TAM to align survey outcomes with application deployment require-
ments to ensure higher adoption rates and smaller learning curves. For that purpose, the
survey questionnaire is structured in such a way as to facilitate scoring with regard to
usefulness (as related to AI) and perceived ease of use (as associated with a more generic
approach to AI capabilities and tools provided by the system). By retrieving valuable
input by its main potential users and stakeholders, a more concrete definition is provided
of the required depth of system explainability. Recognizing users’ attitude toward AI
potential and their level of AI literacy, especially with regard to energy system automation
and predictive capabilities of the proposed models, the developer can outline and build
with intention and purpose better systems, and, at the same time, deliver tools for the
circular economy.

The perceived usefulness of AI is strongly connected to AI literacy, which refers to the
ability to understand, use, and critically evaluate AI technologies and their implications.
AI can be considered as a new form of technological advances and thus is connected to the
concept of technological literacy, which encompasses a wide range of knowledge, skills, and
attitudes necessary to adapt and thrive in a rapidly changing technological environment.
Technological literacy is considered an essential component of modern education and
workforce preparedness by organizations such as the International Technology Education
Association [43] and the National Research Council (NRC) [44]. Digital literacy, a subset of
technological literacy, focuses on the effective and responsible use of digital technologies.

In turn, AI literacy is a subset of digital literacy. AI literacy is defined as a set of
competencies that enable individuals to critically evaluate AI technologies, communicate
and collaborate effectively with AI, and use AI as a tool online, at home, and in the
workplace [45,46]. The more AI-literate a person is, the more likely they are to understand
the potential benefits and applications of AI technologies, leading to a higher perception of
usefulness and adoption. Literacy in a particular domain, such as digital or AI literacy, can
influence an individual’s perception of the ease of use and usefulness of related technologies.
Energy market trends are another external variable that could impact perceived usefulness
and predict technology acceptance.

Perceived usefulness is closely linked to information literacy skills because it is primar-
ily utilized to attain specific objectives that are not naturally associated with the use of the
skill itself. Davis provides the definition of perceived usefulness as the extent to which a
person believes that the utilization of a particular method or technique would enhance their
job performance or routine responsibility, based on the notion that the acquired capacity
will improve their performance.

Research studies such as [47] suggest that pre-service teachers who have a better
understanding of the potential benefits and applications of technology are more likely
to perceive it as useful and thus demonstrate a higher acceptance of it. This increased
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acceptance could be attributed to their increased familiarity and competence in using
technology as part of their education, leading to a greater understanding and self-efficacy
in integrating technology into their teaching practices. Higher literacy in certain domains
may result in higher self-efficacy.

Although not directly focused on technology literacy, research studies such as [48]
investigate the relationship between computer self-efficacy, facilitating conditions, and
perceived usefulness, which may be related to technology literacy. Additionally, the study
in [49] applies an extended TAM that touches upon the relationship between an individual’s
background, experience, and perceived usefulness, which may relate to technology literacy.

More specifically, the following questions were created in the context of AI literacy
and the perceived usefulness:

Q1: Competency level in the English language Competency level in the English language
is often deemed necessary for using advanced computer systems, even though efforts
have been made to increase accessibility in other languages; therefore, since language is
the driver of expression, competency in English is an important variable for perceived
usefulness and AI literacy, as lack of knowledge in the primary expressive tool in the digital
domain may be considered as a factor of lower related literacy [50,51].

Q2: Level of literacy in AI and related expertise This question directly relates to the level
of AI literacy.

Q3: Years of experience in the sector As previously mentioned, literacy in a specific
technology is positively correlated with acceptance by energy stakeholders and years of
experience with the technology is a contributing factor.

Q4: In the system use, were you adequately informed for every change that the system
performs? While developing the system, efforts were made to facilitate user navigation,
with consideration for the system’s usability for both experts and less experienced users,
which led to the inclusion of Q4 in the AI literacy evaluation, although it could also be
placed in the usability and perceived ease of use category.

Q5: In the system use, to what extent your previous knowledge on the use of information sys-
tems has helped you understand how to use the present system? This considers prior knowledge
as a factor in measuring literacy and self-efficacy, while it can also be seen as a variable in
assessing perceived usefulness.

Q6: In the system use, to what extent you needed a button for help? One’s AI literacy level
can be associated with the perception of AI systems and related capabilities if they require
more help, indicating that Q6, while potentially related to usability, is considered a measure
of AI literacy.

Q7: To what extent were the system messages informative? As in Q4, at least some attention
was given for the facilitation of the user toward navigating the system. For that reason,
we considered that, for an expert, navigation should not present major issues. A beginner,
however, with lesser capabilities, i.e., a lower AI literacy level, would score lower, and for
that we wanted to separate it from the second group of questions, related to usability.

Q8: To what extent did you need to learn new functions to operate the system? The require-
ment of acquiring new knowledge should be considered part of literacy improvement or a
measurement of literacy. Since AI literacy is part of perceived usefulness, Q8 should remain
in this group.

Q9: To understand the results, did you need more information that was missing from the
system? This question is meant to be considered in conjunction with Q4, Q5, and Q6.

Q10: Did you need more automatic recommendations on how to use the results of the system?
A greater understanding and self-efficacy of how technology is incorporated into one’s
practice is an indicator of perceived usefulness and related to literacy as also analyzed in
the previous sections.

Q11: Did you need more explanations on how the results of the system were generated? This
question relates to the “Black Box” concern in the same context as Q10.
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Q12: Did you trust the systems results? System trust is a basis of system understanding
and thus the ability to understand the system should be considered as related to the users’
literacy in AI and, by association, perception of usefulness.

Q13: Did you cross-check the results using other methods? In the same context as Q12.
Q14: Were the results satisfying? Since the system architecture and especially machine

learning models have been peer-reviewed and tested by specialists, the results should
be satisfying to those who understand the methods used and the potential of AI in this
domain. The extent to which one could describe the methods and that potential is indeed
a metric of his/her literacy and, for that reason, Q14 is included here as a variable of
perceived usefulness.

In Table 1, the whole set of questions that were created to identify the AI literacy level
relating to the perceived usefulness of stakeholders is summarized.

5.2. Questions about Perceived Ease of Use and Usability

Davis (1989) defined perceived ease of use as the degree to which an individual per-
ceives that using a specific system would be effortless and hassle-free. In line with this,
Zhu, Linb, and Hsu emphasized that perceived ease of use signifies the degree to which
an individual accepts that using certain technology would be easy and trouble-free, and
that system characteristics can influence ease of use and system usage. In [52], the authors
identified several factors that may influence the ease of use of modern resources, such as
computer self-efficacy, Internet self-efficacy, and information anxiety, among others [47].
Information anxiety, in particular, can affect the perceived ease of use, as access to an
overwhelming amount of information is a significant challenge in today’s information
age. In their study, [52] extended the TAM to include factors such as experience, volun-
tariness of use, and objective usability. They indirectly addressed the topic of technology
literacy by examining familiarity with technology. Moreover, [47] proposed a theoretical
extension of the TAM based on four longitudinal field studies. In [53], the authors provide
a comprehensive overview of usability engineering methods to evaluate and improve
usability. Nielsen argued that designing systems with good usability leads to a higher
perceived ease of use, which in turn results in more positive user experiences and increased
technology adoption [54]. Ref. [55] points out that despite the ongoing research on user
interface usability, the fast-paced advancements in AI bring new paradigms and quality
demands, such as explainability and trustworthiness, which are often neglected in the AI
literature, yet certain usability factors are crucial for human–AI interaction and for ensuring
explainability and trustworthiness. This is particularly important as AI technology grows
rapidly, using many kinds of algorithms and sophisticated techniques. The whole set of
questions that were created to identify the usability level relating to the perceived ease
of use of stakeholders relating to the eight analytics services, which were described in
previous sections, is summarized in Table 2.

The group of questions from Q1 to Q6 focuses on evaluating the usability of AI tools
within the system, as systems designed with good usability tend to have a higher perceived
ease of use, and all questions starting with the phrase “in the system use” investigate the
properties and functions of the system as implemented in the analytics services. More
specifically, the reasoning underlying each question is presented below:

Q7: Were the results compatible with other external sources and expertise? This question
evaluates the system’s compatibility with external sources and the user’s personal experi-
ence, which is an indicator of usability and perceived ease of use, as per the TAM literature,
that suggests experience, voluntariness of use, and objective usability as components of
perceived ease of use.

Q8: Did you find the overall system useful? This question is considered a variable of
perceived ease of use in that it assesses the overall usefulness of the system, which includes
not just the technology of AI but also its implementation and integration into the system as
a whole.
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Q9: Did you find the overall system easy to use? This question measures the ease of use of
the system.

Q10: Was the experience of using the system satisfying for you? This question evaluates
the overall satisfaction of the user’s experience using the system, which contributes to the
objective usability of the system.

Q11: Would you use this system in the future? This question assesses the likelihood of
the user using the system in the future, which also contributes to the objective usability of
the system.

5.3. Qualitative Questions to Define Energy Market

When using TAM to assess the acceptance of a system, it is often necessary to consider
additional variables. In this study, we took market trends into account as an external factor
closely related to acceptance. Evaluating product placement or more abstract concepts,
such as acceptance behavior, requires considering both market trends and macroeconomics,
which are interconnected factors that predict TAM. Hence, in the last section of the ques-
tionnaire, qualitative questions are created. These questions are qualitative because they
ask respondents to mark their beliefs, opinions, and suggestions rather than providing
numerical data. They do not involve any numerical or statistical analysis and their results
cannot be quantified. Instead, they provide insights into the participants’ perceptions,
attitudes, and ideas related to the incorporation of AI in the energy sector and as such they
are meant to define energy market trends. The whole set of qualitative questions that were
created to define energy market trends is summarized in Table 3, while the full descriptive
statistics are presented in the Appendix A.

More specifically, the reasoning underlying each question is presented below:
Q1: AI incorporation in the energy sector will result in (mark as many as appropriate) This

question is important for identifying the potential benefits of incorporating AI into the
energy sector. By understanding the potential benefits, businesses and investors can assess
the market opportunity and determine where to allocate resources.

Q2: Suggested level of explainability of a software and decision support system incorporating
AI in the energy sector (mark only one) The level of explainability is an important factor in the
adoption of AI systems. By understanding what level of explainability is necessary for the
energy sector, businesses and regulators can identify what is required for AI systems to be
adopted at scale.

Q3: Suggestions of potential actions towards safer, more efficient, user-friendlier, and
faster incorporation of AI in the energy sector This question is important for identifying
the actions that need to be taken to ensure that AI is adopted safely and efficiently in the
energy sector. By understanding the necessary actions, businesses and regulators can work
to support the development and adoption of AI in the energy sector.

Q4: AI will radically transform the energy sector (mark only one) This question is important
for understanding the potential impact of AI on the energy sector. By understanding the
potential for transformation, businesses and investors can identify opportunities for growth
and disruption in the market.

Q5: AI incorporation in the energy sector imposes threats and ethical concerns with regard
to (mark as many as appropriate) This question is important for identifying the potential
risks and ethical concerns associated with the adoption of AI in the energy sector. By
understanding these concerns, businesses and regulators can work to mitigate risks and
ensure that AI is developed and adopted responsibly.

Q6: Which one of the following do you believe is the most likely cause impeding the incorpo-
ration of AI in the energy sector (mark only one)? This question is important for identifying
the barriers to the adoption of AI in the energy sector. By understanding the most signifi-
cant barriers, businesses and regulators can work to address these issues and support the
development and adoption of AI in the energy sector.
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6. Energy Sector Survey and Analytics on Requirements of Tailored AI
Explainability Levels

According to [56,57], a sample size of 20 to 40 participants is adequate for reliable and
high-quality results in addressing AI-specific usability and design concerns. Therefore, a
survey was conducted among 20 energy sector specialists to determine the required tailored
AI explainability levels for the developed system. The participants were given an electronic
questionnaire that was created based on the TAM, which was adapted to the technology of
AI and HCI principles on the usability of the developed system and was presented and
discussed in the previous section.

The participants’ demographics were as follows: 30% were employed in a public
company, 45% in a private company, and 25% both in a public and private company.
Their average employment duration was 2 years with a minimum of 1 and a maximum
of 5 years in this particular sector. A total of 75% of the participants identified as men
and 25% as women and work or/and live in the E.U. (Figure 7). The primary language
of the participants was mainly Italian (6), followed by Spanish (5). The average age of
the participants was 36.6 years, with a minimum age of 22 years and a maximum age of
58 years. The highest educational level of the participants was that of Ph.D status (2 out of
20), with the majority holding a master’s degree (15 out of 20) and the rest having acquired
relevant certifications or equivalent to certifications degrees (3 out of 20). The electronic
questionnaire was anonymously filled in, no detailed personal data were collected, and the
participants submitted their consent prior to filling in the questionnaire.

Figure 7. Demographic characteristics.

6.1. Quantification Methodology

As stated in the previous section, to better define the requirements of AI explainability
depth and related usability functions, a clustering analysis was performed on the questions
presented in Tables 1 and 2 that were answered using a Likert scale, ranging from 1 (lowest)
to 5 (highest). Due to the small amount of participants, which, however, was sufficient for
the purpose of this study, silhouette coefficients were utilized to define the correct amount
of clusters and the K-means clustering algorithm was employed to partition the group of
answers into the defined number of clusters. Silhouette coefficients are values that measure
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the similarity of an object to a cluster. Silhouette coefficients range from −1 to +1 and their
exact value is indicative of the similarity of an object to its cluster and its dissimilarity to
the other clusters [50,58]. K-means clustering is a quantification method of unsupervised
learning that partitions observations in K clusters based on the mean (centroid) of each
cluster and subsequently approximates each observation with that mean (centroid) [59].
Since the number of questions/observations is more than two and it would be difficult
to define the clusters in the multidimensional space, the PCA reduction technique was
used for simplification purposes. Principal component analysis (PCA) converts the full
features into fewer features based on their contribution in explaining a component (variance
explained) [60].

6.2. AI Literacy Score, Clusters, and Perceived Usefulness

Using the proposed methodology of K-means clustering, the silhouette coefficients
used to define the number of clusters, and the PCA technique used to visualize those
clusters, the answers of the questions of Table 1 have been analyzed. The results can be
seen in Figure 8. According to the analysis, there are two different clusters related to
the corresponding participants’ AI literacy level, as revealed by the silhouette coefficient
and seen in Figure 8, in which the highest value corresponds to the number of clusters.
The primary characteristics, based on the average score of each answer, can be seen in
Table 4. To plot the different clusters, we have used three components that, as can be
seen in the principal component analysis of Figure 8, explain more that 58% of the total
variables (14). The average score of the first cluster is 3.45, while that of the second cluster
is 2.93. There is greater separation (above 0.70 decimal points) between the two clusters in
Questions 1, 3, 9, 13, and 14. Question 1 is related to the users’ competency in the English
language. Question 3 is related to the years of working experience in the sector. Question 9
corresponds to the required explainability of the D.S.S. result and the need of additional
information that is perceived as missing. Question 13 measures the frequency that the user
validated results using external sources and finally Question 14 is related to the degree of
user satisfaction with the results provided by the system.

Figure 8. Defining the layers of explainability.

To summarize, two levels of explainability seem necessary, corresponding to the
characteristics of the two different users. Thus, at least years of working experience, level
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of understanding of the English language, and potentially offering a localized environment
based on user language requirements should be taken into consideration. Trialability is also
an important factor as described in Questions 13 and 14, where related literature should
be additionally provided, which users should be encouraged to study. In both clusters,
AI literacy is either average or below average (Q2), and for that reason the usefulness
of the different explainability methodologies (local–global XAI) should be provided and
detailed. The experienced users felt that system messages were adequate, but the second
less experienced group of users felt that some actions performed by the provided AI
pipeline were not sufficiently explained.

Table 4. Perceived usefulness and AI literacy level—Average Scores.

Question Cluster 1 (Mean) Cluster 2 (Mean)

Q1 4.25 3.5
Q2 2.5 2.0833
Q3 2.875 1.4166
Q4 4.000 2.8333
Q5 2.750 2.7500
Q6 3.875 3.0833
Q7 3.000 3.000
Q8 3.750 3.166
Q9 3.750 3.2500
Q10 3.125 3.4166
Q11 3.000 3.166
Q12 3.625 3.416
Q13 3.875 2.666
Q14 4.000 3.333

Total Count 8 12

Average 3.45 2.93

6.2.1. AI Tools Usability Score, Clusters, and Perceived Ease of Use

In this section, we assess the perceived ease of use of the AI tools offered. Similarly to
the previous section, a segmentation methodology was used to define the optimum number
of clusters. Specifically, five clusters were identified, using the silhouette coefficients, where
five is indicated as the highest value of a total of six cluster scenarios tested. Using PCA, we
reduced the plotted space from 11 components in total in the questions to 3 components, i.e.,
we reduced the feature space down to a three-dimensional one. The components explain
almost 60% of the variance and the corresponding K-means plotted clusters can be seen
in Figure 9. The five different clusters assume different scores, which indicates different
abilities and different perceptions as per the usability of AI tools offered by our system
(Table 5). Cluster 3, within which most of the users are gathered, has a slightly above
average perception of 2.98 for the perceived ease of use of the system AI. Clusters 2, 4,
and 5, which hold the highest average scores and also include 35% of the total participants,
score above 3.5, which should be considered a strong indicator of a general acceptance of
the offered tools, with room, though, for improvements.

The questions with the lowest scores are Question 3 in Cluster 1, Question 1 in Cluster 4,
and Question 4 in Cluster 5. These questions are stated as follows:

• In the system use, how easily can you predict what results are given by the functions
of the system (e.g. what happens if you press a button)?

• In the system use, how easily could you predict what actions you needed to perform
in similar situations within the system

• In the system use, were menus and figures easy to understand in the whole of the system?

The above mentioned questions indicate a difficulty in understanding and navigating
through the exported results of the AI pipeline. Again, here as in the previous section,
an explainability framework that considers different levels of AI-related capabilities can
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indeed offer a greater understanding of the system underlying value and thus increase
adoption via improving the perception of the usability of AI and the general usefulness
of extracted recommendations and automated suggestions related to the different energy
analytical services provided by the ML pipeline.

It is also important to note that the general sentiment, as reflected by Question 8 on
the overall system usefulness, scores the highest for all clusters, indicating that the needs of
the energy sector are well served and identified.

Figure 9. Defining the layers of perceived ease of use and AI usability.

Table 5. Perceived ease of use and AI usability—Average scores.

Question Cluster 1 (Mean) Cluster 2 (Mean) Cluster 3 (Mean) Cluster 4 (Mean) Cluster 5 (Mean)

Q1 2.75 3.75 2.88 2.0 2.5
Q2 2.00 3.75 3.00 5.0 3.0
Q3 1.75 2.75 3.00 4.0 3.0
Q4 2.00 3.00 3.22 5.0 1.0
Q5 2.25 3.00 2.44 3.0 3.5
Q7 3.50 4.00 3.00 3.0 4.0
Q8 3.75 4.50 3.33 5.0 5.0
Q9 3.50 3.50 2.88 4.0 4.0
Q10 3.50 3.75 3.11 3.0 5.0
Q11 4.25 3.50 3.33 5.0 5.0

TotalCount 4 4 9 1 2

Average 2.93 3.59 2.98 3.63 3.5

6.2.2. Market Trends, towards an AI-Driven Energy Sector

The answers provided in the last portion of the survey can be seen in Figure 10. The
main concern of the participants, with regard to AI incorporation in the energy sector, is
related to data privacy (80%) and security. The general consensus is that AI will further
decentralize the sector (80%) and will facilitate faster decarbonization (65%) and increase
energy savings (65%). From the following questions, which are also highly suggestive of
the previous results analyzed and also validate the clustering hypothesis, it appears that
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the most likely cause that would impede AI incorporation is, by a majority of 60%, the lack
of explainability (30%) and lack of required training of users to the available software (30%).
The suggested level of explainability should be at a level of limited detail for non-technical
users (45%), followed by a level that corresponds to deeper technical detail, suitable for
more technical users.

The vast majority (45%) expect AI to transform the energy sector in the 2030s, while
30% see this transformation taking place in the 2020s. Moreover, 10% of the participants
express the opinion that AI will never transform the energy sector and 15% that the
transformation will occur beyond the 2030s. Again, the results signify two different kind of
users in the participant pool.

Figure 10. Qualitative-based questions.

7. Incorporation and Implementation of Tailored XAI in the DSS

According to TAM, analyzed in the previous sections, the perceived ease of use
(AI usability) and perception of usefulness (AI literacy level) are communicating vessels,
interconnected in the users’ consciousness. We have identified two different clusters in
our data, related to their analytical experience, and have quantified their AI literacy level.
More clusters have been proposed based on the perceived ease of use, where some key
points were identified and should be addressed via design modifications. In Figure 11,
the generalization of our methodology can be seen. The different XAI tools are provided
depending on a defined personalization.

For each cluster, different tools are proposed with some tools overlapping with regard
to AI explainability. For Cluster 1, a technical analysis of the ML models should be provided,
using local and global XAI, bias analysis, and model architecture characteristics. The related
literature should also be provided. Cluster 2, which consists of less experienced users,
should have access to basic textual description of the process. A semantic grouping of
inputs and output [61] combined with cost benefit analysis and contribution to the circular
economy via AI applicability in the sector should provide incentives and build trust while
simultaneously overcoming validation and regulation challenges.
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Figure 11. Grouping of XAI tools and inner clusters.

To address the problem of perceived usefulness and perceived ease of use, following
the proposed methodology outlined in Figure 11, we offer a preview of screens used to
explain the predictive technology used for one of the developed applications, incorporating
the presented technologies.

7.1. Model Architecture and Benchmarks

In this subsection, we present a concrete example of a practical application of our
proposed tailored XAI methodology. Specifically, we apply our methodology with regard
to analytic service AS04 (Figure 2). From Figures 2, 4 and 5, it is clear that AS04 is to
be used by stakeholders BUI (consumers, customers, residents of buildings, occupants),
FMB (facility managers, building operators), and INV (project developers, investing funds).
These stakeholders have very different backgrounds, preferences, skills, and abilities, and
thus different perceptions of ease of use and usefulness of service AS04. Those differences
require different explanation approaches to ensure greater and faster adoption rates. It
should be mentioned though that even though stakeholders are in defined groups, within
the groups, people with different abilities and skills exist. For that, we employ TAM to
have a better understanding of those abilities and provide accurate personalization.

In Figure 12, the model architecture of AS04 is presented. An ensemble of key models
is used to make predictions based on a probability of a three-class outcome, using as feature
inputs (1) the energy consumption before renovation, (2) the cost of renovation, (3) the
planned CO2 reduction as detailed by the constructor specifications, (4) the building age in
years, and (5) the total heating area defined by the building envelope [40].

Next, the overall model outputs the probabilities for each class. Based on the invest-
ment potential, which is the relationship between energy consumption reduction and cost
of investment, the model considers three classes. For Class A, the potential for investment
is optimum, while for Class B it is medium and the project should be only partially financed.
For Class C, the project should not be financed. The different models are stacked and use
linear regression as the activation function to make predictions.



Electronics 2023, 12, 4430 21 of 30

Figure 12. Model architecture—benchmarks, change benchmark figures.

Using an ensemble of models, an average prediction is provided, ensuring optimized
results for a given problem using different algorithms for a better definition and boosted
solution overall. In the benchmark section, the accuracy of each model is calculated,
alongside the final result of the stacked model. Finally, the correlation between energy
consumption and investment cost for each class is shown. In this section, we look into the
proposed methods outlined in Figure 12, where the model architecture for Cluster 1 and
benchmarks for Cluster 2 are touched upon.

7.2. Textual Descriptors—Semantic Grouping

Textual descriptions are comments for users to understand the reasoning behind the
development of an application and the personal and macro-economic benefits of using it.
Some key points that have been analyzed in this paper are used as descriptors of usefulness,
such as the idea of circular economics and the semantic grouping of applications and
stakeholders. The relation between inputs and outputs [61] is also an important factor that
can increase adoption, add trust to the system, and clarify the system results. In Figure 13,
the semantic relation of inputs and outputs is presented [40]. In the middle section, the
data structure of each input is introduced. Each element has more information attached to
it for the user to explore, thus offering an in-depth look at how the system analyzes data
and outputs predictions.
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Figure 13. Textual descriptors and semantic grouping.

7.3. Local XAI

In Figure 14, selected graphs show how the different features contribute to each deci-
sion for a specific observation from the analyzed dataset. We have used Shapley values to
determine the different outcomes and the SHAP Python libraries to create an explainability
framework for the examined case [62]. According to the observation analyzed, the true
actual value refers to Class B or Class 1. The predicted array, titled as predicted in Figure 14,
shows the probabilities for each class as they are extracted by the stacked model. For
Class 0, the probabilities are equal to 0.16 (0.0155), while for Class 1 they are equal to 0.924
and for Class 2 they are equal to 0.06 (0.0597). Our model has correctly predicted the class
as 1.

To see how the different features contributed to the prediction, we have used SHAP
force and waterfall plots. In the force plot, the different interactions between the features
and the decision per class is outlined, arriving at the predicted solution probability of
outcome, symbolized as f(x). On the other hand, the waterfall plots similarly show the
different responses of each parameter. At the bottom of the graph, the expected output is
shown, while the top of the graph indicates how the different features contributed to the
actual prediction extracted by the model. Since Class 1 was indeed the correct output, in
both graphs, all features in Class 1 point to the right result and the proposed investment
should be only partially funded.

Figure 14. Local XAI.
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7.4. Global XAI

In Figure 15, selected graphs show how the different features contribute to the final
prediction for each class. Again, Shapley values have been utilized, alongside the SHAP
Python libraries for explaining the results visually. Feature importance is first analyzed
for each class for all inputs. Cost is the highest contributing factor in all cases, but the
contribution of other factors varies for the different classes.

Figure 15. Global XAI.

The dependency plots are then utilized to summarize the dependence between the
actual cost and the actual contribution of the cost to the decision eventually made by the
model, labeled as SHAP value for cost on the y-axis of each scatter graph. The SHAP value
for the examined variable shows the extent to which knowing this particular variable affects
the prediction of the model. On the opposite side of the y-axis, a feature that is closely
related to the examined variable is tracked and the extent of the effect to the examined
variable is differentiated by color.

7.5. User Interactions and Provide Outcomes

For the global and local XAI, where, in the provided examples, Shapley values were
extracted, Algorithms A4 and A5 were utilized (see Appendix A). Via an interactive envi-
ronment and depending on the personalization options, the user can choose any datapoint
used in the training process of the neural networks (NNs) utilized for the analytical services.
Datapoints are embedded objects of the NNs and thus can be called upon and examined.
Examples of this process were provided in the previous subsections. For each datapoint, an
explanation is always returned and errors logged during the testing are not associated with
missing datapoints or the inability of the system to compute.

8. Summary, Conclusions, and Future Work

In conclusion, this paper proposes a novel methodology for designing a tailored explain-
ability solution for AI analytics services in the energy management sector. The methodology
is based on multiple processes that take into account the specific needs and preferences of
stakeholders, as well as established frameworks such as the TAM and HCI principles. The
methodology is comprehensive and involves identifying key stakeholders and AI analytics
services, creating a tailored explainability requirements questionnaire, conducting a survey
among energy management stakeholders, performing a user-based clustering analysis to
determine the required depth of explainability, and implementing the tailored XAI solution
at both the local and global levels. The contribution of this methodology lies in its ability to
develop an effective solution that meets the diverse needs of stakeholders in the energy man-
agement sector. The methodology is tested on a stacked neural network for the AS04 analytic
service, which estimates energy savings from renovations, and aims to increase adoption rates
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and benefit the circular economy. The significance of AI explainability is emphasized as an
ethical approach and a tool to build user trust and ensure faster adoption rates, especially in
the energy sector, where AI can provide a more sustainable future.

In summary, the contributions of this research are the following: firstly, the agile
development of an IDSS considers XAI as a main feature and ensures that it is tailored
to specific user needs. Secondly, to facilitate that personalization, TAM was used to
cluster stakeholders based on the perception of usefulness and ease of use. Perception of
usefulness was associated with AI literacy and perceived ease of use with usability. These
different perceptions require different explanation approaches to ensure greater and faster
adoption rates and, for that, XAI tools were grouped accordingly. The limitation to be
addressed in our future work is the evaluation of our methodology with real-life data as
per adoption, user satisfaction, and an increase in application utilization. Future work
can also extend the methodology to other AI applications in the energy sector and other
industries, evaluate it on various metrics such as efficiency, effectiveness, scalability, and
interpretability, provide more in-depth explanations to users, and examine the impact of
explainability on the adoption rate of AI systems in other industries. This can help build
more responsible and safe spaces for the deployment of AI systems.
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IDSS Intelligent Decision Support System
RESs Renewable Energy Sources
NNs Neural networks



Electronics 2023, 12, 4430 25 of 30

Appendix A

Table A1. Descriptive statistics of survey.

Count Mean STD Min 25% 50% 75% Max

Age 20.0 36.6 10.31 22.0 29.5 35.5 42.0 58.0

Children 20.0 0.85 0.988 0.0 0.0 0.5 2.0 3.0

Competency level in the English language 20.0 3.8 0.833 2.0 3.0 4.0 4.0 5.0

Level of literacy in AI and related expertise 20.0 2.25 0.91 1.0 2.0 2.0 3.0 4.0

Years of Experience in the sector 20.0 2.0 1.33 1.0 1.0 1.5 2.25 5.0

“In the system use, how easily can you predict what results are
given by the functions of the system (e.g., what happens if you
press a button)?”

20.0 2.95 0.75 2.0 2.0 3.0 3.25 4.0

“In the system use, how easily can you understand what the
current situation of the system is based on your previous actions in
the system?”

20.0 3.05 0.88 1.0 3.0 3.0 3.25 5.0

“In the system use, were you adequately informed for every change
that the system performs?” 20.0 3.3 0.97 1.0 3.0 3.0 4.0 5.0

“In the system use, to what extent your previous knowledge on the
use of information systems has helped you understand how to use
the present system? “

20.0 2.75 0.966 1.0 2.0 3.0 3.25 4.0

“In the system use, how easily could you predict what actions you
needed to perform in similar situations within the system?” 20.0 2.75 0.71 1.0 2.0 3.0 3.0 4.0

“In the system use, were menus and figures easy to understand in
the whole of the system?” 20.0 2.8 1.10 1.0 2.0 3.0 3.0 5.0

“In the system use, to what extent you needed a button for help?” 20.0 3.4 0.82 1.0 3.0 3.0 4.0 5.0

“In the system use, how easy was to undo some action when
needed?” 20.0 2.65 0.87 1.0 2.0 3.0 3.0 4.0

“In the system use, to what extent could you see the results of each
of your actions?” 20.0 2.9 0.91 1.0 2.0 3.0 3.0 5.0

“To what extent were the system messages informative?" 20.0 3.0 0.85 1.0 3.0 3.0 3.0 5.0

“To what extent did you need to learn new functions to operate the
system?" 20.0 3.4 0.753 2.0 3.0 3.0 4.0 5.0

“To understand the results, did you need more information that
was missing from the system?” 20.0 3.45 0.60480 3.0 3.0 3.0 4.0 5.0

“Did you need more automatic recommendations on how to use the
results of the system?" 20.0 3.3 0.73 2.0 3.0 3.0 4.0 5.0

“Did you need more explanations on how the results of the system
were generated?" 20.0 3.1 0.78 2.0 3.0 3.0 3.25 5.0

“Did you trust the systems results?" 20.0 3.5 0.82 1.0 3.0 4.0 4.0 5.0

“Did you cross-check the results using other methods?" 20.0 3.15 1.13 1.0 2.0 3.0 4.0 5.0

“Were the results satisfying?" 20.0 3.6 0.68 2.0 3.0 4.0 4.0 5.0

“Were the results compatible with other external sources and
expertise?" 20.0 3.4 0.75 2.0 3.0 3.0 4.0 5.0

“Did you find the overall system useful?" 20.0 3.9 0.788 3.0 3.0 4.0 4.25 5.0

“Did you find the overall system easy to use?" 20.0 3.3 0.65 2.0 3.0 3.0 4.0 5.0

“Was the experience of using the system satisfying for you?" 20.0 3.5 0.76 2.0 3.0 3.0 4.0 5.0

“Would you use this system in the future?" 20.0 3.8 0.83 2.0 3.0 4.0 4.0 5.0
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Algorithm A1 Feature Engineering and analysis.

1: Initial:
2: Load data
3: Print the descriptive statistics of the loaded data.
4: Save statistics to JSON file.
5: GetsNumericNonNumerics:
6: Load data
7: Set the path for file operations.
8: Count the number of columns in the data.
9: Identify and save non-numeric columns from the data to JSON file.

10: Identify and save numeric columns from the data to JSON file.
11: PrimaryAnalysis:
12: Load data as df
13: Set the path for file operations.
14: Count the number of columns in the data.
15: for each column in df do
16: Determine the datatype of the column.
17: if datatype is numeric then
18: Print “New df” to signal data analysis.
19: Analyze and Plot “New df”.
20: end if
21: if datatype is non-numeric then
22: Print “New df2” to signal data analysis.
23: Analyze and Plot “New df2”.
24: end if
25: end for
26: Save “New df” to JSON file.
27: Save “New df2” to JSON file.
28: End of Algorithm.

Algorithm A2 TAM Algorithm.

1: Condition:
2: Load data “New df”
3: Set path for the JSON file and the output directory.
4: Define a list of wanted column names based on Condition.
5: Load the desired dataset from a JSON file using the defined list.
6: Copy the specific columns from the loaded data to a new dataframe.
7: Perform hierarchical clustering on the new dataframe
8: Save Plots To File
9: Save paths and labels to JSON file.

10: End of Algorithm.
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Algorithm A3 ModelDeconstruction.

Require: Model Object (model_object), JSON Path (json_path), JSON file name (name)
Ensure: Model Summary as a JSON file and Model Architecture as an image file

1: Begin
2: Load the model from the model_object
3: Generate model summary and store it into a list
4: Create a table using every alternate line from the list (excluding first and last two lines)
5: for every entry in the table do
6: Split the entry based on multiple spaces and remove the last part of each entry
7: Append the cleaned up entry to a new_table
8: end for
9: Convert new_table into a data frame (df) where the first row becomes column names

10: Generate an image of the model architecture and save it as “modelArchitecture.png” at
json_path

11: Save the dictionary (list) into a JSON file at json_path with the name specified
12: End

Algorithm A4 LocalExplainer.

Require: path, X_train, X_test, WhatToTest, y_test, profile, inputsList, categoryName,
jsonpath

Ensure: Several plots saved as images and a JSON file saved at jsonpath
1: Begin
2: Call LocalJson function with parameters categoryName, profile, WhatToTest, and

inputsList to prepare a list
3: Call localModelEvaluator function with ‘path’ as an argument to load the model
4: Initialize an Explainer using the loaded model and the X_train data
5: Generate explanation values using the Explainer on X_test
6: Make a prediction using the loaded model on X_test for WhatToTest
7: Update “Prediction” and “Actual value” in the list with the predicted and actual values
8: Generate various plots using explanation values and save them as images at specified

jsonpath
9: Update corresponding image paths in the list under “XaiImages”

10: Save the updated list to a JSON file at jsonpath with categoryName as the file name
11: End

Algorithm A5 GlobalExplainer.

Require: path, X_train, X_test, profile, categoryName, jsonpath
Ensure: Plots saved as images and a JSON file saved at jsonpath

1: Begin
2: Call GlobalJson function with categoryName to prepare a list
3: Call GlobalModelEvaluator function with ‘path’ as an argument to load the model
4: Initialize an Explainer using the loaded model and the X_train data
5: Generate explanation values using the Explainer on X_test
6: Generate a summary plot using explanation values and save it as an image at specified

jsonpath. Update corresponding image path in the list under “OtherPlots”
7: for each feature in the profile do
8: Generate a dependence plot using the explanation values and feature, save the plot

as an image at specified jsonpath, update the corresponding image path in the list
under “DependencyPlots”

9: end for
10: Save the updated list to a JSON file at jsonpath with categoryName as the file name
11: End
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