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Abstract: Trackers based on the Siamese network have received much attention in recent years,
owing to its remarkable performance, and the task of object tracking is to predict the location of the
target in current frame. However, during the tracking process, distractors with similar appearances
affect the judgment of the tracker and lead to tracking failure. In order to solve this problem,
we propose a Siamese visual tracker with spatial-channel attention and a ranking head network.
Firstly, we propose a Spatial Channel Attention Module, which fuses the features of the template
and the search region by capturing both the spatial and the channel information simultaneously,
allowing the tracker to recognize the target to be tracked from the background. Secondly, we design
a ranking head network. By introducing joint ranking loss terms including classification ranking
loss and confidence&IoU ranking loss, classification and regression branches are linked to refine the
tracking results. Through the mutual guidance between the classification confidence score and IoU,
a better positioning regression box is selected to improve the performance of the tracker. To better
demonstrate that our proposed method is effective, we test the proposed tracker on the OTB100,
VOT2016, VOT2018, UAV123, and GOT-10k testing datasets. On OTB100, the precision and success
rate of our tracker are 0.925 and 0.700, respectively. Considering accuracy and speed, our method,
overall, achieves state-of-the-art performance.

Keywords: object tracking; Siamese network; attention mechanism; head network

1. Introduction

Object tracking is important work in the field of computer vision [1,2]. With the
advancements of deep learning, object tracking has a wide range of applications in
human–computer interaction [3], intelligent driving [4], video surveillance [5], virtual
reality [6], and other fields [7,8]. Although object tracking has made significant progress
at present, it still faces challenges from two aspects: (1) the target itself, such as deforma-
tion, scale variation, etc; (2) the external environment, such as occlusion, low resolution,
illumination variation, etc.

Due to its outstanding performance, deep learning has gotten much attention in recent
years. The object tracker based on deep learning has also become the mainstream tracker at
present, among which, the Siamese tracker is one of the most famous tracking frameworks.
Although Siamese trackers have achieved a large improvement in performance, there is still
a problem, which is that Siamese trackers are trained offline, meaning that the templates
of Siamese trackers cannot be updated online. Therefore, when the tracker encounters
distractors that bear a resemblance to the tracked target, it may struggle to maintain accurate
tracking, leading to a decrease in overall precision. However, introducing an attention
mechanism into most Siamese trackers can effectively address these issues. Specifically, we
propose the Spatial Channel Attention Module (SCAM), which can output an enhanced
fusion feature map by combining spatial and channel information from template and search
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region features. Finally, we feed the output of SCAM into the ranking head network for
classification and regression to achieve more robust tracking.

In object tracking, the loss function can make the predicted bounding box as close
as possible to the ground-truth bounding box. By computing the ratio of intersection
and union between the predicted bounding box and the ground-truth bounding box, the
optimization of the regression branch of the model can be achieved by Intersection over
Union (IoU) loss [9]. Cross entropy loss [10] is the most commonly used loss term of the
classification branch. It guides the predicted category of the classification branch to be the
same as the true category. However, in the tracking process, there is a mismatch between
the predicted value of the classification branch and the predicted value of the regression
branch. For example, a positive sample after a huge deformation, which has a low IoU, may
not be selected as a result. In fact, considering the predicted values of both classification and
regression branches is conducive to the selection of the final results. Inspired by RBO [11],
we introduce joint ranking losses and design the ranking head network. Specifically, the
classification ranking loss allows us to better eliminate distractors and select the correct
target. The confidence&IoU ranking loss links the classification and regression branches
and selects the most suitable predicted bounding box as the result, improving the accuracy
of our tracker.

In summary, we propose a Siamese visual tracker with spatial-channel attention and a
ranking head network. The contributions of our work are shown below:

(1) We propose SCAM. Specifically, we first calculate the spatial similarity matrix between
two feature maps, and then we use this similarity matrix to filter the information in
the search region’s feature. We concatenate the filtered and original search region’s
features, and send it to the channel attention module. This approach is used to achieve
spatial channel attention. This enhances the representation of fusion features and
makes them more discriminative.

(2) We design a ranking head network. Specifically, we introduce joint ranking loss terms
into our approach. We use the mutual guidance of classification confidence score and
IoU to select the final result, which can solve the problem of mismatch between the
predicted values of the classification branch and the regression branch. Through the
ranking head network, we can obtain more precise results and achieve a more robust
tracking performance.

(3) We train our tracker on ImageNet DET [12], ImageNet VID [12], COCO [13], YouTube-
BB [14], and GOT-10k training set [15]. Excellent results have been achieved on five
challenging datasets, including the GOT-10k testing set, UAV123 [16], OTB100 [17],
VOT2016 [18], and VOT2018 [19]. Our code and data are available at https://github.c
om/csust7zhangjm/lyf2021 (accessed on 9 October 2023).

SCAM can enhance feature representation by combining spatial and channel infor-
mation. It can be applied as a module in other tasks based on deep learning. The classi-
fication ranking loss can optimize the predicted values of the classification branch, and
the confidence&IoU ranking loss can link the classification branch and regression branch
to output the most suitable result. Therefore, in some tasks with multiple branches, the
predicted values of multiple branches can be considered simultaneously, making the results
of related tasks more accurate. The following is the structure of our paper. Section 2
presents the related work of this research, Section 3 describes SCAM and the joint ranking
loss terms, Section 4 is the experimental proof of the proposed method, and Section 5 gives
our conclusions.

2. Related Work

We will review the work related to object tracking in the following three areas: single-
object Siamese tracking, the attention mechanism, and the head network.

https://github.com/csust7zhangjm/lyf2021
https://github.com/csust7zhangjm/lyf2021


Electronics 2023, 12, 4351 3 of 17

2.1. Single Object Siamese Tracking

The Siamese object tracker has received extensive attention. SiamFC [20] was the
pioneer of Siamese object tracking. It converted the traditional tracking process into a
similarity matching problem, and determined the location of subsequent tracking by cal-
culating the similarity. The success of SiamFC inspired many subsequent trackers, and
they applied Siamese networks to object tracking to achieve the most advanced perfor-
mance. SiamRPN [21] introduced the Region Proposal Network (RPN) [22], which, in
turn, transformed the similarity matching problem into an independent classification
and regression problem, where classification and regression branches serve different pur-
poses, with the former used for distinguishing the background and foreground, and the
latter for locating bounding boxes. In addition, trackers such as DaSiamRPN [23] and
SiamRPN++ [24] improved SiamRPN to achieve better performance, but the above RPN-
based algorithms designed multi-scale anchor boxes to obtain accurate bounding boxes,
which would undoubtedly consume a large amount of time and cost and bring a large
computational burden.

In 2019, the anchor-free Siamese tracking algorithm was proposed. Unlike the anchor-
based algorithm, the anchor-free algorithm directly calculated the position of the target.
Since no anchor box was introduced in the process of determining the target position, the
anchor-free Siamese object tracking algorithm could reduce the computational burden and
improve the tracking speed for trackers. SiamBAN [25] and SiamCAR [26] were among
the most outstanding algorithms, and their performance reached the advanced level at
that time. Overall, compared to RPN-based algorithms, anchor-free tracking algorithms
could reduce the computational burden and, to some extent, reduce computational time.
Anchor-free Siamese object tracking is a trend for the future.

2.2. Attention Mechanism

An important module in deep learning is the attention mechanism module, which is
plug-and-play and very powerful [27]. SENet [28] established interdependence between
channels by compressing feature maps. STMTrack [29] proposed a pixel-level correlation
method; through the matrix reshape and matrix multiplication operation between the
template and the search region’s feature, we could obtain the weight information of the
spatial position, and then the weight information was weighted with the template’s feature
to realize the spatial attention operation. CBAM [30] was a lightweight attention mecha-
nism module that could perform attention operations on spatial information and channel
information, making the model more concerned with the object itself. NLNet [31] was also
a common attention module that improved the model’s understanding of global contextual
information by capturing global dependencies.

The recently popular Transformer [32] was a powerful attention mechanism module,
including a self-attention mechanism and cross-attention mechanism. Its application had
enabled many algorithms to achieve state-of-the-art performance. Overall, the attention
mechanism was applied to many deep learning tasks, and its introduction could undoubt-
edly bring performance improvements. However, we should also note that the introduction
of attention mechanisms may also result in elevated computational complexity, and make
the algorithm fail to achieve real-time performance.

2.3. Head Network

The head network is a crucial component in object tracking. Its function is to predict
the location of the target based on the input information. Nowadays, most of the main-
stream trackers rely on anchor-free algorithms, which directly calculate the position of the
bounding box. This method effectively reduces computation and boosts tracking perfor-
mance. CornerNet [33] was an object detection method that used the two corner points of
the bounding box as key points to achieve accurate object detection. ExtremeNet [34], on
the other hand, was also an object detection method that predicted the center point and the
four corner points of all objects simultaneously.
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The Head network can be further divided into a classification branch and a regres-
sion branch. The function of the classification is to distinguish the foreground from the
background, and the purpose of regression is to locate the bounding box’s position. Some
current trackers, such as SiamRPN, SiamFC++ [35], etc., determined the position of the
bounding box through classification and regression branches in the head network. How-
ever, in the inference phase, mismatches between the predicted values of the classification
and regression branches could interfere with the selection of results. PrDiMP [36] used
probabilistic methods to model the labels of the targets, but this approach could worsen the
discrepancy between classification and regression even more [4]. Therefore, if the mismatch
between these two branches can be successfully resolved, our tracker’s robustness can be
further improved.

3. Methods
3.1. Overview

Figure 1 shows our overall tracking process. In the feature extraction stage, ResNet-
50 [37] was chosen as our feature extraction network. SiamBAN selects the feature maps
of C3, C4, and C5 layers outputted by the feature extraction network, but we observe that
the weight values of C5 in the classification and regression network are very small, and
as such, we only used C3 and C4. The utilization of features from different layers can
make varying impacts on the tracking process. The features extracted by the shallow layer
contain richer spatial information, whereas the features extracted by the deep layer contain
richer semantic information. Therefore, we select the output features of C3 and C4 for
feature fusion, and our approach takes both spatial information and semantic information
into consideration.

4
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Figure 1. The structure of our proposed tracking algorithm. Our tracker consists of a feature extraction
network, feature fusion network, and head network.

In the feature fusion network, our SCAM adopts pixel-wise correlation [29] instead
of depth-wise cross-correlation, and utilizes a channel attention mechanism to enhance
our feature’s expression. In the classification and regression network, classification feature
maps and regression feature maps from different layers are added with weights, and fed
into our improved loss function, which further improves the accuracy of the tracker results.

3.2. Spatial Channel Attention Module

The attention mechanism is helpful for most visual tasks. The inputs to SCAM are the
feature maps output by feature extraction network. As shown in Figure 2, let Z ∈ RC×h×w

be the template’s feature map, and X ∈ RC×H×W be the search region’s feature map. We
use the Reshape operation for the template’s feature Z and the search region’s feature X to
obtain feature maps Z1, Z2, and X1, as shown in Equation (1):
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Z1 = Reshape1(Z),

Z2 = Reshape2(Z),

X1 = Reshape3(X),

(1)

where, Z1 ∈ RC×hw, Z2 ∈ Rhw×C, and X1 ∈ RC×HW . The function of Reshapei(.),
i ∈ {1, 2, 3}, is to change the dimensions of Z and X. Here, we utilize Reshapei(.) to
reduce the dimensions of Z and X, so that their dimensions change from three dimensions
to two dimensions.

Figure 2. Our proposed spatial channel attention module. It consists of a spatial attention module
and a channel attention module, taking template feature maps and search feature maps as input to
perform attention operations.

Next, the similarity matrix W ∈ Rhw×HW is obtained through matrix multiplication,
and the matrix entry Wij is calculated according to Equation (2):

Wij =
exp

[(
Z2

i. � X1
.j

)
/
√

C
]

∑∀k exp
[(

Z2
k. � X1

.j

)
/
√

C
] , (2)

where Z2
i. represents i-th row on Z2, X1

.j represents j-th column on X1, � denotes the vector
dot-product operation, and C represents the number of channels.

By concatenating the filtered and original search region’s feature in the channel di-
mension, we can obtain the fusion feature S, as shown in Equation (3):

S = Concat
(

Reshape4
((

Z1 ⊗W
))

, X
)

, (3)

where Concat (·, ·) represents the concatenate operation.
The input of SCAM are C3 and C4’s output features from the feature extraction

network, and the output is the fusion feature Fi. Its operation is shown in Equation (4):

Fi = SCAM(Zi, Xi), (4)

where SCAM(·, ·) is the module we proposed, Zi represents the template’s feature of the
i-th layer, and Xi represents the search region’s feature of the i-th layer, i ∈ {3, 4}.
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Through the classification and regression network, we get fusion feature Fi’s classifica-
tion feature map f i

cls and regression feature map f i
reg, and we perform weighted addition

operations on the results from different layers, as shown in Equation (5):

fcls =
4

∑
i=3

βi
cls f i

cls,

freg =
4

∑
i=3

βi
reg f i

reg,

(5)

where fcls and freg are the final classification and regression feature maps, respectively. In
addition, βi

cls and βi
reg are the weights obtained after optimization together with the network.

3.3. Ranking Head Network

Regression loss. For every position within the regression’s feature map freg, we can
find the corresponding region in the search region’s feature map X. Our method can predict
the bounding box at each position through regression. Figure 3 shows the loss function we
used. Our regression loss is shown in Equation (6):

Lreg = 1−
ylabel_reg ∩ yreg

ylabel_reg ∪ yreg
, (6)

where ylabel_reg represents the ground-truth bounding box and yreg represents the predicted
bounding box.

Classification loss. In the classification branch, we usually use cross entropy loss as
the classification loss function in the head network of our tracker. Our classification loss is
shown in Equation (7):

Lcls = λpos
1

Npos
∑

i∈Ppos

CE
(

yi
cls, ylabel_cls

)
+λneg

1
Nneg

∑
i∈Pneg

CE
(

yi
cls, ylabel_cls

)
,

(7)

where CE represents the cross entropy loss, and Npos and Nneg represent the number of
positive samples and negative samples, respectively. Ppos and Pneg represent the positive
and negative sample sets, respectively. ylabel_cls represents the classification label, and
we use ycls to denote the output of the classification branch. λpos and λneg are control
parameters; we set them to 0.5 here.

Classification ranking loss. In our experiment, we will filter out negative samples
with lower classification confidence scores, but some negative samples do have higher
classification confidence scores. We refer to these negative samples as hard negative samples.
These hard negative samples may have an appearance that closely resembles the tracking
target. In the process of tracking, these hard negative samples are difficult to distinguish
when performing classification. In order to give our tracker a stronger ability to distinguish
hard negative samples, we introduce classification ranking loss as Equation (8), and our
goal is to minimize the influence of these hard negative samples on the tracking results:

Lrk−cls =
1
γ

log
(
1 + exp

((
Eneg − Epos + δ

)
× γ

))
, (8)

where Eneg represents the expectation of negative samples, and it is obtained by using
weighted addition method for the classification confidence score of each negative sam-
ple [11]. Epos is as well. γ and δ are two parameters; we set them here to 4 and 0.5,
respectively.

Confidence & IoU ranking loss. The branches of the tracker are relatively inde-
pendent. This sometimes leads to a mismatch between the classification and the regres-
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sion branches. In order to address this problem, as shown in Figure 4, we introduce the
confidence&IoU ranking loss. The positive sample that ranks high in both classification
confidence score and IoU is selected as the final result. We hope to improve the accuracy of
our tracking results in this way. The loss function is shown in Equation (9):

Lrk−ci =
1

Npos
∑

i,j∈Ppos ,pIoU
i >pIoU

j

exp
(
−α
(

pcon f
i − pcon f

j

))

+
1

Npos
∑

i,j∈Ppos ,pcon f
i >pcon f

j

exp
(
−α
(

pIoU
i − pIoU

j

))
,

(9)

where pcon f
i represents the classification confidence score of each positive sample, and pIoU

i
represents the predict bounding box of each positive sample. α is a parameter; we set it
to 3.

Finally, our overall loss function is shown in Equation (10):

Ltotal = Lreg + Lcls + λrk−clsLrk−cls + λrk−ciLrk−ci. (10)

where λrk−cls is set to 0.5 and λrk−ci is set to 0.25.

Figure 3. Our total loss terms. The total loss terms consists of four parts, including regression loss,
confidence & IoU ranking loss, classfication ranking loss, and classfication loss.

���2 �4
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Figure 4. An illustration of confidence & IoU ranking loss. We hope that through the interconnection
between classification and regression branches, those samples with a high classification confidence
score and high IoU have a higher ranking.
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4. Experiments
4.1. Implementation Details

Our algorithm is based on CUDA 10.1, Pytorch 1.3.1, and Python 3.7, implemented on
three 2080 Ti GPUs. ResNet-50 was chosen as our feature extraction network, which was
trained on ImageNet and preserves its weights. We use images with a size of 127 × 127 pixels
as input into our template feature extraction network and images with a size of 255 × 255 pixels
as input into our search region feature extraction network. We train our tracker using five
training datasets, including YouTube-BB, COCO, ImageNet DET, ImageNet VID, and GOT-
10k training set. Also, we utilize the stochastic gradient descent algorithm to optimize our
model. Considering our hardware environment, we set the batch size to 28. We trained
for a total of 20 epochs. We used warming learning rates from 0.001 to 0.005 for the first
epoch to the fifth epoch. When training the first epoch to the tenth epoch, we train only
the classification and the regression branches in the head network. In training the eleventh
epoch to the twentieth epoch, we make it possible for the backbone network to also be
included in the training by fine-tuning the weights of the backbone network. In the testing
phase, we select the first frame as our template and then perform similarity matching on
the subsequent video sequences. We evaluate the performance of our proposed algorithm
on OTB100, UAV123, VOT2016, VOT2018, and the GOT-10k testing set. We achieved
satisfactory results on these datasets.

4.2. Results on OTB100 Benchmark

There are 100 fully annotated sequences in OTB100 dataset. Each sequence in the
dataset is annotated with challenges, including occlusion, deformation, motion blur, etc.
On OTB100, we use the precision and the success rate to test the performance of our tracker.
On OTB100, we compare our tracker with nine excellent trackers such as SiamBAN [25],
SiamCAR [26], SiamFC++ [35], DaSiamRPN [23], SRDCF [38], SiamFC [20], CFNet [39],
SiamRPN++ [24], and SiamDW [40].

We can see from Figure 5 that our tracker achieves satisfactory performance on the
OTB100 dataset. Compared with SiamDW, SiamCAR, SiamBAN, and SiamRPN++, our
tracker improves the accuracy by 0.3%, 1.6%, 1.6%, and 2.2%, respectively. At the same
time, our trackers have the highest success rate, reaching up to 0.700. Figures 6 and 7 show
the names of the 11 challenges and the results of our tracker on 11 challenges.

Figure 5. The left shows the precision and success rates of our tracker and the comparison tracker on
the OTB100. The right image is a zoomed localized region of the left image.
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Figure 6. The precision of our tracker and comparison trackers on the 11 challenges of the OTB100.

Figure 7. The success rate of our tracker and comparison trackers on the 11 challenges of the OTB100.
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4.3. Results on UAV123 Benchmark

Another excellent dataset in the field of object tracking is UAV123. There are 123 video
sequences included in UAV123, all of which are captured from a low-altitude aerial per-
spective. Among them, the 1st video to the 103rd video are stable, the 104th video to the
115th video are unstable, and the 116th video to the 123rd video are synthetic. On UAV123,
we compare our tracker with eight excellent trackers, SiamCAR, ECO [41], ECO-HC [41],
SiamRPN, SiamRPN++, STRCF [42], TADT [43], and DaSiamRPN. Figure 8 clearly demon-
strates that compared to SiamRPN++, SiamCAR, and DaSiamRPN, our tracker improves
the precision by 5.3%, 3.6%, and 7.8%, respectively. In addition, our tracker has achieved
a success rate of 0.631, which is 1.2% higher than SiamCAR. Both are the best among the
eight compared trackers. Figures 9 and 10 show the names of the 12 challenges and the
results of our tracker on 12 challenges.

Figure 8. The precision and success rates of our tracker and comparison trackers on UAV123.

Figure 9. The precision of our tracker and comparison trackers on the 12 challenges of the UAV123.
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Figure 10. The success rate of our tracker and comparison trackers on the 12 challenges of the UAV123.

4.4. Results on VOT2016 Benchmark

The VOT dataset holds a position of authority within the area of object tracking.
There are 60 types of videos in the VOT2016 dataset. Before the emergence of VOT, the
mainstream tracking strategy was to use the first frame of the video sequence to initialize
the tracker, and then until the end of the video. However, due to the presence of distracting
objects, the tracker is likely to lose its localization of the target. Therefore, when the tracker
loses the target, the VOT is delayed back 5 frames. In VOT2016, when we evaluate the
performance of a tracker, we use the expected average overlap (EAO). In this way, we
can balance the accuracy and robustness of the tracker at the same time. We compare
our tracker with other advanced trackers, including SiamRPN, DaSiamRPN, ECO-HC,
MCCT-H [44], SiamRPN++, SiamMask [45], SiamR-CNN [46], ECO, and MCCT [44]. The
data in Table 1 clearly show that compared with SiamR-CNN, SiamRPN++, and SiamMask,
our tracker improves by 15.2%, 21.2%, and 24.7% in EAO, and our robustness is the lowest
among these algorithms at only 0.084, which is enough to prove that our tracker can achieve
stable tracking in complex environments. Figure 11 shows the names of the six challenges
and the results of our tracker on six challenges.

Table 1. Evaluation of our tracker and other trackers on VOT2016. E is EAO, A represents accuracy,
R denotes robustness. Higher values of EAO and A represent greater accuracy, so we use ↑. The
smaller the R value, the greater the immunity to interference, so we use ↓. The three best results are
highlighted in bold, bold and italic, and italic.

MCCT-H ECO-HC SiamRPN ECO MCCT DaSiam-RPN SiamMask SiamRPN++ SiamR-CNN Ours

E↑ 0.299 0.322 0.337 0.374 0.393 0.401 0.425 0.437 0.460 0.530
A↑ 0.570 0.542 0.578 0.555 0.579 0.609 0.634 0.644 0.645 0.634
R↓ 0.331 0.303 0.312 0.200 0.186 0.224 0.214 0.219 0.172 0.084



Electronics 2023, 12, 4351 12 of 17

Figure 11. Evaluation of our tracker and comparison trackers on the six challenges of the VOT2016.

4.5. Results on VOT2018 Benchmark

VOT2018 is one of VOT’s latest object tracking datasets. Compared to VOT2016,
the video sequences in VOT2018 exhibit a higher level of complexity and contain more
difficult challenges. VOT2018 and VOT2016 use the same evaluation criteria, and we
conducted comparative experiments on VOT2018, comparing state-of-the-art trackers such
as SiamCAR, SiamMask, SiamFC++, SiamKPN [47], SiamRPN++, SiamR-CNN, SiamRPN,
DaSiamRPN, and ATOM [48]. As shown in Table 2, compared with SiamCAR, SiamKPN,
and SiamFC++, our tracker improves by 1.7%, 0.5%, and 0.9% in the average overlap rate.
In terms of robustness, our tracker performs the best among the eight compared trackers.
The results on the six challenges are shown in Figure 12.

Figure 12. Evaluation of our tracker and comparison trackers on the six challenges of the VOT2018.
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Table 2. Evaluation of our tracker and other trackers on VOT2018. E is EAO, A represents accuracy,
R denotes robustness. Higher values of EAO and A represent greater accuracy, so we use ↑. The
smaller the R value, the greater the immunity to interference, so we use ↓. The three best results are
highlighted in bold, bold and italic, and italic.

DaSiam-
RPN ATOM SiamR-

CNN SiamMask Siam-
RPN++ SiamCAR SiamFC++ SiamKPN SiamRPN Ours

E↑ 0.383 0.400 0.405 0.406 0.415 0.423 0.426 0.428 0.383 0.430
A↑ 0.586 0.590 0.612 0.598 0.601 0.578 0.583 0.596 0.586 0.587
R↓ 0.276 0.203 0.220 0.248 0.234 0.197 0.173 0.187 0.276 0.164

4.6. Results on GOT-10k Benchmark

GOT-10k is a large dataset which was published by the Chinese Academy of Sciences
that contains numerous video sequences. There are 560 kinds of moving objects in the
training set, with 87 different motion patterns between them. The total video sequence
exceeds 10,000 and there are more than 1,500,000 manually labeled bounding boxes. The
GOT-10k testing set has a total of 420 video sequences. These video sequences contain a total
of 31 different motion categories and 84 different object categories. There are three indicators
in the GOT-10k testing set, including average overlap (AO), success rate (SR0.5, SR0.75),
and frames per second (FPS). Table 3 clearly shows the results of our tracker compared to
SiamCAR, SiamMask, DaSiamRPN, SiamDW, SiamRPN, SiamRPN++, and ATOM.

Table 3. Evaluation of our tracker and other trackers on GOT-10k. ↑ indicates that a higher value is
better. The three best results are highlighted in bold, bold and italic, and italic.

SiamDW DaSiamRPN SiamRPN++ SiamCAR ATOM SiamRPN SiamMask Ours

AO↑ 0.416 0.444 0.517 0.569 0.556 0.483 0.453 0.618
SR0.5↑ 0.475 0.536 0.616 0.670 0.634 0.581 0.550 0.722
SR0.75↑ 0.144 0.220 0.325 0.415 0.402 0.270 0.248 0.491
FPS↑ 66.67 134.40 3.18 17.21 20.71 97.55 15.37 50.91

4.7. Ablation Experiment

We performed five sets of ablation experiments on UAV123. We use the backbone of
Figure 1 to replace the backbone in SiamBAN, and make the modified SiamBAN as our
baseline. As shown in Table 4, our method has increases in the success rate and precision
by 2.3% and 3.7%, respectively. In order to verify the ability of our proposed SCAM to
distinguish similar objects, we evaluated the SOB challenge on UAV123, as shown in
Figure 13. The experiments prove that our proposed SCAM has good discrimination ability
for similar objects.

Table 4. We verified the validity of each part on UAV123. ∆s represents increases in success plot and
∆p represents increases in precision plot.

Method Success ∆s Precision ∆p

baseline 0.608 − 0.805 −
baseline + SCAM 0.620 +1.2% 0.817 +1.2%

baseline + SCAM + Lrk−cls 0.624 +1.6% 0.823 +1.8%
baseline + SCAM + Lrk−ci 0.622 +1.4% 0.827 +2.2%

baseline + SCAM + Lrk−cls + Lrk−ci 0.631 +2.3% 0.842 +3.7%

4.8. Real-Time Analysis

We conducted a speed test on three 2080Ti GPUs. Table 5 shows that our tracker
achieves real-time tracking on five datasets. We also measured the speed of our tracker
and other advanced trackers on GOT-10k. As shown in Table 3, the speed of our tracker
reached 50.91 FPS, achieving a compromise between accuracy and real-time performance.
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Table 5. The speed of our tracker on different datasets. ↑ indicates that a higher value is better.

OTB100 UAV123 VOT2016 VOT2018 GOT-10k

FPS↑ 51.1 63.1 48.5 59.4 50.91
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Figure 13. Discrimination ability for similar objects on UAV123.

4.9. Experimental Summary

In Section 4, we validate our proposed algorithm from four different perspectives.
Specifically, in Section 4.1, we introduce the corresponding training strategies and the
experimental environment. From Section 4.2 to Section 4.6, we evaluate the effectiveness
of our tracker on five datasets: OTB100, UAV123, VOT2016, VOT2018, and the GOT-
10k testing set. In comparison to mainstream trackers, our tracker achieves an excellent
performance. In Section 4.7, we perform ablation experiments on our proposed SCAM and
the introduced joint ranking loss terms on the UAV123 dataset, and the experimental results
prove that the method we propose is effective. Finally, in Section 4.8, we test the speed of
our tracker on three 2080Ti GPUs, and the results emphasize its real-time capability. The
visualization of our algorithm is shown in Figure 14.

Figure 14. Visualization results of our tracker and other comparative trackers in four video sequences
of the OTB100.
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When evaluating the performance of trackers on different datasets, differences in
tracker performance may be due to different proportions of video sequences with the same
challenge. For example, OTB100 has a large number of video sequences containing an
occlusion challenge, so when a tracker can solve the problem of target occlusion, it will
have a high success rate on OTB100.

5. Conclusions

Overall, we proposed a Siamese visual tracker with spatial-channel attention and
a ranking head network, and trained our tracker using five authoritative datasets. Our
proposed SCAM can not only fuse template’s feature and search region’s feature, but can
also establish long-term dependencies between spatial position information and channel
information. The introduced confidence&IoU ranking loss and classification ranking loss
loss can link the classification and the regression branches, use the classification confidence
score and IoU to guide the selection of the final result, and improve the performance of the
tracker. Overall, our proposed SCAM can combine information from both the spatial and
channel to achieve feature enhancement. The joint ranking loss terms we introduce can
consider both classification confidence score and IoU to output the most suitable result.

In addition, we also conducted a series of experiments on OTB100, VOT2016, VOT2018,
UAV123, and GOT-10k. On the OTB100 dataset, our tracker achieved a success rate of 0.700,
which is the best of all trackers. Our tracker achieved a precision of 0.842 on UAV123. The
EAO of our tracker is 0.530 on VOT2016 and 0.430 on VOT2018, respectively, which are
the best among all trackers. Our tracker’s AO reached 0.618 on GOT-10k. Therefore, our
tracker achieves decent performance on these datasets.

However, our tracker’s performance is not satisfactory when the video has a low
resolution or the target is out of view. We are considering introducing an online update
module in future work; the introduction of an online update module could improve the
stability of our tracker in the face of complex environments. These issues are the direction
of our future efforts.
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Algorithm

CBAM: [30]; CornerNet [33]; DaSiamRPN: [23]; ExtremeNet: [34]; NLNet: [31];
PrDiMP: [36]; RBO [11]; SiamFC: [20]; SiamRPN: [21]; SiamRPN++: [24]; SiamBAN: [25];
SiamCAR: [26]; SENet: [28]; STMTrack: [29]; SiamFC++: [35].
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