
Citation: Parra, D.; Escobar Sanabria,

D.; Camargo, C. A Methodology and

Open-Source Tools to Implement

Convolutional Neural Networks

Quantized with TensorFlow Lite on

FPGAs. Electronics 2023, 12, 4367.

https://doi.org/10.3390/

electronics12204367

Academic Editors: Dawid Połap,

Robertas Damasevicius and Hafiz

Tayyab Rauf

Received: 10 September 2023

Revised: 13 October 2023

Accepted: 16 October 2023

Published: 21 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Methodology and Open-Source Tools to Implement
Convolutional Neural Networks Quantized with TensorFlow
Lite on FPGAs
Dorfell Parra 1,2,* , David Escobar Sanabria 2 and Carlos Camargo 1

1 Department of Electrical and Electronics Engineering, Faculty of Engineering,
National University of Colombia, Bogotá 111321, Colombia; cicamargoba@unal.edu.co

2 Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic,
Cleveland, OH 44106, USA; escobad2@ccf.org

* Correspondence: dlparrap@unal.edu.co

Abstract: Convolutional neural networks (CNNs) are used for classification, as they can extract
complex features from input data. The training and inference of these networks typically require
platforms with CPUs and GPUs. To execute the forward propagation of neural networks in low-power
devices with limited resources, TensorFlow introduced TFLite. This library enables the inference
process on microcontrollers by quantizing the network parameters and utilizing integer arithmetic.
A limitation of TFLite is that it does not support CNNs to perform inference on FPGAs, a critical
need for embedded applications that require parallelism. Here, we present a methodology and
open-source tools for implementing CNNs quantized with TFLite on FPGAs. We developed a
customizable accelerator for AXI-Lite-based systems on chips (SoCs), and we tested it on a Digilent
Zybo-Z7 board featuring the XC7Z020 FPGA and an ARM processor at 667 MHz. Moreover, we
evaluated this approach by employing CNNs trained to identify handwritten characters using the
MNIST dataset and facial expressions with the JAFFE database. We validated the accelerator results
with TFLite running on a laptop with an AMD 16-thread CPU running at 4.2 GHz and 16 GB RAM.
The accelerator’s power consumption was 11× lower than the laptop while keeping a reasonable
execution time.

Keywords: TensorFlow; TFLite; FPGA; SoC; CNN

1. Introduction

Due to their ability to extract features from input data, convolutional neural networks
(CNNs) are being used in machine learning (ML) applications such as object detection,
facial expression recognition, and medical imaging [1–3]. The training of CNNs is typi-
cally performed on high-performance computing platforms to speed up the optimization
routines determining the CNN parameters. On the other hand, the inference process
(i.e., forward propagation) takes place in various hardware platforms, ranging from cloud
computing to embedded systems. However, executing CNNs in embedded devices is
challenging due to the power consumption and space constraints that limit their processing
and memory capabilities.

Consequently, the need for more efficient neural networks has motivated the research
of model compression techniques. These techniques decrease computational complexity by
using fewer parameters (i.e., pruning) [4,5] or by rescaling the data representation (quanti-
zation) [6,7]. Moreover, ML frameworks have recently implemented their own pruning and
quantization approaches. For instance, TensorFlow introduced TFLite (TensorFlow Lite),
a library that features the quantization scheme described in [8], for performing network
inference on mobile devices, microcontrollers (MCUs), and other edge devices [9].

Electronics 2023, 12, 4367. https://doi.org/10.3390/electronics12204367 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12204367
https://doi.org/10.3390/electronics12204367
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6502-2003
https://doi.org/10.3390/electronics12204367
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12204367?type=check_update&version=2

Electronics 2023, 12, 4367 2 of 18

Nonetheless, MCUs and small edge devices are not optimal for applications requir-
ing high throughput at lower power consumption rates, characteristics inherent to field-
programmable gate arrays (FPGAs). As a result, researchers have focused on speeding
up the inference of CNNs on hardware using compressed networks and custom systems
on chips (SoC) on FPGAs [10–15]. Overall, tools for implementing quantized CNNs on
FPGA-based accelerators have the potential to advance applications that require energy
efficiency, hardware flexibility, and parallelism. Additionally, utilizing FPGAs can broaden
the framework’s application scope by enabling the integration of ML into complex pipelines
(e.g., image acquisition, pre-processing, and classification) within a single lightweight plat-
form. This approach also permits the processing of sensitive information locally, thereby
reducing the risk of data breaches and the need to employ cloud computing while keeping
the cost and energy consumption attractive. Nevertheless, widely used frameworks like
TensorFlow have yet to add support for FPGAs to their quantization libraries (e.g., TFLite).

In this work, we introduce an open-source methodology for implementing TFLite
quantized CNNs on FPGAs. Additionally, we present an adaptable accelerator featuring IP
cores designed for network inference tasks. The accelerator’s architecture is compatible with
the AXI-Lite interface and allows throughput or power consumption enhancements. We
assessed our approach by training and quantizing two CNNs with the Modified National
Institute of Standards and Technology (MNIST) dataset and the Japanese Female Facial
Expression (JAFFE) dataset. We tested the accelerator by executing the network inferences
on the Digilent Zybo-Z7 development board. Moreover, we validated the accelerator’s
outcomes by comparing them to the results obtained from TFLite running on a laptop
equipped with an AMD 16-thread CPU.

2. Related Work

Recently, there have been works describing model compression techniques that de-
crease the computational load of neural networks. These techniques use fewer network
parameters and neurons (i.e., prune) or shift their numeric representation (i.e., quantization).
For instance, DeepIoT [4] compressed networks into compact, dense matrices compatible
with existent libraries. Yang et al. [5] introduced an energy-aware pruning algorithm for
CNNs tied to the network’s consumption. Chang et al. [6] presented a mixed scheme quan-
tization (MSQ) that combines the sum-of-power-of-2 (SP2) and fixed-point schemes. Bao
et al. [7] demonstrated a learnable parameter soft clipping full integer quantization (LSFQ).

Meanwhile, many accelerators have been designed to speed up the inference of CNNs
on hardware employing custom systems on chips (SoCs) on FPGAs. Zhou et al. [16] intro-
duced a five-layer accelerator using 11-bit fixed point precision for the Modified National
Institute of Standards and Technology (MNIST) digit recognition on a Virtex FPGA. Zhang
et al. [17] presented a design space exploration using loop tiling to enhance the mem-
ory bandwidth. Feng et al. [18] outlined a high-throughput CNN accelerator employing
fixed-point arithmetic. Xin et al. [19] proposed an optimization framework integrating
an ARM processor. Guo et al. [20] leveraged bit-width partitioning of DSP resources to
accelerate CNNs with FPGAs. In [14], the authors employed Wallace tree-based multipliers
to replace the multiplier accumulator units (MAC) utilized in the accelerator’s processing
elements (PE). In [21], the authors analyzed the on-chip and off-chip memory resources
and proposed a memory-optimized and energy-efficient CNN accelerator. Zhong-ling
et al. [22] used various convolution parallel computing architectures to balance computing
efficiency and data load bandwidth. In [2], the authors designed a high-performance task
assignment framework for MPSoCs and a DPU-based accelerator. Liang et al. [1] intro-
duced a framework that uses on-chip memory partition patterns for accelerating sparse
CNNs on hardware. In [15], the authors employed the Winograd and fast Fourier transform
(FFT) as fast algorithms representatives to design an architecture that reuses the feature
maps efficiently.

Moreover, other works employed microcontrollers and application-specific integrated
circuits (ASICs) as development platforms. Ortega-Zamorano et al. [23] described an effi-

Electronics 2023, 12, 4367 3 of 18

cient implementation of the backpropagation algorithm in FPGAs and microcontrollers.
In [24], the authors presented Diannao, a small-footprint, high-throughput accelerator for
ML. In [25], the authors introduced Shidiannao, an integration between the Diannao accel-
erator and a CMOS/CCD sensor that achieved a footprint area of 4.86 mm2. Additionally,
there are surveys of neural networks on hardware that provide insights into the current
state and point out the challenges that slow down the use of accelerators [10–13]. Our
work supplements the existing research by introducing both a methodology for implement-
ing TFLite-quantized CNNs in FPGAs and a customizable accelerator compatible with
AXI-Lite-based SoCs.

3. Background
3.1. Model Compression

CNN parameters involved in the inference typically use 32-bit floating point numbers,
which could make memory and computational demands challenging for platforms with
limited resources, such as MCUs or embedded systems [10]. The aforementioned challenge
has motivated the research of model compression techniques that reduce the network size.
For example, pruning identifies and removes neurons that are not significantly relevant in
deep networks. On the other hand, quantization re-scales the numeric range (e.g., from real
numbers to integers), reducing the computational complexity of the forward propagation.
Quantization could happen after training (post-training quantization) or, more effectively,
during training (quantization-aware training) [8]. Moreover, in specific cases, pruning and
quantization could be used together.

3.2. Quantization with TensorFlow Lite

Figure 1 describes the TFLite quantization process applied to a convolutional layer.
Initially, TFLite adds the activation quantization (act quant) and weight quantization
(wt quant) nodes. These nodes scale the range, making the layer aware of quantization.
Following the network training, all the operations employed in the inference will use
only integer numbers. For instance, Table 1 shows the specifications for the Conv_2D,
Fully_Connected, and Max_Pool_2D layers, while a comprehensive list of supported
operations is available in [26]. Although using integers impacts the network accuracy,
it reduces the complexity of the forward propagation, particularly relevant for resource-
constrained devices.

Table 1. Operator specifications of TFLite quantized layers [27].

Layer Inputs/Outputs Data_Type Range

Conv_2D Input 0: int8 [−128, 127]

Input 1 (Weight): int8 [−127, 127]

Input 2 (Bias): int32 [int32_min, int32_max]

Output 0: int8 [−128, 127]

Fully_Connected Input 0: int8 [−128, 127]

Input 1 (Weight): int8 [−127, 127]

Input 2 (Bias): int32 [int32_min, int32_max]

Output 0: int8 [−128, 127]

Max_Pool_2D Input 0: int8 [−128, 127]

Output 0: int8 [−128, 127]

Furthermore, TFLite enhances the inference and training efficiency by employing custom
C++ functions linked to the Python library model_optimization [28,29]. Essential functions

Electronics 2023, 12, 4367 4 of 18

include SaturatingRoundingDoublingHighMul, RoundingDivideByPOT, and MultiplyByQuan-
tizedMultiplier, whose descriptions are available in Appendix A Algorithms A1–A3 [29].

Figure 1. Example of a convolutional layer quantized with TFLite adapted from [8]. The layer
operations are (1) the convolution between input and weights arrays, (2) the bias addition, and (3) the
rectification via a rectified linear unit (ReLU). These operations typically employ 32-bit floating point
arithmetic. The layer becomes aware of quantization after TFLite adds the weight quantization
(wt quant) and activation quantization (act quant) nodes to simulate the quantization effect. After
training, the inference of the quantized layer will only require integer arithmetic, making it affordable
for lightweight embedded systems.

4. Materials and Methods
4.1. Accelerator Architecture

Figure 2 depicts the accelerator architecture designed for running the inference of CNN
models quantized with TFLite on Zynq FPGAs [30]. The accelerator employs the Processing
System 7 (PS7) to control the execution of the forward propagation, along with the custom
IP cores Conv0, Mpool0, Dense0, and TFLite_mbqm0 for computing the layers’ outputs.

The inference process starts with the ARM processor, controlled by the PS7, loading
all the parameters and the input data from a microSD card to the system on chip’s (SoC)
memory. Then, the processor reads the firmware application and writes only the data
needed to compute the first layer into the core wrapper registers.

Next, the core computes the operations and copies the results into the output register,
which can be read by the processor and stored in RAM. These steps are repeated for all the
layers in the network. This method of handling the operations enables reusing the same
cores for similar layers presented in the network, as far as the temporal dependency of data
allows it. All the data transfers between the ARM processor and the custom cores are made
via the AXI AMBA communication bus.

Electronics 2023, 12, 4367 5 of 18

Figure 2. The accelerator architecture employs an ARM processor connected to custom IP cores via
an AXI-Lite bus. Initially, the processor loads the parameters and input data into the SoC memory.
Then, it transfers the data between memory and the cores’ registers when needed to coordinate the
inference execution. The custom IP cores support the following operations. The core TFLite_mbqm0
computes the multiplybyquantizedmultiplier factor used in the quantized layers. The Conv0 core
calculates convolutions of 5 × 5 arrays. The Mpool0 core runs a Maxpooling operation over
2 × 2 windows. The Dense0 core takes arrays of up to 64 elements to perform the fully_connected
layer. Furthermore, the cores Conv0 and Dense0 employ DSP48 resources to improve computational
efficiency. Additionally, the accelerator throughput can be augmented by adding core instances and
increasing the cores’ size to support larger inputs.

4.1.1. TFLite_mbqm Core

The TFLite_mbqm core implements the functions SaturatingRoundingDoublingHighMul,
RoundingDivideByPOT, and MultiplyByQuantizedMultiplier required for calculating the mbqm
value. The core’s behavior was validated with simulations, obtaining an average execution
time of 600 µs. Furthermore, the function tflite_mbqm manages the core via an AXI-Lite
wrapper, as depicted in Algorithm 1.

Algorithm 1 Computation of the value mbqm using the TFLite_mbqm core.
1: function t f lite_mbqm(cv_in, bias, M0, shi f t){
2: set input registers: cv_in, bias, M0, shi f t
3: wait f or the core to f inish execution
4: get output register: mbqm
5: return mbqm; };
6: end function

The core consists of five sub-modules described below:

• tflite_core0: Adds the bias to the input value (e.g., cv_in) and checks for overflow.

Electronics 2023, 12, 4367 6 of 18

• tflite_core1: Multiplies the quantized_multiplier value with the input plus bias (xls),
using two DSP48s because the expected result is a 64-bit width. This sub-module also
computes the nudge variable.

• tflite_core2: Adds the ab_64 value to the nudge into the ab_nudge.
• tflite_core3: Saturates the ab_nudge and bounds it to the int32_t maximum value. The

result is the srdhm value.
• tflite_core4: Rounds the srdhm value using the shift parameter and outputs the mbqm value.

4.1.2. Conv Core

The Conv core performs TFLite-based convolutions using 5× 5 kernels. Simulations
were used to validate its behavior, resulting in an average execution time of 500 ns per
convolution. The core comprises the following sub-modules:

• conv_core0: Adds the offset_ent parameter and the input values x01, . . . , x025 into the
xo01, . . . , xo025 signals.

• conv_core1: Multiplies the weights w01, . . . , w25 with the xo01, . . . , xo025 values using
DSP48 blocks, into xow01, . . . , xow025 signals.

• conv_core2: Adds the xow01, . . . , xow025 values into the signal xow.
• conv_core3: Adds the previous value cv_in to the present value xow. The result is

stored in the output register cv_out.

The function conv_k5, depicted in Algorithm 2, is employed to compute a convolutional
layer. ent is the input tensor with dimensions lenX, lenY, lenZ, lenW; fil is the filters tensor
with dimensions lenA, lenB, lenC, lenD; and cnv is the resulting tensor with dimensions
lenA, lenB, lenC, lenD. The parameters shift, M0, scale, offset_ent, offset_sor come from the
quantization. The function cv_k5_core controls the Conv core through its base address addr0
and the registers of its AXI-Lite wrapper. Its outputs are then directed to the TFLite_mbqm
core with base address addr1. Following that, the first clamp operation (line 12) reproduces
a ReLU from 0 to 255, while the second clamp (line 14) bounds the values to the int8 range;
min_val = −128 and max_val = 127.

Algorithm 2 Convolutional layer computation employing the Conv and TFLite_mbqm cores
1: function conv_k5(ent[lenX, lenY, lenZ, lenW], f il[lenA, lenB, lenC, lenD]){
2: define: cnv[lenE, lenF, lenG, lenH]
3: for (f = 0; f < lenA; f ++){
4: get: shi f t, M0, bias
5: for (i = 0; i < lenY− 4; i ++){
6: for (j = 0; j < lenZ− 4; j ++){
7: for (k = 0; k < lenW; k ++){
8: cnv[0][i][j][f] = cv_k5_core(addr0,
9: ent[0, 0 + i, 0 + j, k], . . . , f il[f , 0, 0, k], . . . ,

10: o f f set_ent, cnv[0][i][j][f])};
11: cnv[0][i][j][f] = t f lite_mbqm(addr1, cnv[0][i][j][k], bias, M0, shi f t);
12: cnv[0][i][j][f] = min (max(cnv[0][i][j][f], 0), 255);
13: cnv[0][i][j][f] = cnv[0][i][j][f] + o f f set_sor;
14: cnv[0][i][j][f] = min (max(cnv[0][i][j][f], − 128), 127);
15: }; }; };
16: return cnv; };
17: end function

4.1.3. Mpool Core

The Mpool core takes four values and returns the maximum, utilizing an AXI-Lite
wrapper controlled by the function mp_22_core. Algorithm 3 presents the function maxp_22
used to compute a MaxPooling layer using 2× 2 windows over the input data. The input
tensor cnv has dimensions lenX, lenY, lenZ, and lenW, and the resulting tensor named mxp
has dimensions lenA, lenB, lenC, and lenD.

Electronics 2023, 12, 4367 7 of 18

Algorithm 3 Maxpooling layer computation using the Mpool core.
1: function maxp_22(cnv[lenX, lenY, lenZ, lenW]){
2: define mxp[lenA, lenB, lenC, lenD]
3: for (i = 0; i < lenB; i ++){
4: for (j = 0; j < lenC; j ++){
5: for (k = 0; k < lenD; k ++){
6: mxp[0][i][j][k] = mp_22_core(addr,
7: cnv[0, 0 + i ∗ 2, 0 + j ∗ 2, k], cnv[0, 0 + i ∗ 2, 1 + j ∗ 2, k],
8: cnv[0, 1 + i ∗ 2, 0 + j ∗ 2, k], cnv[0, 1 + i ∗ 2, 1 + j ∗ 2, k]);
9: }; }; };

10: return mxp};
11: end function

4.1.4. Dense Core

The Dense core performs the computationally intensive operations of a TFLite-based
fully connected layer with vectors of up to sixty-four elements. The core’s behavior was
validated using simulation, yielding an estimated execution time of 500 ns. The core
consists of the following sub-modules:

• dense_core0: Adds the offset_ent parameter and the input values x01, . . . , x025, and
copies the results into the xo01, . . . , xo025 signals.

• dense_core1: Multiplies the weights w01, . . . , w025 by the xo01, . . . , xo025 values using
DSP48, and copies the results into the xow01, . . . , xow025 signals. Then, these signals
are added in the top module, and the result is stored in the output register ds_out.

The function dense, described in Algorithm 4, is employed to compute a fully connected
layer. ent is the input vector of size lenX; fil is the filters matrix with dimensions lenY, lenZ; and
dns is the resulting vector of size lenW. The parameters shi f t, M0, scale, o f f set_ent, o f f set_sor
are derived from the quantization process. The Dense core is controlled by employing its
base address addr0 and its AXI-Lite wrapper, managed by the function ds_k64_core. Its
outputs are then directed to the TFLite_mbqm core with base address addr1. Next, the
output_offset is added, and the results are bounded by the int8 range (line 11).

Algorithm 4 Fully connected layer computation using the Dense and the TFLite_mbqm cores
1: function dense(ent[lenX], f il[lenY, lenZ]){
2: define dns[lenW]
3: for (f = 0; f < lenY; f ++){
4: get: shi f t, M0, bias
5: for (i = 0; i < lenX/64; i ++){
6: dns[f] = ds_k64_core(addr0, o f f set_ent, dns[f],
7: ent[0 + 64 ∗ i], . . . , ent[63 + 64 ∗ i],
8: f il[f][0 + 64 ∗ i], . . . , f il[f][63 + 64 ∗ i]); };
9: dns[f] = t f lite_mbqm(addr1, dns[f], bias, M0, shi f t);

10: dns[f] = dns[f] + o f f set_sor;
11: dns[f] = min (max(dns[f], − 128), 127); };
12: return dns; };
13: end function

4.1.5. Additional Functions

Additional functions that support the inference process are padding and flatten. The
padding function, described in Algorithm 5, is in charge of introducing zero-value ele-
ments to the tensor. This maintains the size consistency between the input and output
tensors of the layer. ent is the input tensor, and pad is the output tensor with dimensions
lenX, lenY, lenZ, lenW and lenA, lenB, lenC, lenD, respectively. Furthermore, because
quantization shifts the zero position, the new value is given by the zero_point parameter.

Electronics 2023, 12, 4367 8 of 18

Algorithm 5 Padding computation for quantized network.
1: function padding(ent[lenX, lenY, lenZ, lenW], zero_point,
2: pad[lenA, lenB, lenC, lenD]){
3: for (f = 0; f < lenX; f ++){
4: for (i = 0; i < lenY; i ++){
5: for (j = 0; j < lenZ; j ++){
6: for (k = 0; k < lenW; k ++){
7: if (outside input tensor boundaries){
8: pad[f , i, j, k] = zero_point; };
9: else{

10: pad[f , i, j, k] = ent[f , i− 2, j− 2, k]; };
11: }; }; }; }; };
12: end function

The flatten function, described in Algorithm 6, takes a tensor and creates its 1D array.
ent is the input tensor with dimensions lenX, lenY, lenZ. flt is the output vector whose
dimensions depend on the number of characteristic maps, their sizes, and the number
of classes.

Algorithm 6 Flatten function.
1: function f latten(ent[lenX, lenY, lenZ]){
2: define f lt[lenX× lenY× lenZ], int idx = 0;
3: for (i = 0; i < lenX; i ++){
4: for (j = 0; j < lenY; j ++){
5: for (k = 0; k < lenZ; k ++){
6: f lt[idx] = ent[0, i, j, k];
7: idx + = 1;
8: }; }; }; };
9: end function

4.2. Methodology Overview

The proposed methodology is described in Algorithm 7. From the hardware perspec-
tive, the user needs to provide a pre-processed dataset, a Zynq FPGA platform, and a CNN
quantized with TFLite. Then, the trained parameters and the input data need to be copied
to a microSD card. The next step involves exporting the accelerator’s hardware specifi-
cation file (*.xsa) from Vivado to Vitis. Nevertheless, if needed, this hardware–software
architecture can be customized by adding more core instances or modifying the kernel
sizes to enhance resource utilization, throughput, and power.

From the software perspective, the user maps the quantized network onto the accelera-
tor through a C application. Algorithm 8 depicts the Vitis template we developed, and it is
described as follows. First, the function network_inference retrieves the input data (InTensor),
the parameters (ParMatrix), and the filters (FilTensor). Next, padding is applied to keep the
layers’ size, and then the user adds the network layers to the template. After compilation,
the FPGA can execute the inference of the quantized network.

Figure 3 provides an overview of the proposed methodology, including the quantized
network, the functions for executing the layers’ computation and controlling the IP cores,
and the accelerator’s memory map and architecture.

Electronics 2023, 12, 4367 9 of 18

Figure 3. The proposed methodology allows for running the inference of CNNs quantized with
TFLite on FPGAs. The color arrows depict the relationship between the quantized layers, IP cores,
and handle functions. Specifically, the dotted arrows show the connection between the layers and
the functions, while the solid ones show what functions manage the hardware cores. After training
and quantizing the model, the user maps the CNN into the accelerator using the Vitis application
we provided. Additionally, the Vivado project supplies the hardware description files required to
customize the accelerator, while Vitis imports its hardware specification from Vivado to link it to
the C application. After programming the FPGA, the inference can be executed and monitored via a
serial terminal. All the files involved in the methodology are available in the open-source repository
https://gitlab.com/dorfell/fer_sys_dev (accessed on 9 September 2023).

Algorithm 7 Methodology to implement quantized CNNs in Zynq FPGAs

1: Require:
2: Pre-processed data set.
3: Zynq FPGA plat f orm.
4: Ensure:
5: CNN trained and quantized.
6: Network parameters in microSD card.
7: Hardware f iles (∗.xsa, ∗.bitstream) f rom Vivado.
8: Map the network in Vitis.
9: Execute:

10: Compile project and program FPGA.
11: Open Serial terminal to control the execution.
12: Run in f erence.
13: Assessment:
14: Accuracy, loss, execution time, etc.

https://gitlab.com/dorfell/fer_sys_dev

Electronics 2023, 12, 4367 10 of 18

Algorithm 8 C application template for mapping TFLite quantized CNNs in Vitis
1: function network_in f erence(InTensor, ParMatrix, FilTensors){
2: define: PadTensors
3: add layers:
4: padding(InTensor, PadTensor, zero_point);
5: conv_k5(PadTensor, FilTensor, ParMatrix, CnvTensor);
6: maxp_22(CnvTensor, MxpTensor);
7: ∗ ∗ ∗
8: f latten(MxpTensor, FltVector);
9: ∗ ∗ ∗

10: dense(FltVector, FilMatrix, ParMatrix, DnsVector);
11: get output: DnsVector
12: return 0; };
13: end function

4.3. Experimental Setup

We assessed our methodology by employing two CNNs quantized through TFLite
and trained on two datasets: the Modified National Institute of Standards and Technology
(MNIST) database of handwritten digits [31] and the Japanese Female Facial Expression
(JAFFE) dataset [32]. We chose the MNIST dataset because it is a classification benchmark
for ML algorithms with 70,000 images of handwritten numbers from zero to nine. Con-
versely, we selected JAFFE because it is employed in the more challenging facial expression
recognition (FER) task. This dataset comprises 213 images of ten female subjects performing
six basic facial expressions plus a neutral one. The accelerator’s synthesis was carried out
using Vivado (v2021.1), and the application compilation for the network inference utilized
Vitis (v2021.1). Our tests utilized the Zybo-Z7 development board made by Digilent, fea-
turing a Xilinx FPGA Zynq XC7Z020 with an ARM CPU processor operating at 660 MHz
and 1 GB of RAM. To understand how our FPGA hardware’s execution time and power
consumption compared to traditional computer architectures, we used a Legion 5 laptop
equipped with an AMD Ryzen7 4800H 16-core CPU at 4.2 GHz and 16 GB of RAM.

5. Results
5.1. Trained Models

We trained our first CNN with MNIST (CNN+MNIST) using the example provided
in [28]. This model employed a convolutional layer of kernel size 5 × 5 with five fil-
ters, a pooling layer, and a dense layer with ten neurons. For the CNN trained with the
JAFFE dataset (CNN+JAFFE), due to the complexity of FER tasks, we implemented a
pre-processing pipeline (i.e., detection of eyes, rotation of face, cropping the region of
interest, and equalizing the image histogram) following the methodology outlined in [33].
Additionally, we enhanced the pre-processed dataset using the local binary pattern (LBP)
descriptor. Then, we improved the robustness of the training by employing data augmen-
tation to generate up to fifteen new samples from each original image. This model used
three convolutional layers of kernel size 5× 5 with 32, 64, and 128 filters, pooling layers,
and a dense layer with six neurons. Table 2 summarizes these models’ architectures. The
confusion matrix shown in Figure 4a shows that the CNN+MNIST successfully classified
the dataset. However, the confusion matrix for the CNN+JAFFE, presented in Figure 4b,
indicates that the network is overfitting. This behavior can happen when the number of
trainable parameters is not optimal and the network fails to generalize the dataset. Further-
more, Table 2 shows the precision, recall, F1-score, Matthews correlation coefficient (MCC),
and accuracy metrics achieved by the two CNNs. At first glance, the performance of the
CNN+JAFFE is outstanding, but we know from the confusion matrix that this is not the
case. Therefore, every metric value should be analyzed per class to better understand how
the network performs. Of note, the primary purpose of using these networks as examples

Electronics 2023, 12, 4367 11 of 18

is to validate our proposed methodology for implementing CNNs quantized with TFLite
on lightweight FPGAs, not to optimize their performance.

Table 2. The classification metrics precision, recall, F1-score, Matthews correlation coefficient (MCC),
and accuracy obtained by the models trained with the MNIST and JAFFE datasets.

Name Model Precision Recall F1-Score MCC Accuracy

Input: 28× 28

97.15% 97.11% 97.11 97.12% 96.81%
CNN+ Conv2D: 5× 5× 5

MNIST MaxPooling: 2× 2

Dense: 10

Input: 64× 64

95.83% 94.44% 93.78% 94.28% 93.78%

Conv2D: 32× 5× 5

MaxPooling: 2× 2

CNN+ Conv2D: 64× 5× 5

JAFFE MaxPooling: 2× 2

Conv2D: 128× 5× 5

MaxPooling: 2× 2

Dense: 6

(a) (b)
Figure 4. Confusion matrices of the CNNs employed to assess the methodology. (a) CNN+MNIST:
Its classes correspond to handwritten digits from zero to nine. Overall, the network trained with
MNIST successfully classified all the test samples. (b) CNN+JAFFE: Its classes are six emotions (i.e.,
happiness (HA), anger (AN), disgust (DI), fear (FE), sadness (SA), and surprise (SU)), represented
with facial expressions. The resulting overfitting indicates that the network trained with JAFFE
struggles to generalize the dataset.

5.2. Quantized Models

Table 3 presents the accuracy, number of parameters, and size of the two convolutional
networks before and after quantization. The CNN+MNIST achieved a 96.79% accuracy,
using 9.940 parameters and a size of 40.64 kB. Once the model was quantized, the number of
parameters increased to 9.964, while the accuracy and size dropped to 94.43% and 13.30 kB,
respectively. On the other hand, the CNN+JAFFE model obtained an accuracy of 94.44%
employing 306.182 parameters and with a size of 1.17 MB. After quantization, the number
of parameters rose to 306.652, and the accuracy and size decreased to 83.33% and 0.30 MB.
The performance drop observed after quantization can be attributed to loss of information

Electronics 2023, 12, 4367 12 of 18

caused by shrinking the parameters representation from the floating-point range to a fixed
number set [28]. For instance, the numbers 1.0, 1.1, and 1.2 might all be represented by
the same value during quantization (e.g., 1.0), creating a lossy parameter. Using these
lossy parameters in intensive calculations can lead to accumulating numerical errors and
propagating them in subsequent computations.

Table 3. Models’ numerical representation, accuracy, number of parameters, and size before and after
quantization.

Name Model Representation Accuracy Parameters Size

Input: 28× 28
Floating Point 96.79% 9.940 40.64 kB

CNN+ Conv2D: 5× 5× 5

MNIST MaxPooling: 2× 2
Integer 94.43% 9.964 13.30 kB

Dense: 10

Input: 64× 64

Floating Point 94.44% 306.182 1.17 MB
Conv2D: 32× 5× 5

MaxPooling: 2× 2

CNN+ Conv2D: 64× 5× 5

JAFFE MaxPooling: 2× 2

Integer 83.33% 306.652 0.30 MB
Conv2D: 128× 5× 5

MaxPooling: 2× 2

Dense: 6

5.3. Logic Resources and Power Consumption

Figure 5 shows the accelerator’s placement and routing within the FPGA, and Table 4
presents the logic resources employed. Although adding more core instances to the data
path improves throughput, the area of the device did not allow it. Furthermore, Figure A1
displays the Vivado estimation of the power consumption. The ARM processor uses about
1.53 W of power, while the total estimated power is less than 1.7 W. Notably, this is nearly
3× lower than the laptop’s power consumption in the idle state [34].

Table 4. Utilization of logic resources.

Resource Available Utilization Utilization %

LUT 53,200 6373 11.98

LUTRAM 17,400 71 0.41

FF 106,400 12,470 11.72

DSP 220 93 42.27

IO 125 18 14.40

Electronics 2023, 12, 4367 13 of 18

Figure 5. A Zynq FPGA combines a processing system (PS) with programmable logic (PL). Typically,
the PS is a hardcore ARM processor with one or more cores. Meanwhile, the PL encompasses the
devices’ logic resources, BRAMs, DSP48, and I/O buffers. These resources are organized in slices,
identified with XY coordinates. The place and route stage of the Vivado design flow implements
the accelerator and the data path on the FPGA employing the PL. For our performance evaluation,
we utilized a Zybo-Z7 board equipped with the XC7Z020 device. While some slices were partially
utilized, the resources required for the data path made adding more core instances unfeasible.

5.4. Performance Comparison

The accelerator’s performance was compared against a laptop running the inference
of the two quantized networks CNNs+MNIST and CNN+JAFFE. The accelerator executed
the inference of the networks employing a bare-metal C application. Meanwhile, a laptop
with Ubuntu 20.04.2 LTS utilized the TFLite included in TensorFlow version 2.6.0.

Table 5 presents the models’ accuracy and inference times on the tested platforms.
Here, it is relevant to point out that for the Zybo-Z7, the reported inference times do not
consider the firmware compilation in Vitis. The CNN+MNIST achieved an accuracy of
94.43% employing 9.964 parameters after quantization, and its inference on the accelerator
was 35× faster than the laptop. Conversely, the CNN+JAFFE obtained a post-quantization
accuracy of 83.33% utilizing 306.652 parameters, but the accelerator performance was
1.35× slower. This slowdown indicates a computation bottleneck caused by using a single
Conv core for processing three layers with 32, 64, and 128 filters. This deceleration was
not observed with the CNN+MNIST because that model only had one convolutional layer
with five filters. Moreover, memory bottlenecks can be ruled out because a maximum of
64 elements were transferred simultaneously from the SoC’s memory to the cores’ registers.
While the resources available on the Zybo-Z7 FPGA limited the number of cores in our
implementation, the accelerator can handle more core instances to enhance performance if
a larger FPGA is used.

Electronics 2023, 12, 4367 14 of 18

Additionally, it is worth noting that the accelerator power consumption required only
4.5 W, whereas the laptop required around 50 W. These factors and cost considerations
make our implementation a compelling choice for battery-powered remote applications.

Table 5. Comparison of model inferences on laptop and Zybo-Z7.

Quantized Network Platform Accuracy Inference Time Power Cost

CNN+MNIST 94.43% 4.45 s

50 W $950
Laptop with

CNN+JAFFE
TFLite

83.33% 73.97 s

CNN+MNIST 94.43% 0.127 s

4.5 W $299
Zybo-Z7 with

CNN+JAFFE
C application

83.33% 99.74 s

6. Discussion and Conclusions

In this work, we introduced and validated an open-source methodology for running
the inference of quantized CNNs on Zynq FPGAs. Initially, we employed TensorFlow to
train two CNNs with the MNIST (CNN+MNIST) and the JAFFE (CNN+JAFFE) datasets.
We used confusion matrices and the precision, recall, F1-score, Matthews correlation coef-
ficient (MCC), and accuracy metrics to assess their classification performance. While the
CNN+MNIST successfully classified the dataset, the confusion matrix for the CNN+JAFFE
showed that the network struggled to generalize the dataset. We addressed this overfit-
ting by using data augmentation. However, to ensure the model remained suitable for
lightweight FPGAs, we refrained from enlarging it by adding dropout layers or mixing it
with other ML algorithms concurrently.

Then, we employed TFLite to quantize the networks, resulting in a decrease in accu-
racy of 2.36% and 11.11% for the CNN+MNIST and CNN+JAFFE networks, respectively.
This drop in performance reflects information loss and propagation of numerical error
through the network caused by shifting the float-point representation for integer num-
bers. Nonetheless, utilizing integer arithmetic is still attractive because it reduces the
computational load associated and renders the network inference feasible for devices with
limited resources.

Additionally, we developed an adaptable accelerator compatible with the AXI-Lite
bus and enhanced it with DPS48 and BRAMs resources through synthesis primitives. We
also provided the hardware description language (HDL) design files to customize the
architecture (e.g., by varying the size of concurrent operations or modifying the number
of IP core instances). Moreover, we made the C application template needed for mapping
the CNNs into the accelerator available and evaluated our methodology with a Digilent
Zybo-Z7 FPGA platform.

The experiments showed that compared with a Legion 5 laptop, our accelerator
achieved a 35× increase in speed for the MNIST CNN but was 1.35× slower with the JAFFE
CNN. We attribute this slowdown to a computational bottleneck caused by using a single
Conv core for processing three layers with 32, 64, and 128 filters. For the CNN+MNIST,
the computational bottleneck was negligible because it only had one convolutional layer
with five filters. Furthermore, memory bottlenecks were not an issue since the maximum
number of elements transferred simultaneously between the SoC memory and the cores’
registers is 64. Conversely, the energy efficiency improved by 11×, making the accelerator
suitable for cost-effective, battery-powered applications that require parallel computing.

Overall, this work extends the use of CNNs to applications where computational loads
make edge devices unfeasible because it provides an open-source accelerator compatible

Electronics 2023, 12, 4367 15 of 18

with any SoC with AXI interface support. The accelerator executes models with Conv, Max-
pooling, and Dense TFLite layers on FPGAs, allowing the user to customize its accelerator
architecture. Nevertheless, for complex ML models that require faster FPGAs with large
memory and high throughput while being energy-efficient, advanced devices like MPSoCs
with deep processing units (DPU) on Zynq Ultrascale FPGAs are advisable.

Author Contributions: D.P.: Conceptualization, Methodology, Hardware, Software, Validation,
Writing—original draft. D.E.S.: Supervision, Writing—review. C.C.: Conceptualization, Supervision,
Writing—review. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by a fellowship provided to D.P. by the Universidad Nacional de
Colombia and also supported by the seed funds provided to D.E.S. by the Department of Biomedical
Engineering at the Cleveland Clinic Lerner Research Institute.

Data Availability Statement: The data presented in this study are available in https://gitlab.com/
dorfell/fer_sys_dev (accessed on 9 September 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network
CPU Central processing unit
DPU Deep processing unit
DSP Digital signal processor
FPGA Field-programmable gate array
GPU Graphics processing unit
HDL Hardware description language
JAFFE Japanese Female Facial Expression
LBP Local binary pattern
MCU Microcontroller unit
ML Machine learning
MNIST Modified National Institute of Standards and Technology database
TFLite TensorFlow Lite

Appendix A. TFLite Functions Used in Quantization

Algorithm A1 SaturatingRoundingDoublingHighMul saturates the product between the input
value (a) and the quantized_multiplier (b) and bounds its output to the int32_t maximum.

1: function SaturatingRoundingDoublingHighMul (int32_t a, int32_t b) {
2: bool over f low = a == b && a == numeric_limits < int32_t > min();
3: int64_t a_64(a); int64_t b_64(b);
4: int64_t ab_64 = a_64 ∗ b_64;
5: int32_t nudge = ab_64 >= 0 ? (1 << 30) : (1 − (1 << 30));
6: int32_t ab_x2_high32 =
7: static_cast < int32_t > ((ab_64 + nudge) / (1ll << 31));
8: return over f low ? numeric_limits < int32_t > max() :
9: ab_x2_high32; };

10: end function

https://gitlab.com/dorfell/fer_sys_dev
https://gitlab.com/dorfell/fer_sys_dev

Electronics 2023, 12, 4367 16 of 18

Algorithm A2 RoundingDivideByPOT rounds the saturated value employing the exponent
parameter and the functions BitAnd, MaskIfLessThan, MaskIfGreaterThan, and ShiftRight.

1: function RoundingDivideByPOT (int32_t x, int8_t exponent) {
2: assert(exponent >= 0);
3: assert(exponent <= 31);
4: const int32_t mask = Dup((1ll << exponent) − 1);
5: const int32_t zero = Dup(0);
6: const int32_t one = Dup(1);
7: const int32_t remainder = BitAnd(x, mask);
8: const int32_t threshold =
9: Add (Shi f tRight(mask, 1), BitAnd(MaskI f LessThan(x, zero), one));

10: return Add (Shi f tRight(x, exponent),
11: BitAnd (MaskI f GreaterThan(remainder, threshold), one)); };
12: end function

Algorithm A3 MultiplyByQuantizedMultiplier calls the above functions and uses the expo-
nent obtained with the shift quantization parameter to compute the mbqm factor.

1: function MultiplyByQuantizedMultiplier (int32_t x
2: int32_t quantized_multiplier, int shi f t) {
3: int8_t le f t_shi f t = shi f t > 0? shi f t : 0;
4: int8_t right_shi f t = shi f t > 0? 0 : − shi f t;
5: return RoundingDivideByPOT(
6: SaturatingRoundingDoublingHighMul (
7: x ∗ (1 << le f t_shi f t), quantized_multiplier), right_shi f t); };
8: end function

Appendix B. Accelerator Power Consumption

Figure A1. The power consumption estimation of the accelerator implemented on the Zynq XC7Z020
FPGA is around 2 W, making our design attractive for battery-powered applications.

References
1. Liang, Y.; Lu, L.; Xie, J. OMNI: A Framework for Integrating Hardware and Software Optimizations for Sparse CNNs. IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 1648–1661. [CrossRef]
2. Zhu, J.; Wang, L.; Liu, H.; Tian, S.; Deng, Q.; Li, J. An Efficient Task Assignment Framework to Accelerate DPU-Based

Convolutional Neural Network Inference on FPGAs. IEEE Access 2020, 8, 83224–83237. [CrossRef]
3. Sarvamangala, D.R.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2022,

15, 1–22. [CrossRef] [PubMed]
4. Yao, S.; Zhao, Y.; Zhang, A.; Su, L.; Abdelzaher, T. DeepIoT: Compressing Deep Neural Network Structures for Sensing Systems

with a Compressor-Critic Framework. 2017. Available online: https://arxiv.org/abs/1706.01215 (accessed on 9 September 2023).
5. Yang, T.J.; Chen, Y.H.; Sze, V. Designing Energy-Efficient Convolutional Neural Networks Using Energy-Aware Pruning. 2017.

Available online: http://xxx.lanl.gov/abs/1611.05128 (accessed on 9 September 2023).
6. Chang, S.E.; Li, Y.; Sun, M.; Shi, R.; So, H.K.H.; Qian, X.; Wang, Y.; Lin, X. Mix and Match: A Novel FPGA-Centric Deep Neural

Network Quantization Framework. 2020. Available online: http://xxx.lanl.gov/abs/2012.04240 (accessed on 9 September 2023).
7. Bao, Z.; Fu, G.; Zhang, W.; Zhan, K.; Guo, J. LSFQ: A Low-Bit Full Integer Quantization for High-Performance FPGA-Based CNN

Acceleration. IEEE Micro 2022, 42, 8–15. [CrossRef]

http://doi.org/10.1109/TCAD.2020.3023903
http://dx.doi.org/10.1109/ACCESS.2020.2988311
http://dx.doi.org/10.1007/s12065-020-00540-3
http://www.ncbi.nlm.nih.gov/pubmed/33425040
https://arxiv.org/abs/1706.01215
http://xxx.lanl.gov/abs/1611.05128
http://xxx.lanl.gov/abs/2012.04240
http://dx.doi.org/10.1109/MM.2021.3134968

Electronics 2023, 12, 4367 17 of 18

8. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and Training of Neural
Networks for Efficitent Integer-Arithmetic-Only Inference. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 2704–2713.

9. TensorFlow. TensorFlow for Mobile and Edge. Available online: https://www.tensorflow.org/lite (accessed on 9 September 2023).
10. Merenda, M.; Porcaro, C.; Iero, D. Edge Machine Learning for AI-Enabled IoT Devices: A Review. Sensors 2020, 20, 2533.

[CrossRef] [PubMed]
11. Misra, J.; Saha, I. Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing 2010, 74, 239–255.

[CrossRef]
12. Maloney, S. Survey: Implementing Dense Neural Networks in Hardware. 2013. Available online: https://pdfs.semanticscholar.

org/b709/459d8b52783f58f1c118619ec42f3b10e952.pdf (accessed on 15 February 2018).
13. Krizhevsky, A. Survey: Implementing Dense Neural Networks in Hardware. 2014. Available online: https://arxiv.org/abs/1404

.5997 (accessed on 15 February 2018).
14. Farrukh, F.U.D.; Xie, T.; Zhang, C.; Wang, Z. Optimization for Efficient Hardware Implementation of CNN on FPGA. In

Proceedings of the 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Beijing,
China, 21–23 November 2018; pp. 88–89. [CrossRef]

15. Liang, Y.; Lu, L.; Xiao, Q.; Yan, S. Evaluating Fast Algorithms for Convolutional Neural Networks on FPGAs. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 857–870. [CrossRef]

16. Zhou, Y.; Jiang, J. An FPGA-based accelerator implementation for deep convolutional neural networks. In Proceedings of the
2015 4th International Conference on Computer Science and Network Technology (ICCSNT), Harbin, China, 19–20 December
2015; Volume 1, pp. 829–832. [CrossRef]

17. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, New York,
NY, USA, 22–24 February 2015; FPGA ’15; pp. 161–170. [CrossRef]

18. Feng, G.; Hu, Z.; Chen, S.; Wu, F. Energy-efficient and high-throughput FPGA-based accelerator for Convolutional Neural
Networks. In Proceedings of the 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology
(ICSICT), Hangzhou, China, 25–28 October 2016; pp. 624–626. [CrossRef]

19. Li, X.; Cai, Y.; Han, J.; Zeng, X. A high utilization FPGA-based accelerator for variable-scale convolutional neural network. In
Proceedings of the 2017 IEEE 12th International Conference on ASIC (ASICON), Guiyang, China, 25–28 October 2017; pp. 944–947.
[CrossRef]

20. Guo, J.; Yin, S.; Ouyang, P.; Liu, L.; Wei, S. Bit-Width Based Resource Partitioning for CNN Acceleration on FPGA. In Proceedings
of the 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa,
CA, USA, 30 April–2 May 2017; p. 31. [CrossRef]

21. Chang, X.; Pan, H.; Zhang, D.; Sun, Q.; Lin, W. A Memory-Optimized and Energy-Efficient CNN Acceleration Architecture Based
on FPGA. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada,
12–14 June 2019; pp. 2137–2141. [CrossRef]

22. Zong-ling, L.; Lu-yuan, W.; Ji-yang, Y.; Bo-wen, C.; Liang, H. The Design of Lightweight and Multi Parallel CNN Accelerator
Based on FPGA. In Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence
Conference (ITAIC), Chongqing, China, 24–26 May 2019; pp. 1521–1528. [CrossRef]

23. Ortega-Zamorano, F.; Jerez, J.M.; Munoz, D.U.; Luque-Baena, R.M.; Franco, L. Efficient Implementation of the Backpropagation
Algorithm in FPGAs and Microcontrollers. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1840–1850. [CrossRef] [PubMed]

24. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. DianNao: A Small-Footprint High-Throughput Accelerator for
Ubiquitous Machine-Learning. In Proceedings of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems, San Diego, CA, USA, 27 April–1 May 2014; ASPLOS ’14; pp. 269–284. [CrossRef]

25. Du, Z.; Fasthuber, R.; Chen, T.; Ienne, P.; Li, L.; Luo, T.; Feng, X.; Chen, Y.; Temam, O. ShiDianNao: Shifting vision processing
closer to the sensor. In Proceedings of the 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA), Portland, Oregon, 13–17 June 2015; pp. 92–104. [CrossRef]

26. TensorFlow: An Open-Source Software Library for Machine Intelligence. Available online: https://www.tensorflow.org/ (accessed
on 15 February 2018).

27. TensorFlow. TensorFlow Lite 8-Bit Quantization Specification. Available online: https://www.tensorflow.org/lite/performance/
quantization_spec (accessed on 28 January 2022).

28. TensorFlow. Quantization Aware Training. Available online: https://blog.tensorflow.org/2020/04/quantization-aware-training-
with-tensorflow-model-optimization-toolkit.html (accessed on 28 January 2022).

29. TensorFlow. TensorFlow TFLite-Micro. 2023. Available online: https://github.com/tensorflow/tflite-micro/tree/main (accessed
on 11 July 2023).

30. Xilinx. Zynq Ultrascale+ MPSoC. Available online: https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-
mpsoc.html (accessed on 12 September 2022).

31. LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database. ATT Labs [Online]. 2010. Volume 2. Available online:
http://yann.lecun.com/exdb/mnist (accessed on 9 September 2023).

https://www.tensorflow.org/lite
http://dx.doi.org/10.3390/s20092533
http://www.ncbi.nlm.nih.gov/pubmed/32365645
http://dx.doi.org/10.1016/j.neucom.2010.03.021
https://pdfs.semanticscholar.org/b709/459d8b52783f58f1c118619ec42f3b10e952.pdf
https://pdfs.semanticscholar.org/b709/459d8b52783f58f1c118619ec42f3b10e952.pdf
https://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1404.5997
http://dx.doi.org/10.1109/CICTA.2018.8706067
http://dx.doi.org/10.1109/TCAD.2019.2897701
http://dx.doi.org/10.1109/ICCSNT.2015.7490869
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1109/ICSICT.2016.7998996
http://dx.doi.org/10.1109/ASICON.2017.8252633
http://dx.doi.org/10.1109/FCCM.2017.13
http://dx.doi.org/10.1109/ISIE.2019.8781162
http://dx.doi.org/10.1109/ITAIC.2019.8785800
http://dx.doi.org/10.1109/TNNLS.2015.2460991
http://www.ncbi.nlm.nih.gov/pubmed/26277004
http://dx.doi.org/10.1145/2541940.2541967
http://dx.doi.org/10.1145/2749469.2750389
https://www.tensorflow.org/
https://www.tensorflow.org/lite/performance/quantization_spec
https://www.tensorflow.org/lite/performance/quantization_spec
https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
https://github.com/tensorflow/tflite-micro/tree/main
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
http://yann.lecun.com/exdb/mnist

Electronics 2023, 12, 4367 18 of 18

32. Lyons, M.; Kamachi, M.; Gyoba, J. The Japanese Female Facial Expression (JAFFE) Dataset. Zenodo . 14 April 1998. Available
online: https://doi.org/10.5281/zenodo.3451524 (accessed on 9 September 2023).

33. Parra, D.; Camargo, C. Design Methodology for Single-Channel CNN-Based FER Systems. In Proceedings of the 2023 6th
International Conference on Information and Computer Technologies (ICICT), Raleigh, HI, USA, 24–26 March 2023; pp. 89–94.
[CrossRef]

34. Angelini, C. Nvidia GeForce GTX 1660 Ti 6GB Review: Turing without the RTX. 2020. Available online: https://www.
tomshardware.com/reviews/nvidia-geforce-gtx-1660-ti-turing,6002-4.html (accessed on 11 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5281/zenodo.3451524
http://dx.doi.org/10.1109/ICICT58900.2023.00022
https://www.tomshardware.com/reviews/nvidia-geforce-gtx-1660-ti-turing,6002-4.html
https://www.tomshardware.com/reviews/nvidia-geforce-gtx-1660-ti-turing,6002-4.html

	Introduction
	Related Work
	Background
	Model Compression
	Quantization with TensorFlow Lite

	Materials and Methods
	Accelerator Architecture
	TFLite_mbqm Core
	Conv Core
	Mpool Core
	Dense Core
	Additional Functions

	Methodology Overview
	Experimental Setup

	Results
	Trained Models
	Quantized Models
	Logic Resources and Power Consumption
	Performance Comparison

	Discussion and Conclusions
	Appendix A
	Appendix B
	References

