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Abstract: We propose a novel system leveraging deep learning-based methods to predict urban
traffic accidents and estimate their severity. The major challenge is the data imbalance problem in
traffic accident prediction. The problem is caused by numerous zero values in the dataset due to the
rarity of traffic accidents. To address the issue, we propose a grid-clustered feature map with the ideas
of grids and cells. To predict the occurrence of accidents in the grid, we introduce an accident detector
that combines the power of a Convolutional Neural Network (CNN) with a Deep Neural Network
(DNN). Then, hierarchical DNNs are supposed to be an accident risk classifier to estimate the risk
of each cell in the accident-occurrence grid. The proposed system can effectively reduce instances
with no traffic accidents. Furthermore, we introduce the concept of the Accident Risk Index (ARI)
to better represent the severity of risk at each cell. Also, we consider all the explanatory variables,
such as dangerous driving behaviors, traffic mobility, and safety facility information, that can be
related to traffic accidents. To improve the prediction accuracy, we further take into consideration all
the explanatory variables, such as dangerous driving behaviors, traffic mobility, and safety facility
information, that can be related to traffic accidents. In the experiment, we highlight the benefits of
our method for urban traffic accident management by significantly improving model performance
compared to the baselines. The feasibility and applicability of the proposed system are validated
in the data of Daejeon City, Republic of Korea. The proposed prediction system can dynamically
advise and recommend commuters, traffic management systems, and city planners on alternatives,
optimizations, and interventions.

Keywords: traffic safety; traffic accident prediction system; accident severity estimation; deep learning

1. Introduction

With the rapid growth of urbanization, urban road safety has emerged as one of the
most pressing social issues around the world [1,2]. According to the Organization for
Economic Co-operation and Development (OECD) statistics, the road safety situation has
exhibited a negative trend worldwide over the last two decades [3]. Road traffic accidents
lead to a significant problem in both human casualties and the social economy of the
nations [4,5]. In 2013, the World Health Organization (WHO) reported that there are
from 3.6 to 18.8 deaths per 100,000 individuals are involved in vehicle crashes in China [6].
Likewise, in the Republic of Korea, approximately 200 thousand accidents and 7.3 casualties
per 100,000 people were recorded in 2018. This trend has continued to increase in the recent
years [7]. Therefore, the ability to understand and forecast potential accidents in the future
(e.g., where, when, or how) is very useful not only to public safety stakeholders (e.g., police),
but also to transportation administrators and individual travelers. To be more specific, the
correct understanding of prediction of the traffic accidents can dynamically advise and
recommend commuters, traffic management systems, and city planners on alternatives,
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optimizations, and interventions. By avoiding high-risk areas based on our predictions, we
aim to reduce the number of accidents, moving from mere prediction to active prevention.

The severity of traffic accidents is influenced by various factors, including human fac-
tors and road environmental factors [8–10]. Extensive research has been conducted to iden-
tify the significant factors that contribute to the severity of traffic accident
injuries [11–16]. For example, the authors in [12] proposed a framework for analyzing and
predicting the injury severity of traffic accidents, considering factors such as road types,
weather conditions, and lighting. They utilized a stacked sparse autoencoder to incorporate
comprehensive factors in the analysis of traffic accidents. Similarly, the authors in [13]
examined factors such as fatigue, gender, and internal/external distractions (e.g., rushing
to a destination, listening to music) and assessed their impact on perceived and observed
aggressive driving behaviors through surveys and simulations. Such analyses provide
insights for appropriate responses, including the enactment of laws, infrastructure repairs,
and the deployment of additional speed cameras. In this research, we also comprehensively
address the various factors that contribute to traffic accidents and the severity of risks.

Despite the fact that it is essential to determine the influencing factors of risk, proactive
actions to prevent traffic accidents should be performed ahead of time. In recent years, deep
learning methods have gained popularity as powerful techniques for extracting information
from big data and have demonstrated their efficiency in several applications, typically in
prediction tasks [17–21]. Therefore, much research has been conducted on forecasting road
traffic accidents and predicting injury severity in urban areas using numerous types of
data [22–30]. For example, the authors in [22] proposed a traffic accident casualty prediction
model using neural networks and data mining techniques. Specifically, they used historical
data such as the floating population, number of registered cars, and number of accidents to
predict the casualties of traffic accidents. Similarly, in [23], the research presents a spatio-
temporal deep learning model to predict citywide short-term crash risk using multiple
data such as land use, weather, and crash risks. The authors in [24] also proposed a traffic
accident count prediction model using a Bayesian hierarchical approach. The proposed
model can rank the candidate sites, called hotspots, according to their potential risks for
some future time period, and further provide simple diagnostics to validate the predictive
capability of the proposed model. In [26], the authors introduced an end-to-end deep
learning model that integrates satellite imagery, GPS trajectories, road maps, and accident
histories to predict traffic accidents. The authors in [27] constructed a Long Short-Term
Memory (LSTM) network-based model to predict the probability of traffic accidents based
on spatio-temporal patterns of traffic accident frequency. The authors in [28] utilized
logistic regression analysis on 400 sets of accident data from 10 major roads in Beijing to
identify significant factors influencing traffic accidents and to develop an accident hotspot
prediction model. The authors in [30] predicted the traffic risks as well as traffic speed and
flow with the potential and broad usage of deep learning algorithms based on mobility
data such as traffic data from infrastructure, trajectory data from vehicles, automatic fare
collection devices widely deployed by urban transit systems.

In urban traffic accident prediction studies, one of the most crucial challenges is the
sparsity of accident data, making it difficult to develop accurate prediction
models [31,32]. Even though the global trend of urban traffic accidents tends to increase,
traffic accidents are rare and infrequent events. Consequently, datasets for model training
usually comprise a great portion of zero values, representing the non-occurrence of acci-
dents. These data imbalances will cause a huge bias in model training and consequently
affect the overall prediction performance [33,34]. Specifically, while such datasets might
cause models to obtain high prediction accuracy, they also hide significant deficiencies
in the actual prediction ability of the model. This imbalance not only misrepresents the
efficiency of the model but also undermines its potential utility in real-world applications.
Therefore, it is necessary for the prediction model to cope with such an imbalanced data
problem to develop a high-performing model.
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To address these challenges, this study introduces a novel system leveraging deep
learning-based methods to predict urban traffic accidents and identify their severity, partic-
ularly under the imbalanced data environment. The proposed system not only forecasts the
occurrence of urban traffic accidents but also estimates their severity as risk levels. In this
study, we divided the whole target area into 100× 100 cells to serve as the fundamental
units, which is beneficial to reduce the excessive zero values in the input and enhance
the predictability of the occurrence of traffic accidents. To further reduce the effect of
zero values, we aggregated cells into grids and used the power of Convolutional Neural
Networks (CNN) to filter the non-accident grids. The CNN module, renowned for its
spatial feature extraction capabilities, discerns intricate spatial correlations and dependen-
cies within the urban grid. This spatial understanding is pivotal, given the heterogeneous
distribution of traffic accidents. Subsequent to the non-accident cell filtering, the DNN
module, which shows high performance in data classification, was utilized to evaluate the
risk severity of each cell. By combining these architectures, we aim to harness both the
spatial understanding of CNNs and the deep feature interpretation capabilities of DNNs
to develop a high-performing prediction system. To improve the model performance, we
further utilize large-scale datasets from a variety of sources in the urban area including
mobility data (e.g., digital tachograph (DTG)-based risky driving behaviors, traffic flow
and speed, etc.), and road environment data (e.g., information related to safety facilities,
road infrastructure, geometry, etc.).

The proposed deep learning-based system has two main objectives. First, it aims
to predict the occurrence of traffic accidents accurately, especially forecasting potential
accident “hotspots” in urban environments. To achieve this, we introduce a grid-clustered
feature map using concepts of grids and cells to deal with the data imbalance problem in
training datasets. Throughout the feature map, we mitigate the bias problem, especially the
high frequency of zero values existing in training datasets. This approach can effectively
capture the different characteristics of urban areas and improve the model performance.
In addition, we leverage various types of data from traffic accidents, urban mobility, and
road safety facility data to enhance our model’s performance. While our primary emphasis
remains on prediction capabilities, the potential applications within traffic recommen-
dation systems are significant to overlook. Second, the proposed system estimates the
severity of risks using the Accident Risk Index (ARI), which is based on accident attributes
such as the number of fatalities, serious injuries, and minor injuries. The ARI is used
to categorize the risk levels associated with a given set of data, ranging from level 0 (no
accidents) to levels 1–4, representing varying degrees of accident severity. In addition to
classifying risk levels based on actual traffic safety data, the proposed ARI also provides
road users with a more intuitive and straightforward traffic safety condition.

This paper is organized as follows. Section 2 presents the data used in this paper.
Section 2.1 introduces the concept of cells to represent the urban area. Section 2.2 presents
the urban road traffic accident and accident risk index. Sections 2.3 and 2.4 describe the
urban mobility data road safety facility information. In Section 3, we introduce the method-
ology in this study. In Section 3.1, the overall system architecture is introduced. Section 3.2
presents the method to predict traffic accidents using an urban grid clustered feature map.
In Section 3.3, how to estimate the risk level in each cell is presented. Section 4 describes the
result of the paper. In Section 4.1, experimental design is introduced. Section 4.2 describes
the experiment results, and a related discussion is presented in Section 4.3. Finally, in
Section 5, conclusions and future works are presented.

2. Data Description

This section explains how to deal with various data and preprocess them for model
training. To predict urban traffic accidents, we handle a variety of datasets, including traffic
accidents, urban mobility, and road safety facility data. To be more specific, the Korean
National Police Agency [35] released the statistics of Korean traffic accidents with severity
information (e.g., death, serious injury, or slight injury). In addition, commercial vehicles
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(such as buses and taxis) which are registered with transportation corporations are required
to equip the Onboard Unit (OBU). The equipment enables to acquisition of the drivers’
Digital Tachograph (DTG) data, including trip, location, and speed in real time. The top 11
dangerous driving behaviors, such as sudden start, sudden turn, and overspeed, have been
identified by the Korea Transportation Safety Authority using the DTG data [36]. On the
other hand, local governments are in charge of maintaining data on road geometry, such
as the number of speed cameras, road signs, and school zone management. Some of them
also run probe vehicles with OBUs deployed for the Cooperative Intelligent Transportation
System (C-ITS). The proposed system is supposed to predict traffic accidents and their
severity by leveraging dispersed data from each department. Figure 1 depicts the overall
data preprocessing process.

Figure 1. Overall data preprocessing for model training.

2.1. Cell Representation of Urban Area for Accident Analysis

In addressing the task of traffic accident prediction, the selection of an appropriate
scale is vital to both the precision and computational efficiency of the training model. In
this study, we adopt a cell-based approach, where the entire geographical scope is divided
into a matrix of NGrid × NGrid cells, to serve as the units of analysis. This choice of scale
offers several strategic advantages.

First, a much finer scale approach, such as a link-level analysis (the term link-level
refers to a single road segment) although capable of providing detailed insights, comes
with a significantly higher computational cost. Moreover, at the city scale, the link-based
strategy may not be the most appropriate method of analysis, given that traffic accidents
tend to concentrate in specific areas rather than evenly distributed across the entire road
network. Consequently, utilizing link-level data could potentially generate a vast amount of
non-accident data points, resulting in an imbalanced dataset that might affect the predictive
ability and reliability of the model. On the contrary, the cell-based approach facilitates a
more focused and efficient analysis by aggregating traffic data at the cell level. This not
only improves the computational efficiency but also promotes a more balanced dataset.
However, in the choice of cell size, if the cell is too large, even though we can reduce
the occurrence of cells with very little or no accident data and increase the computation
efficiency, we may lose spatial patterns and anomalies since critical localized events or con-
ditions might be averaged out. On the other hand, smaller cells can capture very localized
patterns, providing high-resolution predictions. Conversely, we may face increased data
sparsity, with many cells potentially having zero or near-zero traffic accident events. It
can also pose challenges in predictability, possibly leading the model to overfit noise or
specific anomalies.

Therefore, in light of the above considerations, this research leverages a cell-based
approach with appropriate size to address the complexities associated with traffic accident
prediction at the city scale. The cell representation of the study area is shown in Figure 2.
In this experiment, we discretized the study area into 100 by 100 cells (NGrid = 100). The
width and height of each cell are approximately 230 m. The feature of the data used in the
study is shown in Table 1. We assign these values to the respective cells. If there are several
values in one cell, they are added together to represent the characteristics of the cell. For
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example, the total number of traffic accidents in a cell is determined by combining all the
accidents that occurred in that specific cell.

Figure 2. Cell representation of Daejeon city.

Table 1. Description of feature set.

Dataset Acronym Feature Description (Abbreviation)

Road traffic accident
data

ACC_YMD Accident year and month
ORG_CD Organization code in charge

ACC_TME Accident time

ACC_TYP_CD Accident type code
• (Vehicle–pedestrian) on crossing;
• (Vehicle–pedestrian) passing through
the edge of road;
• (Vehicle–vehicle) head-on collision;
• (Vehicle–vehicle) collision on parking;
• (Vehicle) off the road.

GPS_X, GPS_Y X and Y-coordinates in GPS

WEA_STA_CD Weather status code
• Clear;
• Rain.

DEATH_CNT Number of deaths

SERI_CNT Number of the seriously injured

SLTWD_CNT Number of the slight wounded

WND_CNT Number of casualties

DMG_AMT Damaged amount

NODE_ID Node id

LINK_ID Link id

Basic traffic informa-
tion

SPD Average speed

VOL Average traffic volume

LINK_ID Link id

NODE_ID Node id
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Table 1. Cont.

Dataset Acronym Feature Description (Abbreviation)

Digital tachometer
graph (DTG)

TRIP_KEY Trip key

CAR_SPEED Vehicle’s speed

RPM Vehicle’s revolutions per minute

BRK_SGN Brake sign; 0 or 1

GPS_X, GPS_Y X and Y-coordinates in GPS

DGREE Vehicle’s heading angle
ACC_VX, ACC_VY Vehicle’s X and Y-accelerations

Top 11 dangerous
driving behaviors

OBU_ID On-board unit ID

OVERSPD_IS Number of overspeed when driving
20 km/h over the road speed limit

OVERSPD_TM Number of instances of keeping overspeed
for more than 3 min and exceeding the
road speed limit by 20 km/h

SDN_ACCEL_IS Number of sudden accelerations when
accelerating about 5.0–8.0 km/h per second
at speed above 6.0 km/h

SDN_DECEL_IS Number of sudden decelerations when
decelerating about 5.0–8.0 km/h per second
at speed above 6.0 km/h

SDN_START_IS Number of sudden starts when
accelerating 8.0–10.0 km/h per second
at speed under the 5.0 km/h

SDN_STOP_IS Number of sudden stops when reaching
speed under 5.0 km/h by decelerating
8.0–14.0 km/h per second

SDN_LTURN_IS Number of sudden left turns when
reaching cumulative direction angle at
60–120◦

SDN_RTURN_IS Number of sudden right turns when
reaching cumulative direction angle at
60–120◦

SDN_UTURN_IS Number of sudden U-turns when
reaching cumulative direction angle at
60–120◦

SDN_OVERTKG_IS Number of sudden overtakes when
driving 20 km/h over the road speed limit

SDN_COURSE_CHG_IS Number of sudden course changes when
driving 20 km/h over the road speed limit

2.2. Urban Road Traffic Accident and Accident Risk Index (ARI)

This subsection describes the representation to measure the severity of urban traffic
accidents. In this study, we refer to it as the Accident Risk Index (ARI). The Korean National
Police Agency keeps track of every road traffic accident and analyzes it with a range of
criteria such as driver age, gender, and driving condition. Taking into account the statistics,
we analyzed road traffic accidents in Daejeon City over the whole of 2019 (from 1 January
to 31 December). In 2019, there were 8337 accidents in Daejeon city.

The number of accidents can be counted in each cell created using the Geographical
Information System (GIS) from the previous step, and the associated spatial distribution
of the traffic accidents is shown in Figure 3a. The figure shows that most traffic accidents
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happen in urban areas. Even though we can clearly identify the number of accidents on
the map, it is difficult to clarify the accident risk on each cell. In other words, the total
number of accidents in the cell might not be an appropriate measurement, since it does
not reflect the severity of each accident and traffic volumes in certain cells. Therefore, we
define the new measurement ARI to precisely measure the accident risk of the cells. The
related expression is shown as follows:

ARI =
w1 ∗ DEATH + w2 ∗ SERI + w3 ∗ SLTWD

V
(1)

where DEATH, SERI, and SLTWD represent the number of deaths, serious injuries, and
slight injuries, respectively. We used a weighted sum approach to reflect the severity
of each cell differently. According to the standards from Korea Transportation Safety
Authority [36], the appropriate values are w1 = 1, w2 = 0.7, and w3 = 0.3. Additionally, the
volume of traffic at each cell (V) is utilized to normalize the summation appropriately. The
distribution of ARI values in GIS-based is shown in Figure 3b. Compared to the previous
one, the figure can better depict the accident risk in the target area. To be more specific,
in the previous figure, traffic accidents are depicted as dispersed dots, which can make it
challenging to identify consistent patterns or hotspots, especially when some accidents are
rare occurrences. This scattered representation might not be as informative for decision-
makers or urban planners aiming to prioritize areas for interventions. On the other hand,
the ARI map aggregates this information, reducing data sparsity, and providing a clearer
depiction of accident-prone regions or “hotspots.”. Therefore, the ARI map can offer a
more focused and actionable insight into areas that consistently show higher accident rates.

(a) (b)

Figure 3. Number of accidents and related ARI values of in Daejeon city, 2019. (a) Number of
accidents; (b) ARI values.

2.3. Urban Mobility Data

This subsection describes the urban mobility data used in our experiment. We utilized
basic traffic information, Digital Tachograph (DTG) data, and the top 11 dangerous driving
behaviors exhibited by both commercial and general probe vehicles in this study. Specifi-
cally, the average speed and traffic volume are basic traffic information. All commercial
and probe vehicles are equipped with onboard units (OBUs) for the purpose of gathering
DTG data, which includes details about the trip duration, location, and speed. The top 11
dangerous driving behaviors can be determined from the DTG data based on specific rules.
We hypothesize that urban mobility data, especially information on dangerous driving
behaviors, is a contributing component influencing urban traffic accidents. Consequently,
we incorporated these variables as features in our model to forecast accidents and assess the
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risk severity estimation. The DTG data includes GPS details logged every second, allowing
us to graphically represent vehicle pathways, as depicted in Figure 4.

Figure 4. Illustration of the vehicle trajectory collected from the DTG data at different regions

The top 11 dangerous driving behaviors include overspeed, overspeed time, sudden
acceleration, sudden deceleration, sudden start, sudden stop, sudden left turn, sudden
right turn, sudden u-turn, sudden overtaking, and sudden lane change. Figure 5 represents
the process of extracting the top 11 dangerous driving behaviors from DTG data. These
behaviors are visualized in Figure 6, illustrating the aggregation of all dangerous driving
behaviors occurring in the cell. Similar to the previous figures, the dangerous drivings are
predominantly concentrated in the urban area.

Figure 5. Strategy for extracting top 11 dangerous driving behaviors from DTG data (Brown line is
the actual road).

2.4. Road Safety Facility Information

In this subsection, we describe the utilization of road safety facility information in
our study, a necessity arising from the inadequacy of warning signs in the target area [8].
The dataset includes a variety of safety facilities and road information, such as the location
of traffic signals, controllers, various categories of warning signs, and CCTV installations.
Furthermore, the dataset integrates land use information such as residential, commercial,
industrial, and green zones. Similar to the previous processing procedure, we categorize
each type of facility and undertake a quantitative analysis within individual cells.
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Figure 6. Visualization for top 11 dangerous driving behaviors in Daejeon City, 2019.

3. Methodology
3.1. System Architecture

In this study, the primary goal is to develop a system that can predict urban traffic
accidents and identify the severity at the cell level. Specifically, it is beneficial to choose the
cell as a basic unit due to enhanced predictability. As illustrated in Figure 7, the proposed
system consists of two primary components: an accident detector and an accident risk
classifier. The accident detector is mainly designed to assess the likelihood that traffic
accidents occur. The suggested model uses the transformed traffic accident history, urban
mobility data, and road safety facility information as input, which is comprehensively
described in the previous section. The accident risk classifier is responsible for categorizing
risk levels based on the predicted Accident Risk Index (ARI). With risk levels ranging from
level 0 (no accidents) through levels 1–4, which represent increasing degrees of accident
severity, the ARI is employed as a measure of the severity of traffic accidents. The accident
risk classifier employs ARI to categorize the risk levels associated with the given input data.

Figure 7. Overall architecture of the proposed system.

3.2. Predicting Traffic Accident Using Urban Grid Clustered Feature Map

The main goal of the proposed accident detector model is to predict the occurrence of
accidents and filter out the non-accident area. The proposed model leverages a CNN-based
model paired with a multi-layered feed-forward neural network (FFNN), symbolized as
Cm(·) and f (·), respectively. The related model structure is shown in the upper part of
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Figure 7. In previous studies, CNN has demonstrated remarkable efficacy in extracting
features within the realm of computer vision [37–40]. Therefore, we applied the CNN-based
model to extract features from the input data consisting of traffic accident history, urban
mobility, and road safety facility data.

However, employing a conventional CNN-based model in traffic accident analysis
presents two critical challenges. Initially, the prevalent occurrence of substantial zero values
raises a significant concern. If we predict the traffic accident directly from the input data, a
significant number of zero values might have a negative impact on the model performance.
In other words, even when we utilize aggregated data at the cell level as our input data,
there is still a high proportion of zero values, which are non-accidental cells. The second is
the potential loss of local knowledge, because CNNs process input data from start to finish
without taking specific local characteristics into account. Given that the suggested model
targets urban-side issues, it is critical to take these factors into account during training.

To overcome these challenges, the accident detector adopts a new approach called a
grid-clustered feature map. Similar to the previous approach described in Section 2, the
urban area, Zt, was divided into N × N grids with notations of z1, z2, . . . zN×N , and each
grid zi consisted of the clustered n× n cells at time t. This approach can improve CNN
model training effectiveness and further reduce the issue of data imbalance. In this study,
the overall urban area was divided into 10× 10(= 100) grids, and the time unit is a day.
Each grid zi consists of 10× 10(= 100) cells. The grid serves as the spatial unit for accident
prediction, and all the features of the cells that make up the grid are utilized to define
the grid’s features. This allows the model to capture specific regional characteristics and
reduce the effect of training data that has an excessive number of zero values. The proposed
model’s outputs can be successfully used to create the risk level estimation model.

The output of the accident detector provides a binary value in each grid, with 0
representing no accidents and 1 indicating at least one accident. If there are no accidents,
the grid is rated as risk level 1. On the other hand, if the model predicts the accidents,
the specific severity of the risk level for that grid will be categorized in the accident risk
classifier. The overall process can be written as follows:

Zt = {zi,t|i = 1, 2, . . . , 10× 10, t = 1, 2, . . . , T}

zi = {ci,t
1 , ci,t

2 , . . . ci,t
10×10}

ci,t
j = {Xi,t

urban, Xi,t
road}

L(zi,t) = yi,t
grid = {0, 1}

(2)

where zi,t represents ith grid at time t. The zi,t consists of 100 cell ci,t
j . In addition, each

ci,t
j includes the feature sets of urban mobility data and road safety facility information,

notated as Xi,t
urban and Xi,t

road, respectively. The ARI from traffic occurrence is notated as
L(zi,t) or yi,t

grid in ith grid at time t.

3.3. Risk Level Estimation in Each Cell

Based on the severity of accidents, the proposed system provides classified risk levels
for each cell. If the accident detector cannot predict any traffic accidents in a certain grid,
the cells in that grid are categorized as risk level 0. On the other hand, if it predicts the
accident. we estimate the risk level of each cell in the grid from 1 to 4, which is defined by
the quantiles of ARI values. Contrary to the accident detection model, the risk classifier
divides each grid into cells and uses the features in each cell as input data to calculate the
severity of the risk level.

The accident risk classifier is a sophisticated predictive model comprised three deep
neural networks (DNNs), each designed to estimate specific levels of accident risk. The
classification process proceeds in a sequential manner. Initially, the first DNN evaluates
whether an input cell belongs to risk level 1 by outputting a binary value −0 or 1. If
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the output is 1, the instance is categorized under risk level 1. However, if the output is
0, the instance is passed on to the second DNN. This second DNN, in a similar fashion,
determines whether the instance fits into risk level 2. If not, the data point proceeds to the
final DNN, which then differentiates between risk levels 3 and 4. This hierarchical structure
ensures a detailed and sequential classification of accident risk levels, ranging from 1 to 4.
The overall process is depicted in the lower part of Figure 7.

In summary, we first propose the accident detector to predict whether or not an
accident occurs within a specific grid unit, employing a binary classification system. Once
an accident is detected, the procedure transitions to the second step, leveraging the results
from the previous step. This subsequent step engages the accident risk classifier, a series of
three deep neural networks (DNNs), to further estimate the risk level of the accident within
the basic unit cell. This classifier assigns a risk level ranging from 1 to 4, thus providing a
detailed gradation of the potential danger associated with an identified accident, facilitating
informed and precise responses.

[
Zi,t, ci,t

j , L(zi,t)
]
=


[

Zi,t,
{

Xi,t
urban, Xi,t

road

}
, L(zi,t)|∈{0,1}

]
(In traffic accident prediction)

[{
ci,t

1 , ci,t
2 , ..., ci,t

10×10

}
,
{

Xi,t
urban, Xi,t

road

}
, L(zi,t)|∈{1,2,3,4}

]
(In risk level estimation)

(3)

Table 2 presents a comprehensive overview of the model architectures and hyper-
parameters employed for our proposed models. For the Accident Detector, the model
architecture consists of three convolutional neural network (CNN) layers and two fully
connected (FC) layers. The Accident Risk Identifier integrates a deep neural network (DNN)
configuration with three distinct layers. Both models consistently implement a uniform
dropout ratio of 0.2 to avoid overfitting. The optimization strategy employs the Adam
optimizer, set with a learning rate of 0.001. In addition, binary cross entropy was selected
as the loss function.

Table 2. Hyperparameters of the proposed models.

Model Model Value

Accident Detector

CNN1 256 × 256
CNN2 256 × 256
CNN3 256 × 256

FC1 1000 × 1000
FC2 500 × 500

Accident Risk Identifier
DNN1 256 × 128 × 64
DNN2 256 × 128 × 64 × 32
DNN3 128 × 64

Uniform Dropout Ratio 0.2

Optimizer Adam

Learning Rate 0.001

Loss BCELoss

We employed a hyperparameter tuning process to identify the optimal settings that
yielded the best performance for our model. Specifically, we conducted and iterated a series
of experiments to find the most suitable values for each hyperparameter. The values listed
in Table 2 represent the configurations that maximized our model’s predictive accuracy
and minimized the loss during training.

4. Result
4.1. Experimental Design

This subsection describes the experimental design to evaluate the proposed system,
which uses a variety of data sources, including traffic accident data, urban mobility data,
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and road safety facility information, to predict urban traffic accidents and estimate risk
levels. In this study, the main objective of this experiment is to find optimal models for
predicting traffic accidents and estimating risk levels in urban areas. In this study, we
used the dataset from the whole day in 2019 to predict traffic accidents and estimate daily
risk levels. The basic unit of the time t is day. Specifically, our dataset covers data from
365 days, with each day divided into 10,000 spatial cells, resulting in a total of 3,650,000 data
points. We split the supplied data into a training set and a test set for the validation, with
a ratio of 0.8 and 0.2, respectively. To ensure that the model is tested on unseen days, we
divided our dataset based on days that 80% of the days (292 days) were used for training
and the remaining 20% (73 days) for testing.

First, we evaluated the performance of the accident detector for urban traffic accident
prediction. We compared the performance of the proposed model with other baseline
models, including Support Vector Machine (SVM), Linear Regression (LR), Naïve Bayes
Classification (NBC), and Multi-Layer Perceptron (MLP). The performance of the accident
risk classifier was then further assessed using the results that were obtained from the
previous step. In this experiment, we classified the risk level on a scale of 0 to 4 using SVM
and DNN as the baseline models.

Here are the detailed descriptions of baseline models.

• Support Vector Machine (SVM) [41]: SVM is a supervised learning algorithm that
aims to find the optimal hyperplane that best separates the data into classes. The
method shows effectiveness in high-dimensional spaces;

• Linear Regression (LR) [42]: LR is a linear approach to modeling the relationship
between a dependent variable and one or more independent variables. It predicts the
output based on the linear relationship with the input features;

• Naïve Bayes Classification (NBC) [43]: NBC is a probabilistic classifier based on
applying Bayes’ theorem with the “naïve” assumption of conditional independence
between every pair of features;

• Multi-Layer Perceptron (MLP) [44]: MLP is a class of feedforward artificial neural
networks that consists of at least three layers of nodes: an input layer, a hidden layer,
and an output layer. It is known for its ability to capture non-linear relationships of
input and output data.

Meanwhile, as a classification problem, we converted the numerical values of ARI into
categorical data that reflected risk levels from 0 to 4. These ARI values are grouped into
quantiles with risk level 0 corresponding to the lowest quantile (numerical value 0.0), and
risk level 4 being the highest quantile.

In this study, we used accuracy, precision, recall, and F1 score as evaluation metrics.
In binary classification, the F1 score, which is calculated as the harmonic mean of recall and
precision, is a widely used statistical measurement. The related expression is shown below.

Fscore =
2

1
recall +

1
precision

= 2× precision× recall
precision + recall

(4)

4.2. Results of Traffic Accident Prediction and Risk Level Estimation

In this subsection, we present the results of two experiments conducted to evaluate the
performance of our proposed system. The first experiment aims to validate the performance
of accident prediction against other baseline models. In this task, the target unit to predict
is the grid zi, which is one of the main contributions of this study. The training set consists
of about 29,200 grids (365 days × 0.8 × (10 × 10) grids), and the test set has 14,600 grids
(365 days × 0.2 × (10 × 10) grids) in the traffic accident prediction task. The results of this
experiment are presented in Table 3. The empirical results reveal that the proposed model
significantly outperforms the comparative models in performance. One of the findings in
the result is that even though the other models show high accuracy, the performance is low
in the other measurements. Compared to the baseline models, the proposed model shows
much better and more stable performance. One key insight from these findings is that CNN
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models are particularly adept at processing grid-structured input. Moreover, the proposed
is beneficial to capture and consider the features of neighboring areas, contributing to their
enhanced predictive accuracy.

Table 3. Comparison of accuracy, prediction, recall, and F1 score between proposed accident predictor
and baselines on the Daejeon dataset.

Model Accuracy Precision Recall F1 Score

SVM 0.90 0.67 0.29 0.41

LR 0.88 0.44 0.29 0.35

NBC 0.90 0.58 0.32 0.42

MLP 0.90 0.82 0.15 0.25

Proposed accident detector 0.94 0.85 0.63 0.72

In the next step, we estimate the risk levels exclusively for the cells in the non-accident
grids, which is obtained from the previous results. We also divide the obtained data with
the same ratio of 0.8 and 0.2 for model training and testing. Table 4 shows the result
of risk level estimation in each cell with two comparative models. We first measure the
model’s performance using accuracy. We conclude that SVM and MLP are inappropriate for
application in target risk-level estimation tasks. On the other hand, the proposed accident
risk classifier shows over 80% accuracy in our task. We further evaluate our proposed
model with other measurements to examine the efficiency of the model and related results
are shown in Table 5. We can find that the proposed model is also stable and shows high
performance in the other measurements.

Table 4. Comparison of accuracy between the proposed accident risk classifier and baselines on the
Daejeon dataset.

Model Accuracy

SVM 0.34

MLP
(Multi-class classification) 0.38

Proposed accident risk classifier 0.82

Table 5. Accuracy, prediction, recall, and F1 score of proposed accident risk classifier on the Dae-
jeon dataset.

Model Accuracy Precision Recall F1 Score

Proposed accident risk classifier 0.82 0.82 0.82 0.82

From the aforementioned results, it is evident that the proposed system is highly
efficient in predicting traffic accidents and estimating risk levels. Its proficiency in analyzing
grid-structured inputs and incorporating neighboring features enhances its predictive
accuracy. In addition, a hierarchical accident risk classifier is also beneficial in multi-risk
classification tasks. The proposed system can be efficiently used in the domain of traffic
safety and management.

4.3. Discussion

The proposed system for predicting traffic accidents, estimating risk levels, and identi-
fying risk sources is designed to provide valuable insights and tools for enhancing road
safety. The system utilizes a variety of data sources, including traffic accident data, urban
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mobility data, and road safety facility information, to analyze and predict accident occur-
rences, and assess risk levels. In fact, although there are a variety of studies on predicting
and analyzing traffic accident and their severity, to the best of our knowledge, it stands
out as a pioneering attempt in utilizing a large amount and various data sources and
implementing the actual system using deep learning-based models. Furthermore, the usage
of cells as fundamental units instead of individual links can enhance the predictability of
the occurrence of traffic accidents by reducing the number of zero values. To further reduce
the occurrence of zero values, we aggregated cells into grids and used CNN to filter the
non-accident grids.

Through a series of experiments, the system’s effectiveness is evaluated and compared
with baseline models. The first experiment focuses on predicting traffic accidents using grid
feature maps and compares different models, including SVM, NBC, and MLP. The basic
unit in the experiment is the grid zi. The results show that the proposed model utilizing
grid feature maps outperforms other models, indicating the effectiveness of incorporating
grid-represented input data in the proposed model.

The second experiment focuses on estimating risk levels for each cell, which is in-
cluded in the grid zi that has accidents. In this experiment, since our goal is to compare the
application of the hierarchical approach and the direct classification, we use two classifica-
tion models as baseline models: SVM and MLP. These models are highly adopted due to
their widespread adoption and recognized performance in multi-label classification scenar-
ios. The results showed that our proposed model shows high accuracy and effectiveness in
the other measurements. These results reveal that hierarchical DNNs have the capability to
simplify multi-task problems and improve overall performance.

There are several challenges that remain to be dealt with. The first one is related to
expanding and applying the proposed model to other cities. The biggest challenge with
expanding to other cities is the size of the cell and grid. While the initial focus has been
on Daejeon City, it is important to note that other areas should utilize different standards,
potentially being larger or smaller than the target area. In addition, the proposed method-
ology is specifically focused on traffic accident prediction. Other domains with different
data characteristics might be required to adjust the methodology or might not observe the
same efficiency. Moreover, it is necessary to collect more data with longer time periods
to further capture the time-dependent characteristics of accident data, since the current
data size is limited. Furthermore, the assumptions we made, and the models used, are
based on the nature and distribution of traffic accidents. For domains where the under-
lying patterns, distributions, or influencing factors differ significantly, these assumptions
and models might not hold. Moreover, the computational requirements of our approach,
especially the handling and processing of spatial data, might not be suitable for domains
with real-time or resource-constrained applications. In addition, we faced constraints in
gathering comprehensive data related to these factors. Therefore, the proposed Accident
Risk Index (ARI) calculation in this experiment did not directly incorporate geography
and weather conditions. In addition, we will also consider employing feature selection
techniques to further refine our model, optimizing the inclusion of relevant predictors and
potentially enhancing overall predictive performance.

Overall, the proposed system offers a comprehensive approach to analyzing and ad-
dressing road safety issues. By integrating various data sources and advanced deep learning
techniques, it shows the potential to be used in accident prediction to risk assessments. The
system’s outcomes advance the field of road safety by informing decision-making processes,
prioritizing interventions, and implementing effective measures to improve road safety
in urban areas. In addition, the proposed system can be beneficial to commuters, traffic
management systems, and city planners in making more safer and optimized decisions.

5. Conclusions

This study introduces a comprehensive system to predict traffic accidents and estimate
risk levels in the urban area. The system takes into account various data sources, including
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traffic accident data, urban mobility data, and road safety facility information. It also uses
the power of the deep learning method that shows the efficiency in extracting valuable
information in big data. The cores of the proposed system are to use the gird-represented
map as input for a CNN-based accident detector and use hierarchical DNNs to estimate
multiple levels of risk. Specifically, the gird representation of input can effectively reduce
the number of zero values in the input data and is efficient in CNN-based model training.
In addition, the hierarchical DNNs can simplify the complexity of the multi-classification
task and improve the total performance. Also, we propose the Accident Risk Index (ARI)
to clearly measure the severity of risk at each cell.

In our experiment, we evaluate the performances of each component of the proposed
system. It outperforms other models in predicting traffic accidents, and demonstrates high
accuracy and effectiveness in the risk estimation, especially in the multiple binary class
classification approach. Furthermore, we validate the feasibility and applicability of the
proposed system by applying it to actual data in Daejeon City, Republic of Korea. The
proposed system can provide valuable insights into the risk distribution across the urban
and facilitates targeted interventions.

Overall, the proposed system offers a novel and comprehensive approach to enhancing
road safety in urban areas. It not only serves as a predictive tool, but can also be adapted
into a recommendation system that assists urban planners and authorities in implement-
ing preventative measures efficiently. By integrating diverse data sources and utilizing
advanced modeling techniques, the proposed system can facilitate the identification of
high-risk zones and suggest targeted interventions based on analyzed patterns and trends.
This makes it an invaluable asset for decision-makers and stakeholders to prioritize and
implement strategies that focus on preventing accidents and reducing their severity when
they occur. Furthermore, the system can recommend improvements in infrastructure and
changes in traffic regulations, guided by insights drawn from real-time and historical data.
These valuable insights, consequently, support the creation of safer urban environments,
guiding not only immediate responses but also aiding in the planning and development of
long-term road safety strategies. The findings of this research enrich the field of road safety,
paving the way for groundbreaking advancements in accident prediction, risk assessment,
and the formulation of more informed, data-driven road safety strategies. In addition,
the proposed system can potentially be connected with real-world applications such as
navigation and traffic management systems to actively recommend safer routes to road
users, thus serving a preventing role.
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