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Abstract: Audio signals play a crucial role in our perception of our surroundings. People rely on
sound to assess motion, distance, direction, and environmental conditions, aiding in danger avoidance
and decision making. However, in real-world environments, during the acquisition and transmission
of audio signals, we often encounter various types of noises that interfere with the intended signals. As
a result, the essential features of audio signals become significantly obscured. Under the interference
of strong noise, identifying noise segments or sound segments, and distinguishing audio types
becomes pivotal for detecting specific events and sound patterns or isolating abnormal sounds. This
study analyzes the characteristics of Mel’s acoustic spectrogram, explores the application of the
deep learning ECAPA-TDNN method for audio type recognition, and substantiates its effectiveness
through experiments. Ultimately, the experimental results demonstrate that the deep learning ECAPA-
TDNN method for audio type recognition, utilizing Mel’s acoustic spectrogram as features, achieves
a notably high recognition accuracy.

Keywords: Mel’s acoustic spectrogram; deep learning; ECAPA-TDNN; audio type recognition

1. Introduction

Sound serves as a crucial pathway for conveying information, allowing humans to
comprehend the conditions and changes in their surroundings through auditory cues.
All audible sounds that humans can perceive are collectively referred to as audio. In
practical environments, during the acquisition and transmission of audio signals, we often
encounter a multitude of diverse noise sources. Strong background noise gets intertwined
with the intended audio signals, resulting in a significant masking of the inherent features
of the target audio signals. Amidst strong noise interference, the recognition of noise
segments enables the implementation of audio enhancement procedures, such as noise
reduction and echo elimination, thus enhancing the quality and audibility of the audio.
When analyzing environmental sounds, identifying relevant sound segments contributes to
detecting specific events; sound patterns; or isolating abnormal sounds like sirens, passing
vehicles, and vocal conversations. Concurrently, the recognition of noise segments allows
for a precise analysis of the attributes of environmental noise, thereby enhancing safety
measures.

Audio type recognition poses a significant challenge within the realm of pattern recog-
nition. The early 1990s saw the initiation of research into methodologies for audio type
recognition. Notably, in 1994, B. Feiten and S. Gunzel employed a technique based on Self-
Organizing Neural Nets to automatically identify auditory features with similar acoustic
qualities [1]. As computational power has advanced and the volume of audio feature data has
expanded significantly, recognition models rooted in machine learning and deep learning have
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become indispensable for audio signal recognition [2]. These models encompass a range of ap-
proaches, including convolutional neural networks (CNNs) [3–6], recurrent neural networks
(RNNs) [7], convolutional recurrent neural networks (CRNNs), randomized learning [8], deep
convolutional neural networks (DCNNs) [9], support vector machines (SVMs) [4], Gaussian
mixture models (GMMs), deep attention networks [10], transfer learning [9], and ensemble
learning [11], among others. These methods can be applied independently or in combination
to enhance the performance of audio category recognition.

Enhancing the accuracy of audio type recognition hinges on two pivotal considerations:
firstly, selecting the optimal feature or feature combination that captures the fundamental
characteristics of the audio signal; and secondly, choosing the appropriate method or model
for recognizing audio signal types [12,13]. The Mel acoustic spectrogram aligns with the
perceptual attributes of the human ear, enabling a more effective capture of crucial audio
signal information. It finds applicability across various audio processing tasks, contributing
to heightened efficiency and performance in feature representation. Our study proposes
the adoption of the Mel acoustic spectrogram to characterize audio signals.

Neural networks operate akin to the human brain, yet their initial performance lagged
behind that of traditional machine learning models during the same era. Given that a
majority of neural networks encountered challenges in effectively handling the dynamic
attributes inherent in audio signals and that recognizing phonemes necessitated the incorpo-
ration of contextual information, the Time Delay Neural Network (TDNN) was introduced
as a solution by Hinton et al. in 1989 [14]. The TDNN boasts two remarkable attributes: its
capacity to dynamically adapt to temporal changes in features and its minimal parameter
count [15,16]. There is only one hidden layer node linked to each input in traditional deep
neural networks. In contrast, the features of the hidden layer are collaboratively influenced
by both the present-moment inputs and future-moment inputs in the modified TDNN.
This approach effectively leverages the temporal context information within audio sig-
nals by processing multiple consecutive frames of audio input. The Emphasized Channel
Attention, Propagation, and Aggregation Time Delay Neural Network (ECAPA-TDNN)
is a neural network model designed for speech recognition tasks, introduced in the year
2020 [17].This model amalgamates the conventional TDNN architecture with attention
mechanisms, emphasizing channel attention, propagation, and aggregation in TDNN-based
speaker verification [18–21]. Furthermore, it enhances feature extraction and representation
capabilities by incorporating extended context aggregation and introducing expansion lay-
ers. To discern the type of both target audio and noise, our research employs an audio type
recognition method founded on the deep learning model ECAPA-TDNN. The experimental
data were sourced from the THCHS-30 dataset of Tsinghua University [22], comprising
speech signals serving as event signals. Additionally, the dataset includes noise signals
encompassing 12 distinct types from the NoiseX-92 dataset [23].

2. Mel Sound Spectrogram

The time-domain waveform represents the most straightforward and readily obtain-
able feature for recognizing audio signal types. However, due to its susceptibility to
influences and inherent instability, time-domain information tends to yield suboptimal
results as a recognition feature. Conversely, the frequency-domain information of audio
signals offers greater accuracy in capturing audio characteristics and is less prone to in-
terference. Currently, the conversion of an audio signal’s time domain information into
frequency-domain information can be achieved through methods like Fourier transform
or wavelet transform. However, these approaches often lead to the loss of certain signal
features. The time–frequency characterization of a signal encompasses both time-domain
and frequency-domain information, endowing it with heightened identification capabilities.
An acoustic spectrogram that is built on spectral analysis with the incorporation of the time
dimension offers a more intuitive depiction of signal changes. Essentially, it embodies a
time–frequency characterization of the audio signal [24].
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The spectrum portrays signal distribution across various frequencies. However, the hu-
man auditory system discriminates between frequencies with varying sensitivity. Research
reveals that the frequency resolution of the human ear is not linear but logarithmic. This
means that two pairs of frequencies situated at equal distances in the frequency domain
might not be perceived equally by the human ear [25]. This issue finds an effective resolu-
tion through the introduction of Mel frequency. Mel frequency characterizes the human
ear’s sensitivity to audio signal frequencies [26]. The logarithmic relationship between
linear frequency and Mel frequency is defined by Equation (1) [27].

Fmel= 2595lg(1 + f /700) (1)

where Fmel is the perceived frequency in Mel, and f the actual frequency in Hz.
Figure 1 illustrates a schematic representation of the relationship between Mel fre-

quency and actual frequency. Notably, as the frequency decreases, the Mel frequency
exhibits a more rapid alteration concerning linear frequency, resulting in a steeper curve
slope. Conversely, at higher frequencies, the Mel frequency experiences a gentler ascent,
leading to a smaller curve slope. This phenomenon underscores the concept that high-
frequency sounds are less distinguishable to the human ear, while low-frequency sounds
are more easily discerned. This variation in perceptual sensitivity by the human ear is
distinctly portrayed.
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Figure 1. Schematic diagram of the relationship between Mel frequency and linear frequency.

Building upon the investigation into Mel frequency, the Mel filter is introduced to
simulate the phenomenon where higher frequencies are perceived less distinctly by the
human ear, exhibiting a more gradual auditory response. This involves constructing
numerous triangular filters, with a greater emphasis on low-frequency filters and fewer
high-frequency filters, forming a filter bank aligned with their frequency distribution. The
frequency response characteristic curve of the Mel filter bank is depicted in Figure 2.

By subjecting the spectrogram to Mel-scaled filtering through a bank of Mel filters, the
transformation to Mel spectrogram for the audio signal is achieved. Similar to the spectro-
gram, the Mel spectrogram is also a representation in the time–frequency domain. Figure 3
displays the time-domain waveform, spectrogram, and Mel spectrogram corresponding to
a segment of noise signal.
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Figure 3. Three representation methods of noise signa.

The Mel acoustic spectrogram employs the Mel scale on the frequency axis, with the
Mel filter bank designed to align with the human ear’s sound perception characteristics.
This design facilitates the mapping of denser frequency regions to sparser ones, effectively
reducing unnecessary redundancy within the spectrogram. By remapping frequency
axis information, the spectrogram’s dimensionality is reduced. This not only lessens the
computational complexity of the features but also accelerates the training and inference
processes of the model. Ultimately, the Mel sound spectral feature parameters are chosen
for audio event detection and noise type identification, effectively accommodating various
signal types.

Figure 4 presents the Mel sound spectral characterizations for the 12 types of noise
sourced from the NoiseX-92 dataset. The first and second plots depict Mel acoustic spectro-
grams of white noise and pink noise, respectively. In these plots, time is represented on the
horizontal axis, frequency on the vertical axis, and the plot color corresponds to signal am-
plitude. A comparison across the plots highlights significant disparities in the Mel acoustic
spectrograms across different scenarios. For instance, there is minimal high-frequency infor-
mation in the Volvo vehicle noise scenario, while the f16 fighter noise scenario prominently
features a higher high-frequency component. Additionally, the Mel acoustic spectrograms
of the f16 fighter noise scenario exhibit distinct horizontal stripes, whereas the factory1 and
factory2 scenarios display predominant vertical stripes. The irregular “speckling” observed
in the factory2 scene arises from the recording’s context in an automobile production plant,
where abrupt acoustic events like knocks are common.

Figure 5 shows the Mel acoustic spectrograms of three distinct audio event signals:
speech, alarm, and explosion. Evidently, the variations in characteristics among different
audio events are pronounced, enabling clear differentiation between several audio events.
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With deep learning models demonstrating their prowess across diverse domains, many
challenges that elude effective resolution via traditional machine learning find improved
outcomes through deep neural networks. This effect is particularly prominent in image
recognition [28]. The Mel spectrogram encapsulates fundamental audio features, leveraging
the neural networks’ proficiency in image processing; inputting Mel spectrograms into
deep neural network models enables the recognition of audio types.
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3. ECAPA-TDNN Deep Learning Model

The ECAPA-TDNN model was introduced by Desplanques et al. at the University of
Goethe, Belgium, in 2020. Drawing on the latest advancements in computer vision-related
fields, the ECAPA-TDNN model brings forth several enhancements to the TDNN model.
This model places heightened emphasis on inter-channel attention and multilayer feature
aggregation [17,18].

Figure 6 illustrates the structure of the ECAPA-TDNN model, comprising key com-
ponents such as TDNN+ReLU+BN, SE-Res2Block, Attentive Statistics Pooling (ASP), and
Multilayer Feature Aggregation (MFA). The model employs the AAM-Softmax loss function
for optimization.
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3.1. SE-Res2Block

The ECAPA-TDNN model includes a section composed of multiple SE-Res2Block
modules linked sequentially. The core constituents of this module encompass TDNN,
SE-Net, and Res2Net components. Figure 7 presents an illustrative representation of the
network structure of the SE-Res2Block modules.
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In recent years, to enhance the effectiveness of deep learning models, researchers have
introduced concepts like inception structures and attention mechanisms. These innovations
focus on optimizing the spatial dimensions of input feature maps. By aggregating features
from various receptive fields and adeptly capturing both global and local connections, these
enhancements enhance the overall performance of deep learning models. The distinctive
aspect of SE-Net lies in its approach of modeling the channel dimensions of input feature
maps. This enables a recalibration of the feature maps, thereby boosting the model’s
performance [29]. Figure 8 provides an illustrative depiction of the SE-Net structure.
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Figure 8. Schematic diagram of SE-Net structure.

The input X of the SE-Net possesses a dimension of H′ ×W ′ × C′, which can be
processed and translated into a feature map U with the dimensions H ×W × C. Subse-
quently, the feature map U undergoes additional compression through global average
pooling, resulting in a 1× 1× C channel vector that encapsulates global information for
each channel. The subsequent step involves excitation, entailing two fully connected layer
operations performed on the channel vectors. The initial fully connected layer executes
dimensionality reduction, which curtails parameters to lower computational complexity.
The subsequent fully connected layer conducts dimensionality enhancement, aiming to
restore the dimensions of channel numbers and weight vectors. Using two fully con-
nected layers often reveals channel correlations more effectively than a single layer, offering
augmented nonlinear capabilities, while trimming parameters to bolster computational
efficiency. Employing the Sigmoid activation function, the output from the fully connected
layers is employed to compute weights for each channel feature. Consequently, the original
features can be adjusted based on these weights, generating a feature map, X′, that more
accurately captures type-specific characteristics.

Diverging from preceding network architectures that rely on features of varying
resolutions to enhance multiscale capabilities, Res2Net captures features across distinct
receptive fields and scales, thus acquiring a comprehensive blend of global and local
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information [30,31]. Res2Net is an advancement built upon the foundation of the Bottleneck
structure by segmenting the 3 × 3 convolutional layers within each residual block into
multiple sub-branches. This is then followed by the fusion of features through residual
connections. The Bottleneck structure is depicted in Figure 9a, comprising sequentially
connected 1 × 1, 3 × 3, and 1 × 1 convolutions that are integrated through residual
connections. In Figure 9b, the Res2Net structure for s = 4 is illustrated. The distinct
differentiation between Res2Net and Bottleneck lies in the approach of Res2Net, which
splits the feature map subsequent to the 1 × 1 convolution into s sub-branches. Notably, x1
serves directly as the output of y1 without any modifications. Meanwhile, x2 undergoes a
3 × 3 convolution; a portion becomes y2’s output, while the remaining part connects to x3.
In a cascading manner, x3 and x4 execute the same sequence of operations.
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3.2. Attention Statistical Pooling

To address the limitation of the average pooling layer, which is susceptible to infor-
mation loss, attention statistic pooling was introduced. This approach simultaneously
considers disparities in information across both time and channel dimensions. Thus, the
network can allocate attention to crucial details across various time intervals and feature
maps. The implementation of attention statistic pooling is realized through Equation (2).

etc = vT
c f (Wht + b) + kc (2)

In Equation (2), ht represents the activation value of the preceding layer’s network at
time step t. Following the weight matrix, W ∈WR×C, and bias transformation, b ∈ RR×1,
the dimensionality of ht is reduced from C channels to R channels. This streamlines the
parameter configuration and mitigates the potential for overfitting.

Moreover, vT
c signifies that the R dimensional vector derived from the activation

function, f (·), undergoes linear transformation and projection, resulting in a C dimensional
spatial representation. To calculate the attention weight of time step t on channel c, the
Softmax transformation is applied to etc. Equation (3) represents the formula for this
computation.

αtc =
eetc

∑
τ

eeτc
(3)
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Equations (4) and (5) yield the weighted mean vector, µ∼c , and the weighted standard
deviation vector, σ∼2

c , on channel c, respectively. These vectors are then concatenated to
yield the ultimate output of the attention statistic pooling layer.

µ∼c =
T

∑
t

αtchtc (4)

σ∼2
c =

T

∑
t

αtch2
tc − µ∼2

c (5)

3.3. Multilayer Feature Aggregation

Compared to earlier TDNN-based systems, ECAPA-TDNN stands out because of
its pioneering approach to multilayer feature aggregation. It not only incorporates fea-
tures solely from the last frame layer but also integrates those from the other two layers.
This is achieved by amalgamating the features produced by the first, second, and final
SE-Res2Block modules in the channel dimension, facilitated by residual connections. Sub-
sequently, the deep features are further extracted through a fully connected layer, and these
features are then utilized in the computation of attention statistics pooling. The specific
progression is elucidated in Figure 6.

In the realm of deep learning, a variety of feature types and sources exist that necessi-
tate integration to enhance the model’s effectiveness and generalization capability. Among
the commonly employed methods for integration are merge operations and element-level
summation. Figure 6 illustrates a multilayer feature aggregation process employing the
merge operation to integrate features across different levels.

3.4. AAM-Softmax Loss Function

Refining the choice of a more effective loss function remains a persistent challenge in
the realm of deep learning. Particularly for classification tasks, the selected loss function
must strike a delicate balance between maximizing the distance between different classes
while minimizing the distance within the same class. While neural network classification
models often adopt the Softmax loss function, this approach overlooks the absence of
information regarding the angular relationships between classes within the feature space,
consequently yielding suboptimal results. To address this problem, researchers have
introduced a fixed angular interval as a penalty term into the Softmax loss function,
proposing the Additive Angular Margin Loss Softmax (AAM-Softmax). This approach
effectively narrows intra-class gaps and enlarges inter-class distances [32,33]. The precise
formulation of AAM-Softmax is presented in Equation (6).

L = − 1
N

N

∑
i=1

log
es·(cos(θyi+m))

es·(cos(θyi+m)) +
n
∑

j=1,j 6=yi

es·cos θj

(6)

In Equation (6), N represents the total number of samples, n denotes the number
of classes, yi is the i sample, θyi stands for the angle between the samples yi and the
corresponding weight vectors of j class, s represents the scaling factor, and m refers to
the edge angle. The edge angle serves the purpose of fostering more closely knit samples
within the same class while simultaneously enhancing the disparities between different
classes. This serves to enhance the efficacy of classification or recognition.

ECAPA-TDNN entails a slightly elevated computational load in comparison to alter-
native neural network models. The training and inference processes of ECAPA-TDNN
demand a greater allocation of computational resources and time as opposed to conven-
tional DNN and LSTM (Long Short-Term Memory Network) models. Nevertheless, the
computational overhead of ECAPA-TDNN remains relatively modest when contrasted
with certain more recent speech recognition models, such as Transformers.
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4. Experimental Paradigm

The experimental simulations were conducted on the Shenzhou laptop platform, featur-
ing the following specific configuration: CPU—Intel Core i5-8400; graphics card—NVIDIA
GTX 1060 6 GB; operating system—Windows 10; simulation software—PyCharm Community
Edition; development language—Python 3.9; and deep learning framework—PyTorch 1.10.

In the experimental simulation, the noise signals were chosen from the 12 available
types in the NoiseX-92 dataset. Simultaneously, due to the scarcity of audio event-related
datasets and the representative nature of speech signals in the audio domain, audio event
signals were sourced from the speech signals within Tsinghua University’s THCHS-30
dataset. These signals were employed for speaker recognition testing. The data were
standardized into 16 kHz mono audio files, with sample data randomly allocated for
training and testing sets. The frame length was set at 20 ms (320 samples), while the frame
shift was established at 10 ms (160 samples) during frame segmentation.

For the speaker recognition test in the experiment, speech data from nine individuals
in the THCHS-30 dataset were randomly chosen and designated as participants A to I.
These individuals’ speech recordings were utilized for both training and testing. The frame
segmentation was performed with a frame length of 20 ms (320 samples) and a frame shift
of 10 ms (160 samples).

The effectiveness of noise signal type recognition is assessed using the accuracy metric
R. Prior to computing the accuracy rate, the recognized noise signals need to be manually
labeled with their corresponding frame noise signal types. The accuracy rate, R, for each
noise type recognition can be computed using Equation (7).

R =
N1,1

Nframe
× 100% (7)

where N1,1 represents the count of frames in which the manually labeled noise type matches
the noise type obtained through the deep learning model’s recognition, while Nframe
denotes the total number of frames containing noise signals.

5. Results
5.1. Noise Type Recognition Test

In deep learning, model training involves multiple stages, including hyperparameter
optimization, tuning model training efficiency, feature selection, and more. Training
process curves provide an intuitive way to understand the model’s performance at different
iterations. The accuracy and loss function transformation curves during the training process
of the ECAPA-TDNN algorithm are shown in Figure 10.
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Initially, a noise type test is executed for the 12 categories of noise signals within the
NoiseX-92 dataset, leveraging the trained deep learning model to assess its performance. The
accuracy of recognizing the 12 noise types from NoiseX-92 is presented in Table 1, compared
to advanced classification and recognition methods such as Convolutional Neural Network,
Random Forest, and Naive Bayes. While these methods may outperform ECAPA-TDNN
in specific application scenarios, nevertheless, ECAPA-TDNN consistently demonstrates
significantly superior classification results in the majority of real-world scenarios.

When analyzing the recognition accuracy of ECAPA-TDNN in Table 1, it is evident that
the average recognition accuracy achieved by the audio type recognition model proposed in
the paper stands at an impressive 98.15% across the 12 noise categories. Among these, the
recognition accuracy for the factory1 noise type appears relatively low at 88.49%, while the
remaining 11 noise types exhibit recognition accuracy exceeding 95%. In fact, most of the
noise types boast recognition accuracy surpassing 99%. Notably, the recognition accuracy for
three noise types—f16, hfchannel, and Volvo—attains a perfect 100%. When drawing from
the experimental outcomes, it is apparent that the proposed audio type recognition method,
based on ECAPA-TDNN, effectively accomplishes precise noise type identification.

Table 1. Accuracy of 12 types of noise recognition in NoiseX-92 (%).

Type of noise white pink Volvo babble buccaneer1 buccaneer2
Naive Bayes 74.77 74.02 67.54 67.56 80.30 82.46

Random Forest 93.03 97.69 89.79 98.27 100.00 99.94
CNN 97.36 97.43 91.71 95.62 94.37 87.75

ECAPA-TDNN 99.85 99.24 100.00 99.08 99.55 99.26

Type of noise factory1 factory2 f16 destroyer engine destroyerops hfchannel
Naive Bayes 71.47 93.54 71.09 88.72 78.48 73.19

Random Forest 90.08 95.33 86.26 97.66 84.41 79.61
CNN 83.36 92.05 74.91 99.39 83.12 77.36

ECAPA-TDNN 88.49 95.04 100.00 98.78 98.50 100.00

Precision and recall are interrelated metrics in a way that pursuing one often comes
at the expense of the other. Ideally, we would like to maximize both precision and recall,
but in practice, they tend to “constrain” each other. In other words, if we aim for high
precision, the recall tends to decrease, and vice versa. Precision and recall are generally in
conflict, and this conflict is resolved through the introduction of the F1 Score, which serves
as a comprehensive measure for balancing the trade-off between precision and recall and
evaluating a classifier more holistically. The F1 Score is calculated as the harmonic mean of
precision and recall. A higher F1 Score indicates a higher-quality model, as it takes into
consideration both false positives and false negatives, offering a well-rounded assessment
of the classifier’s performance. The F1 Score for ECAPA-TDNN in recognizing 12 types of
noise from the NoiseX-92 dataset is presented in Table 2 as a percentage.

Table 2. F1 Score of ECAPA-TDNN of 12 types of noise recognition in NoiseX-92 (%).

Type of noise white pink Volvo Babble buccaneer1 buccaneer2
F1 Score 98.88 98.87 99.35 98.86 98.85 98.82

Type of noise factory1 factory2 f16 destroyer engine destroyerops hfchannel
F1 Score 93.13 95.43 98.94 98.51 98.52 99.31

The ESC-50 dataset is a meticulously annotated collection of 2000 environmental sound
recordings, specifically curated for the evaluation of algorithms in the field of environmental
sound classification [34]. Within this dataset, there are ten distinct semantic classes, which
include helicopter, chainsaw, siren, car horn, engine, train, church bells, airplane, fireworks,
and handsaw. These classes are categorized under the broader umbrella of exterior/urban
noise. The primary purpose of utilizing this dataset is to assess and verify the repeatability
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and effectiveness of the ECAPA-TDNN algorithm in the recognition and classification of these
sound categories. The accuracy and F1 Score results can be found in Table 3.

Table 3. Accuracy and F1 Score of ECAPA-TDNN of 10 types of noise recognition in ESC-50 (%).

Type of noise Helicopter Chainsaw Siren Car horn Engine
Accuracy 93.21 92.99 97.55 93.98 94.87
F1 Score 71 71.96 89.69 70.86 76.76

Type of noise Train Church bells Airplane Fireworks Handsaw
Accuracy 91.92 98.39 94.31 98.64 97.07
F1 Score 68.75 93.9 72.73 94.79 87.88

5.2. Speaker Recognition Test

Speaker recognition experiments are executed in interference-free conditions, utilizing
the deep learning model trained earlier to evaluate its competence in recognizing the
intended audio type. The speaker recognition accuracy is depicted in Table 4 for when the
identified signal comprises purely speech,

Table 4. Speaker recognition accuracy without noise interference (%).

Speaker A B C D E F G H I

Accuracy 95.62 94.49 95.83 96.43 92.86 97.02 95.23 94.48 96.54

When analyzing the recognition accuracy outcomes displayed in Table 4, it becomes
evident that, in comparison to the more elevated accuracy achieved in noise type recogni-
tion, the speaker recognition accuracy experiences a marginal reduction. Nonetheless, in
the absence of noise interference, the average accuracy of speaker recognition still reaches a
commendable 95.39%. Speaker E’s recognition accuracy is relatively lower at 92.86%, while
the remaining speakers exhibit recognition accuracy hovering around 95%. Remarkably,
speakers D, F, and I attain a recognition accuracy surpassing 96%.

In practical application scenarios, the identification of target audio segment types often
collaborates with audio endpoint detection methods. In the presence of noisy signals, the
audio endpoint detection method is utilized to pinpoint the commencement and conclusion
of the target audio segment, facilitating the extraction of relatively unpolluted audio
signals. Subsequent identification endeavors are then conducted on these purified audio
segments. However, owing to the attributes of noise-infused frequency signals and the
performance limitations inherent in endpoint detection methods, there is a possibility that
noise components persist within the target audio segments, even after undergoing noise
reduction via multi-window spectral subtraction. In such operational contexts, it becomes
imperative for the type of recognition model to exhibit a certain degree of resilience against
interference. As the benefits of the maritime economy increase, verbal interaction and
communication within the ship environment have become more frequent. Nevertheless, the
pronounced noise emanating from various ship equipment during operation significantly
disrupts the smooth flow of interactions and communication among crew members. In
many instances, this formidable noise directly obscures spoken words. To assess this,
nine sets of speaker speech signals were amalgamated with destroyer engine noise from
the NoiseX-92 dataset, at signal-to-noise ratios (SNRs) of 10 dB and 5 dB. This process
engendered noise-laden speech signals for testing purposes. The resultant recognition
accuracy is enumerated in Table 5.
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Table 5. Speaker recognition accuracy under noise interference (%).

SNR (dB) A B C D E F G H I

5 81.45 81.37 82.16 83.23 79.68 83.97 81.82 80.65 81.15
10 94.36 94.21 94.64 95.66 91.12 96.04 93.61 92.64 93.33

When analyzing the speaker recognition test outcomes under noise interference condi-
tions in Table 5, we observe that a signal-to-noise ratio of 10 dB has relatively minor effects
on the model’s recognition performance when contrasted with a noiseless environment.
The average recognition accuracy across the nine sets of speakers stands at 93.95%. With
exceptions being speakers E and H, which demonstrate slightly lower recognition accuracy,
the remaining groups exceed 93%. It is noteworthy that the accuracy of groups D and F
remains above 95%. In contrast, when considering a signal-to-noise ratio of 5 dB, the recog-
nition accuracy notably decreases compared to the noise-free environment. The average
accuracy in this context drops to 81.72%. Within this realm, group E’s recognition rate
decreases to 79.68%, falling below the 80% threshold. However, the recognition accuracy
for the remaining groups still manages to stay above 80%.

Figure 11 illustrates the recognition outcomes of the ECAPA-TDNN-based classifica-
tion model across nine sets of speech signals, both in the absence and presence of noise. In
comparison to the noise-free scenario, the accuracy of speaker recognition diminishes by
1.44% and 13.67% at signal-to-noise ratios of 10 dB and 5 dB, respectively. These results
from the speaker recognition test underline the ECAPA-TDNN model’s capacity to exhibit
certain resistance to interference, enabling more precise type recognition within audio
signals containing residual noise.
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6. Conclusions

Through a comparative analysis of spectrogram and Mel’s acoustic spectrogram fea-
tures in noise and audio signals, the distinctiveness of various noise signal and audio event
signal features was established. Based on these findings, Meier’s acoustic spectrogram
features were employed for recognizing noise and target audio types. This paper introduces
a deep learning-based method for audio type recognition. The experimental results demon-
strate that this method achieved an impressive 98.15% accuracy in recognizing 12 types
of noise signals. In noise-free conditions, the recognition rate for nine groups of speaker
voices reached 95.39%. Even when residual noise interference was present, the method
maintained an average speaker recognition accuracy of over 80%, highlighting its ability to
deliver high recognition accuracy in noisy environments.
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