
Citation: Ma, Y.; Xu, Q.; Song, Z.

Resource-Efficient Optimization for

FPGA-Based Convolution

Accelerator. Electronics 2023, 12, 4333.

https://doi.org/10.3390/

electronics12204333

Academic Editor: Akash Kumar

Received: 18 September 2023

Revised: 17 October 2023

Accepted: 18 October 2023

Published: 19 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Resource-Efficient Optimization for FPGA-Based Convolution
Accelerator
Yanhua Ma 1,2,* , Qican Xu 1 and Zerui Song 1

1 School of Microelectronics, Dalian University of Technology, Dalian 116024, China;
xqc3719@mail.dlut.edu.cn (Q.X.); szr925@mail.dlut.edu.cn (Z.S.)

2 Key Laboratory of Intelligent Control and Optimization for Industrial Equipment, Ministry of Education,
Dalian University of Technology, Dalian 116024, China

* Correspondence: mayanhua@dlut.edu.cn

Abstract: Convolution forms one of the most essential operations for the FPGA-based hardware
accelerator. However, the existing designs often neglect the inherent architecture of FPGA, which
puts forward an austere challenge on hardware resource. Even though some previous works have
proposed approximate multipliers or convolution acceleration algorithms to deal with this issue, the
inevitable accuracy loss and resource occupation easily lead to performance degradation. Toward
this, we first propose two kinds of resource-efficient optimized accurate multipliers based on LUTs
or carry chains. Then, targeting FPGA-based platforms, a generic multiply–accumulate structure is
constructed by directly accumulating the partial products produced by our proposed optimized radix-
4 Booth multipliers without intermediate multiplication and addition results. Experimental results
demonstrate that our proposed multiplier achieves a maximum 51% look-up-table (LUT) reduction
compared to the Vivado area-optimized multiplier IP. Furthermore, the convolutional process unit
using the proposed structure achieves a 36% LUT reduction compared to existing methods. As case
studies, the proposed method is applied to DCT transform, LeNet, and MobileNet-V3 to achieve
hardware resource saving without loss of accuracy.

Keywords: convolution; multiplier; look-up table; carry chain; FPGA

1. Introduction

In recent years, with the development of neural networks and image processing, there
has been a substantial growth of the convolution operation featuring a large number of
multiply–accumulate calculations. Generally, the field-programmable gate array (FPGA)
has become a promising platform for hardware acceleration of CNN due to its flexibility
and energy efficiency [1]. However, when the convolutional process units are directly
implemented on FPGA, the corresponding multiplication and addition operations, which
have been widely investigated for ASIC-based systems, are realized by the configurable
logic blocks instead of logic gates. It may probably result in unnecessary waste of hardware
resources due to inherent architectural differences between FPGA and ASIC. Therefore,
optimization and acceleration of convolutional process units form one of the essential topics
for FPGA-based accelerators.

When directly implementing the convolutional process units on FPGA, although
the vendors, such as AMD and Intel, have provided DSPs to achieve fast multipliers,
it may probably result in unnecessary routing delays and higher latency due to their
fixed locations and limited quantity for multiplier-intensive applications, which causes
performance degradation [2]. For simple applications, it may be possible to optimize the
placement of the required FPGA resources manually to enhance the performance gains.
However, for the implementation of large-scale neural networks, such as VGG-16, even
if the quantity of DSP blocks may be sufficient, performance improvement of multipliers
can further ameliorate the implementation efficiency [3]. In addition, previous works have

Electronics 2023, 12, 4333. https://doi.org/10.3390/electronics12204333 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12204333
https://doi.org/10.3390/electronics12204333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2254-3896
https://doi.org/10.3390/electronics12204333
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12204333?type=check_update&version=1

Electronics 2023, 12, 4333 2 of 13

also reported that with exhaustive use of DSPs, performance degradation will appear
because of their fixed locations when implementing applications like Nova and Viterbi
decoder [4]. Furthermore, the fixed bit-width multiplier of DSP, usually 25 × 18, will easily
lead to higher latency of convolutional process units, most of which employ only 8 × 8
or 16 × 16 multipliers. Therefore, it is necessary to adopt some other methods to achieve
convolution processing units implemented on FPGA.

The existing literature on convolutional process units implemented on FPGA is exten-
sive and focuses mainly on multiplier or adder optimization. That is, without giving regard
to the accurate intermediate computations, approximate operations have been employed
to further reduce the hardware cost and promote the energy efficiency. For example, G.
Lentaris and Z. Ebrahimi used optimized approximate logarithmic multipliers for convolu-
tional process units [5,6]. G. Csordas converted the similar weights into a canonical signed
digit code, then a multiplier was employed for each code [7]. H. Zhang [8] and C. Lam-
mie [9] employed the Karatsuba algorithm and random calculation to realize approximate
multipliers. In addition, approximate adders were also proposed to optimize convolutional
process units in [10–12]. Nevertheless, in fact, compared with the accurate multipliers,
despite the saving of hardware resources, the inevitable loss of accuracy may easily reduce
the performance of a CNN.

Among the other available designs, S. Sarwar proposed an alphabet set multiplier and
shared it with multiple multiplication units [13]. However, there exists a strict requirement
for the multiplication order, which should be one input multiplied by multiple weights. This
special order resulted in more storage resources. S. Kala [14], Toan [15], and X. Wang [16]
used Winograd to reduce the number of multiplications, but the number of additions was
increased instead, not to say that it had to fulfill the requirement of the order of input data,
which might bring out additional latency. Moreover, the methods mentioned above also
impose challenges on storage resources.

In particular, most of the state-of-the-art designs only consider ASIC-based systems.
In actuality, resulting from the inherent architectural difference between FPGA and ASIC,
the performance of the proposed optimization methods will be limited when directly syn-
thesized and implemented on FPGA [17]. In addition, the bulk of the existing accelerators
have to be operated according to a strict multiplication and addition order. Considering the
possible discontinuous memory address existing in the input data, it may lead to significant
latency and increased storage resources.

To address the above limitations, we present a novel method of implementing a con-
volutional process unit for an FPGA-based accelerator. To the best of our knowledge, there
has been no extensive research on convolution accelerators based on high-performance
single-cycle accurate multipliers for FPGA-based systems with comparable performance
to those based on approximate multipliers. The main contributions of this work are as
follows:

• Utilizing the six-input look-up table (LUT) and associated carry chain of FPGA, two
resource-efficient optimization methods of single-cycle radix-4 accurate Booth multi-
plier are proposed, which can further facilitate the addition operation for the multiply–
accumulate functionality.

• Based on partial product accumulation, a multiply–accumulate structure based on
radix-4 Booth multipliers is proposed without calculating intermediate multiplication
and addition results for each input datum, which not only reduces the hardware uti-
lization effectively but can also be expanded to other multiply–accumulate operations.

• Our proposed convolution accelerator based on optimized multiply–accumulate struc-
ture achieves comparable performance and resource utilization to those based on
approximate multipliers without accuracy loss.

The rest of this paper is organized as follows. Section 2 presents the problem formu-
lation. The FPGA-targeted optimization methods are described in Section 3. Section 4
provides the experimental results and discussion. Finally, Section 5 concludes the paper.

Electronics 2023, 12, 4333 3 of 13

2. Problem Formulation

A convolutional process unit consists of multipliers and adders. For convolutional
process units on hardware, small multipliers like 8 × 8 and 16 × 16 are commonly used.
Practically, for the FPGA-based convolutional process unit, the multiplier occupies more
than 96% of the LUT resources [18]. Therefore, multiplier optimization plays a critical role
in high-performance FPGA-based accelerators. Even though state-of-the-art FPGAs provide
DSPs for high-performance multiplication, owing to their fixed locations and bit-width, the
exhaustive use of DSPs may result in performance degradation. Moreover, the quantity of
DSPs is usually insufficient for large-scale industrial application. Hence, previous designs
have attempted to reduce the multipliers for resource saving by decreasing the partial
products and dots [19]. However, when implemented on FPGAs, they may increase the
LUT utilization due to the inherent architectural difference.

Taking the 8 × 8 radix-4 Booth–Wallace tree multiplier as an example, the partial
products can be compressed to 4 and the dots can be reduced to 44 by sign bit extension,
which has become the most resource-efficient method [20]. Nevertheless, when synthesized
for FPGAs, it actually takes more LUTs, as listed in Table 1. We consider that the reason
is due to the inherited architectural difference between FPGA and ASIC, together with
the operation modes of LUT. That is, the multiplier above is designed for ASIC-based
systems, which are at the logic gate level, whereas FPGA-based systems use configurable
logic blocks, including LUTs and carry chains. In addition, an LUT usually operates in the
mode of either six-input one-output or five-input two-output. An LUT can calculate five
dots, whereas a full adder calculates three. When implemented on FPGAs, a full adder will
be transformed into an LUT, which makes two ports of an LUT idle, as shown in Figure 1.
Considering the dots generated by compression, the number of dots will increase from
44 to 83. Excluding bits with insufficient dots, every five dots will use one more LUT due
to the accumulation of idle ports, resulting in a waste of hardware resources. In addition,
plenty of carry chains are always idle in application. Therefore, it is possible to make full
use of carry chains to improve LUT utilization further.

Table 1. LUT utilization of multipliers (8 × 8).

Designs LUT

Unoptimized 92
Sign bit extension 77
Proposed (LUT) 63
Proposed (carry chain) 41

Electronics 2023, 12, x FOR PEER REVIEW 3 of 13

2. Problem Formulation
A convolutional process unit consists of multipliers and adders. For convolutional

process units on hardware, small multipliers like 8 × 8 and 16 × 16 are commonly used.
Practically, for the FPGA-based convolutional process unit, the multiplier occupies more
than 96% of the LUT resources [18]. Therefore, multiplier optimization plays a critical role
in high-performance FPGA-based accelerators. Even though state-of-the-art FPGAs pro-
vide DSPs for high-performance multiplication, owing to their fixed locations and bit-
width, the exhaustive use of DSPs may result in performance degradation. Moreover, the
quantity of DSPs is usually insufficient for large-scale industrial application. Hence, pre-
vious designs have attempted to reduce the multipliers for resource saving by decreasing
the partial products and dots [19]. However, when implemented on FPGAs, they may
increase the LUT utilization due to the inherent architectural difference.

Taking the 8 × 8 radix-4 Booth–Wallace tree multiplier as an example, the partial prod-
ucts can be compressed to 4 and the dots can be reduced to 44 by sign bit extension, which
has become the most resource-efficient method [20]. Nevertheless, when synthesized for
FPGAs, it actually takes more LUTs, as listed in Table 1. We consider that the reason is due
to the inherited architectural difference between FPGA and ASIC, together with the oper-
ation modes of LUT. That is, the multiplier above is designed for ASIC-based systems,
which are at the logic gate level, whereas FPGA-based systems use configurable logic
blocks, including LUTs and carry chains. In addition, an LUT usually operates in the mode
of either six-input one-output or five-input two-output. An LUT can calculate five dots,
whereas a full adder calculates three. When implemented on FPGAs, a full adder will be
transformed into an LUT, which makes two ports of an LUT idle, as shown in Figure 1.
Considering the dots generated by compression, the number of dots will increase from 44
to 83. Excluding bits with insufficient dots, every five dots will use one more LUT due to
the accumulation of idle ports, resulting in a waste of hardware resources. In addition,
plenty of carry chains are always idle in application. Therefore, it is possible to make full
use of carry chains to improve LUT utilization further.

Table 1. LUT utilization of multipliers (8 × 8).

Designs LUT
Unoptimized 92
Sign bit extension 77
Proposed (LUT) 63
Proposed (carry chain) 41

(a) (b)

Figure 1. Full adder deployment. (a) Logic gates; (b) LUT.

Moreover, the existing methods operate multiplication and addition separately in
hardware accelerators, that is, calculating the results of each multiplication and then

Figure 1. Full adder deployment. (a) Logic gates; (b) LUT.

Moreover, the existing methods operate multiplication and addition separately in
hardware accelerators, that is, calculating the results of each multiplication and then
performing accumulation. However, in each multiplier, the LUTs or carry chains will not be

Electronics 2023, 12, 4333 4 of 13

fully used during the final processing due to fewer dots, which causes unnecessary waste
of hardware resources in a multiply–accumulate structure. For further saving of resources,
the partial products should be accumulated without deriving the multiplication results
first.

Therefore, in this paper, we try to investigate the optimization methods based on LUT
and carry chain for the radix-4 Booth multipliers in FPGA-based accelerators by making
full use of LUT and idle carry chains. The proposed method makes full use of the ports of
LUT and idle resources, thus achieving a 55% maximum reduction of LUTs, as shown in
Table 1. Then, an optimized multiply–accumulate structure based on accumulating partial
products is proposed, achieving a reduction of LUTs without accuracy loss.

3. Proposed Designs
3.1. Radix-4 Booth Multiplier and Its Sign Bit Extension

Since the bit-width of the multiplication is the sum of the bit-width of multipliers, the
symbol bits should be extended if using a Wallace tree for partial product compression.
The procedure of the sign bit extension method for the radix-4 Booth multiplier can be
separated into the following steps.

Step 1. Reverse the sign bit of each partial product.
Step 2. Add 1 to the lowest sign bit.
Step 3. Add 1 to the previous bit of the sign bit of all partial products.
The structure of the 8 × 8 radix-4 Booth multiplier using the sign bit expansion method

is shown in Figure 2. However, when this multiplier is directly implemented on FPGA, it
will cause unnecessary waste of resources due to inherent architectural differences.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 13

performing accumulation. However, in each multiplier, the LUTs or carry chains will not
be fully used during the final processing due to fewer dots, which causes unnecessary
waste of hardware resources in a multiply–accumulate structure. For further saving of
resources, the partial products should be accumulated without deriving the multiplication
results first.

Therefore, in this paper, we try to investigate the optimization methods based on
LUT and carry chain for the radix-4 Booth multipliers in FPGA-based accelerators by mak-
ing full use of LUT and idle carry chains. The proposed method makes full use of the ports
of LUT and idle resources, thus achieving a 55% maximum reduction of LUTs, as shown
in Table 1. Then, an optimized multiply–accumulate structure based on accumulating par-
tial products is proposed, achieving a reduction of LUTs without accuracy loss.

3. Proposed Designs
3.1. Radix-4 Booth Multiplier and Its Sign Bit Extension

Since the bit-width of the multiplication is the sum of the bit-width of multipliers, the
symbol bits should be extended if using a Wallace tree for partial product compression.
The procedure of the sign bit extension method for the radix-4 Booth multiplier can be
separated into the following steps.

Step 1. Reverse the sign bit of each partial product.
Step 2. Add 1 to the lowest sign bit.
Step 3. Add 1 to the previous bit of the sign bit of all partial products.
The structure of the 8 × 8 radix-4 Booth multiplier using the sign bit expansion

method is shown in Figure 2. However, when this multiplier is directly implemented on
FPGA, it will cause unnecessary waste of resources due to inherent architectural differ-
ences.

Figure 2. 8 × 8 radix-4 Booth multiplier (S represents sign bit of partial products).

3.2. LUT-Based Optimization of Radix-4 Booth Multiplier
The mentioned radix-4 Booth multiplier uses logic gates as basic units, while FPGA-

based computational blocks are configurable logic blocks, mainly including LUTs and
carry chains. LUT corresponds to inputs and outputs by storing a truth table, and carry
chains are used to perform addition. Therefore, two optimization methods can be pro-
posed for the FPGA-based convolutional process units.

When the radix-4 Booth multipliers are directly implemented on FPGA, lots of three-
input/four-input one-output LUTs will be generated, whereas a fully utilized LUT is usu-
ally five-input two-output or six-input one-output. Therefore, using the 3–2 compression
of the traditional Wallace tree will cause many idle ports. In radix-4 Booth multipliers, the

Figure 2. 8 × 8 radix-4 Booth multiplier (S represents sign bit of partial products).

3.2. LUT-Based Optimization of Radix-4 Booth Multiplier

The mentioned radix-4 Booth multiplier uses logic gates as basic units, while FPGA-
based computational blocks are configurable logic blocks, mainly including LUTs and carry
chains. LUT corresponds to inputs and outputs by storing a truth table, and carry chains
are used to perform addition. Therefore, two optimization methods can be proposed for
the FPGA-based convolutional process units.

When the radix-4 Booth multipliers are directly implemented on FPGA, lots of three-
input/four-input one-output LUTs will be generated, whereas a fully utilized LUT is usually
five-input two-output or six-input one-output. Therefore, using the 3–2 compression of
the traditional Wallace tree will cause many idle ports. In radix-4 Booth multipliers, the
demand for output ports is always higher than the input ones for the multi-input structure
of an LUT. Therefore, full utilization of the output ports should be primarily taken into

Electronics 2023, 12, 4333 5 of 13

consideration during implementation. Taking the 8 × 8 radix-4 Booth multiplier as an
example, we treat all partial products as inputs, multiplication results as outputs, and
middle carry as both inputs and outputs. The number of inputs and outputs are 126 and 57,
respectively, which approximates to 5:2 rather than 6:1. In this case, the demand for output
ports is always higher than the input ones for the multi-input structure of LUT.

The following optimization method is proposed for a Wallace tree, as shown in Figure 3.
For each parallel bit, if the number of addends is fewer than five, they are compressed
according to the previous Wallace tree. Otherwise, every five addends are compressed to
three. This operation is looped until the number of addends of each bit is fewer than three.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 13

demand for output ports is always higher than the input ones for the multi-input structure
of an LUT. Therefore, full utilization of the output ports should be primarily taken into
consideration during implementation. Taking the 8 × 8 radix-4 Booth multiplier as an ex-
ample, we treat all partial products as inputs, multiplication results as outputs, and mid-
dle carry as both inputs and outputs. The number of inputs and outputs are 126 and 57,
respectively, which approximates to 5:2 rather than 6:1. In this case, the demand for output
ports is always higher than the input ones for the multi-input structure of LUT.

The following optimization method is proposed for a Wallace tree, as shown in Fig-
ure 3. For each parallel bit, if the number of addends is fewer than five, they are com-
pressed according to the previous Wallace tree. Otherwise, every five addends are com-
pressed to three. This operation is looped until the number of addends of each bit is fewer
than three.

Figure 3. LUT-based optimization for Wallace tree.

3.3. Carry-Chain-Based Optimization of Radix-4 Booth Multiplier
For each configurable logic block on FPGA, an 8-bit carry chain is provided. The ratio

of six-input LUT and 8-bit carry chain is 8:1 on FPGA. However, with a large number of
carry chains, their priority in the logic synthesizer is low. During the Vivado synthesis
procedure, low-bit-width additions (less than 16 bits) are implemented using LUT re-
sources prior to carry chains, and operation like this often occur in the logic synthesizer.
Therefore, the resource requirement for carry chains is commonly very low, and most of
the carry chains are idle. It is possible to improve LUT utilization further by using surplus
carry chain resources on FPGA.

For the carry-chain-based optimization method, a partial product reduction tree is
proposed, aiming to fully utilize the carry chains. Using an 8-bit carry chain, two 8-bit
numbers and a carry bit will be compressed into a 9-bit number. This operation is repeated
until the number of addends of each bit is fewer than three. The result then can be obtained
by adding the remaining addends. Different from other multipliers, a sign bit is left at the
lowest bit of each partial product of the radix-4 Booth multiplier. It meets the requirement
that there should be a carry bit in a low bit number so that the carry chain can be fully
used. Figure 4 shows the optimization of the 8 × 8 radix-4 Booth multiplier. Compared
with LUT compression using an optimized Wallace tree, the carry chain compression has
the same height, which means that the latency is mainly related to the device itself.

To further study the latency, we implemented 10 LUTs and 8-bit carry chains on Vir-
tex-7 xczu3cg-sfvc784-1-e FPGA. The average delays of LUTs and 8-bit carry chains are
0.179 ns and 0.209 ns, respectively. In spite of an increase of 16% in delay, using carry
chains to compress partial products can effectively reduce the LUT cost.

Figure 3. LUT-based optimization for Wallace tree.

3.3. Carry-Chain-Based Optimization of Radix-4 Booth Multiplier

For each configurable logic block on FPGA, an 8-bit carry chain is provided. The ratio
of six-input LUT and 8-bit carry chain is 8:1 on FPGA. However, with a large number of
carry chains, their priority in the logic synthesizer is low. During the Vivado synthesis
procedure, low-bit-width additions (less than 16 bits) are implemented using LUT resources
prior to carry chains, and operation like this often occur in the logic synthesizer. Therefore,
the resource requirement for carry chains is commonly very low, and most of the carry
chains are idle. It is possible to improve LUT utilization further by using surplus carry
chain resources on FPGA.

For the carry-chain-based optimization method, a partial product reduction tree is
proposed, aiming to fully utilize the carry chains. Using an 8-bit carry chain, two 8-bit
numbers and a carry bit will be compressed into a 9-bit number. This operation is repeated
until the number of addends of each bit is fewer than three. The result then can be obtained
by adding the remaining addends. Different from other multipliers, a sign bit is left at the
lowest bit of each partial product of the radix-4 Booth multiplier. It meets the requirement
that there should be a carry bit in a low bit number so that the carry chain can be fully used.
Figure 4 shows the optimization of the 8 × 8 radix-4 Booth multiplier. Compared with LUT
compression using an optimized Wallace tree, the carry chain compression has the same
height, which means that the latency is mainly related to the device itself.

To further study the latency, we implemented 10 LUTs and 8-bit carry chains on Virtex-
7 xczu3cg-sfvc784-1-e FPGA. The average delays of LUTs and 8-bit carry chains are 0.179 ns
and 0.209 ns, respectively. In spite of an increase of 16% in delay, using carry chains to
compress partial products can effectively reduce the LUT cost.

Electronics 2023, 12, 4333 6 of 13Electronics 2023, 12, x FOR PEER REVIEW 6 of 13

Figure 4. Optimization of 8 × 8 radix-4 Booth multiplier; a red box represents an 8-bit carry chain.

3.4. Partial Product Accumulation Based Optimization of Convolutional Process Unit
The convolution calculation can be described as a large number of parallel multiply–

accumulate operations. Due to the resource limitation of FPGA, most of the convolutional
process units have to execute the multiplication and addition of each channel and window
individually in one clock cycle. As shown in Figure 5, in traditional convolutional process
units, after computing each product of the characteristic graph and weight, the calculated
results are accumulated by the adder. It means that when assuming an n × n convolution
kernel, we have to use n × n single-circle multipliers and n × n − 1 adders in a convolutional
process unit. To further save the resources, LUT utilization can be optimized by a direct
partial product accumulation. That is, instead of calculating and adding the result of each
multiplier successively, we can calculate all partial products and achieve accumulation by
the same partial product reduction tree, as shown in Figure 6.

Figure 5. Traditional structure of convolutional process unit.

.

Figure 6. The optimized multiply–accumulate structure based on partial product accumulation; a
red box represents an 8-bit carry chain.

Figure 4. Optimization of 8 × 8 radix-4 Booth multiplier; a red box represents an 8-bit carry chain.

3.4. Partial Product Accumulation Based Optimization of Convolutional Process Unit

The convolution calculation can be described as a large number of parallel multiply–
accumulate operations. Due to the resource limitation of FPGA, most of the convolutional
process units have to execute the multiplication and addition of each channel and window
individually in one clock cycle. As shown in Figure 5, in traditional convolutional process
units, after computing each product of the characteristic graph and weight, the calculated
results are accumulated by the adder. It means that when assuming an n × n convolution
kernel, we have to use n × n single-circle multipliers and n × n − 1 adders in a convolutional
process unit. To further save the resources, LUT utilization can be optimized by a direct
partial product accumulation. That is, instead of calculating and adding the result of each
multiplier successively, we can calculate all partial products and achieve accumulation by
the same partial product reduction tree, as shown in Figure 6.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 13

Figure 4. Optimization of 8 × 8 radix-4 Booth multiplier; a red box represents an 8-bit carry chain.

3.4. Partial Product Accumulation Based Optimization of Convolutional Process Unit
The convolution calculation can be described as a large number of parallel multiply–

accumulate operations. Due to the resource limitation of FPGA, most of the convolutional
process units have to execute the multiplication and addition of each channel and window
individually in one clock cycle. As shown in Figure 5, in traditional convolutional process
units, after computing each product of the characteristic graph and weight, the calculated
results are accumulated by the adder. It means that when assuming an n × n convolution
kernel, we have to use n × n single-circle multipliers and n × n − 1 adders in a convolutional
process unit. To further save the resources, LUT utilization can be optimized by a direct
partial product accumulation. That is, instead of calculating and adding the result of each
multiplier successively, we can calculate all partial products and achieve accumulation by
the same partial product reduction tree, as shown in Figure 6.

Figure 5. Traditional structure of convolutional process unit.

.

Figure 6. The optimized multiply–accumulate structure based on partial product accumulation; a
red box represents an 8-bit carry chain.

Figure 5. Traditional structure of convolutional process unit.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 13

Figure 4. Optimization of 8 × 8 radix-4 Booth multiplier; a red box represents an 8-bit carry chain.

3.4. Partial Product Accumulation Based Optimization of Convolutional Process Unit
The convolution calculation can be described as a large number of parallel multiply–

accumulate operations. Due to the resource limitation of FPGA, most of the convolutional
process units have to execute the multiplication and addition of each channel and window
individually in one clock cycle. As shown in Figure 5, in traditional convolutional process
units, after computing each product of the characteristic graph and weight, the calculated
results are accumulated by the adder. It means that when assuming an n × n convolution
kernel, we have to use n × n single-circle multipliers and n × n − 1 adders in a convolutional
process unit. To further save the resources, LUT utilization can be optimized by a direct
partial product accumulation. That is, instead of calculating and adding the result of each
multiplier successively, we can calculate all partial products and achieve accumulation by
the same partial product reduction tree, as shown in Figure 6.

Figure 5. Traditional structure of convolutional process unit.

Figure 6. The optimized multiply–accumulate structure based on partial product accumulation; a
red box represents an 8-bit carry chain.
Figure 6. The optimized multiply–accumulate structure based on partial product accumulation; a red
box represents an 8-bit carry chain.

Electronics 2023, 12, 4333 7 of 13

It is worthy of notice that, different from the previous work of a general compressor
tree [21], our proposed method first calculates the partial products through the radix-4
Booth encoder. Then, all partial products are accumulated in an optimized partial product
reduction tree for compression and calculation.

In addition, in our proposed method, there is no need to derive the intermediate results
of each multiplication; the partial products in accumulation are directly sent to the adder,
which occupies fewer hardware resources than all previous similar works because the 1s
generated by the sign bit extension method in radix-4 booth encoders can be calculated
ahead without resources occupation when multiple partial products are accumulated.

Specifically, suppose there are M multipliers in a convolutional process unit with the
bit-width of 4. If calculating the result of each multiplier first, as shown in Figure 7a, then
3 × M − 1 carry chains are needed, where 2 × M are used for each multiplier, and the
others are used for the final addition. However, if directly accumulating all partial products,
there are only 2 × M carry chains, as shown in Figure 7b, which reduces M − 1 carry chains.
Moreover, our proposed partial product reduction tree does not influence the parallelism,
which only fulfills the idle ports of carry chains using other partial products. This operation
does not change the logical levels of the circuit, that is, it neither increases the height of
the partial product reduction tree nor the delay. In fact, the proposed method can not only
reduce the resource utilization but also be effective for all multiply–accumulate structures
without requirement for the input data order, different from the Systolic Array Architecture
and Winograd Algorithm.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 13

It is worthy of notice that, different from the previous work of a general compressor
tree [21], our proposed method first calculates the partial products through the radix-4
Booth encoder. Then, all partial products are accumulated in an optimized partial product
reduction tree for compression and calculation.

In addition, in our proposed method, there is no need to derive the intermediate re-
sults of each multiplication; the partial products in accumulation are directly sent to the
adder, which occupies fewer hardware resources than all previous similar works because
the 1s generated by the sign bit extension method in radix-4 booth encoders can be calcu-
lated ahead without resources occupation when multiple partial products are accumu-
lated.

Specifically, suppose there are M multipliers in a convolutional process unit with the
bit-width of 4. If calculating the result of each multiplier first, as shown in Figure 7a, then
3 × M − 1 carry chains are needed, where 2 × M are used for each multiplier, and the others
are used for the final addition. However, if directly accumulating all partial products,
there are only 2 × M carry chains, as shown in Figure 7b, which reduces M − 1 carry chains.
Moreover, our proposed partial product reduction tree does not influence the parallelism,
which only fulfills the idle ports of carry chains using other partial products. This opera-
tion does not change the logical levels of the circuit, that is, it neither increases the height
of the partial product reduction tree nor the delay. In fact, the proposed method can not
only reduce the resource utilization but also be effective for all multiply–accumulate struc-
tures without requirement for the input data order, different from the Systolic Array Ar-
chitecture and Winograd Algorithm.

(a) (b)

Figure 7. Strategy comparison, a red box represents an 8-bit carry chain: (a) Calculating the result of
multipliers first; (b) accumulating partial products.

It should be noted that, till now, neither our proposed method nor a similar technique
has been employed in Xilinx’s tool. In fact, for Xilinx’s tool, a general hardware structure
is required, which facilitates implementation. It should achieve multipliers with different
bit-width by simply modifying. Consequently, when multipliers with different bit-width
are employed, the radix-4 Booth algorithm will significantly change, resulting in a com-
pletely different hardware structure. That is the reason why Xilinx’s tool has not employed
a similar technique for generality. However, in most application scenarios, the bit-width
of multipliers is fixed, which is the research background of our optimization of the multi-
plier, by partially ignoring the generality.

4. Discussion
4.1. Experimental Setup

The proposed designs were implemented in Verilog HDL and synthesized by Xilinx
Vivado 2021.2 for the Virtex-7 xczu3cg-sfvc784-1-e FPGA. For the calculation of their crit-
ical path delay (CPD), power, and hardware resource usage, the Vivado simulator and

Figure 7. Strategy comparison, a red box represents an 8-bit carry chain: (a) Calculating the result of
multipliers first; (b) accumulating partial products.

It should be noted that, till now, neither our proposed method nor a similar technique
has been employed in Xilinx’s tool. In fact, for Xilinx’s tool, a general hardware structure is
required, which facilitates implementation. It should achieve multipliers with different bit-
width by simply modifying. Consequently, when multipliers with different bit-width are
employed, the radix-4 Booth algorithm will significantly change, resulting in a completely
different hardware structure. That is the reason why Xilinx’s tool has not employed a
similar technique for generality. However, in most application scenarios, the bit-width of
multipliers is fixed, which is the research background of our optimization of the multiplier,
by partially ignoring the generality.

4. Discussion
4.1. Experimental Setup

The proposed designs were implemented in Verilog HDL and synthesized by Xilinx
Vivado 2021.2 for the Virtex-7 xczu3cg-sfvc784-1-e FPGA. For the calculation of their critical
path delay (CPD), power, and hardware resource usage, the Vivado simulator and power
analyzer tools were employed. In order to evaluate the effectiveness of our proposed

Electronics 2023, 12, 4333 8 of 13

designs, we implemented the present multipliers [17,22–25] on our FPGA. Further, our
proposed multipliers were implemented for our proposed multiply–accumulate structure,
then applied to image processing and CNN for comparison. The convolutional process
units using the present multipliers [17,22–25] were also implemented on our FPGA.

4.2. Implementation Results of Optimized Multiplier

Table 2 compares the resource utilization, CPD, and energy consumption of our
proposed multipliers with other typical multipliers of different bit-width. It is demonstrated
that our proposed multipliers are more resource-efficient than the others across different
bit-width without obvious performance degradation on CPD and energy consumption.
Taking 8 × 8 multipliers as an example, the LUT utilization is reduced by 18.18% and 46.75%
with our proposed multipliers to the radix-4 Booth multiplier using sign-bit expansion,
respectively. Even compared with the approximate multiplier [17], our proposed carry-
chain-based optimized multiplier still exhibits less LUT utilization.

Table 2. Implementation results of multipliers (shaded row: approximate design).

Design

8 × 8 16 × 16

LUT Carry
Chain

Delay
(ns)

Power
(mW)

PDP
(pJ) LUT Carry

Chain
Delay
(ns)

Power
(mW)

PDP
(pJ)

Sign expansion 77 0 3.011 15.8 47.5 279 0 3.583 56.8 203.5
Proposed (LUT) 63 0 2.774 16.3 45.1 256 0 3.296 55.1 181.6
Proposed (carry chain) 41 5 2.530 7.2 18.1 167 18 2.782 29.2 81.3
Vivado IP area 85 7 1.967 10.8 21.2 324 26 2.177 47.0 102.3
Vivado IP speed 73 14 1.602 8.3 13.3 281 45 1.922 31.7 60.83
T. Nguyen [22] 69 2 2.927 10.1 29.5 263 4 3.323 41.8 139
S. Ullah [23] 81 0 2.954 13.8 40.7 296 0 3.738 48.3 180.7
S. Abbas [24] 73 2 3.037 15.1 45.9 270 4 3.642 67.6 246.2
S. Rehman [17] 56 2 1.980 8.9 17.7 240 4 2.380 42.4 101
H. Waris [25] 60 2 2.140 6.6 14.1 194 4 2.413 28.6 69.1

It is worth noting that although the proposed multipliers demonstrate an increase
in CPD compared with the Vivado IP, it is still at an acceptable level with a significant
reduction of LUT and 8-bit carry chain utilization. This is due to the Booth coding, which,
in spite of reducing the resource consumption, inevitably leads to the delay.

In addition, our proposed carry-chain-based optimized multipliers can further im-
prove the LUT utilization and energy consumption for the reason that using carry chains
can reduce logical flipping effectively. It delivers better PDP improvements of 38.67% to
the previous best FPGA-targeted design [22]. Compared to the speed-optimized Vivado IP,
the proposed multiplier is higher on PDP because of the latency. However, we think the
increased latency is acceptable with a 43% reduction in LUT utilization. To highlight the effi-
ciency of our proposed multipliers, Figure 8 illustrates the product of normalized values of
total utilized LUTs and PDP for each design across different bit-width. All values were nor-
malized to the corresponding values of the Vivado area-optimized multiplier IP. A smaller
value of the product (LUTs × PDP) presents an implementation with better performance.
Although for simple applications the proposed carry-chain-based optimized multiplier
exhibits similar performance to the Vivado speed optimized IP, it has significant advantages
for larger-scale designs. Even compared with the approximate multiplier [17,25], there
exists a noticeable improvement of LUTs with our proposed carry-chain-based optimized
multipliers without performance degradation.

Electronics 2023, 12, 4333 9 of 13Electronics 2023, 12, x FOR PEER REVIEW 9 of 13

 (a) (b)

Figure 8. Comparison results of multipliers [17,22–25]: (a) Normalized performance metrics (LUT ×
PDP); (b) normalized LUT.

4.3. Implementation Results of Multiply–Accumulate Structure
For hardware resource saving, the proposed carry-chain-based optimized multiplier

is employed. For the 8-bit multiplication, the method of accumulating two partial prod-
ucts can reduce 10 LUTs and 2 8-bit carry chains.

To verify the effectiveness of our proposed method, we implement it to the convolu-
tional process unit with the bit-width of 8 and convolution kernel size of 3 × 3. Table 3 lists
the comparison results of our method with DSPs and approximate multipliers [17,25]. Com-
pared with them, our proposed multiplier and multiply–accumulate structure reduce LUT
by 43.9%. For further verifying, Table 4 lists the comparison results of our proposed convo-
lutional process unit and the others with the bit-width of 16 and convolution kernel size of
4 × 4, which is not commonly used, implementing only for comparison. It should be noted
that although the bit-width and multiplication times are the same, the implemented FPGAs
are different, which means some important performances are not comparable, such as fre-
quency and power. However, the architectures of the present mainstream Xilinx FPGAs are
similar, so we directly compare the utilization of hardware resources. In fact, for most exist-
ing convolutional process units of the hardware accelerator, the realization of multipliers
and multiply–accumulate structures are either ignored or just optimized by ASIC-based
multipliers, which easily leads to performance degradation. Compared with them, our pro-
posed multiplier and multiply–accumulate structure reduce LUTs by 22.7%.

Table 3. Implementation results of 3 × 3 convolutional process units (including approximate multi-
pliers).

Designs LUT DSP Freq. (MHz) Power (mW)
Proposed 362 0 395 71
Vivado’s default synthesis 766 0 407 80
DSP blocks 68 9 400 81
Rehman [17] 570 0 397 89
H. Waris [25] 604 0 383 69

Table 4. Implementation results of 4 × 4 convolutional process units.

Designs LUT DSP Freq. (MHz) Power (mW)
Proposed 2792 0 342 154
R. Cai [26] 5342 0 330 293
DSP blocks 158 16 177 226
F. Farrukh [18] 3612 0 533 176

Figure 8. Comparison results of multipliers [17,22–25]: (a) Normalized performance metrics (LUT ×
PDP); (b) normalized LUT.

4.3. Implementation Results of Multiply–Accumulate Structure

For hardware resource saving, the proposed carry-chain-based optimized multiplier is
employed. For the 8-bit multiplication, the method of accumulating two partial products
can reduce 10 LUTs and 2 8-bit carry chains.

To verify the effectiveness of our proposed method, we implement it to the convolu-
tional process unit with the bit-width of 8 and convolution kernel size of 3 × 3. Table 3
lists the comparison results of our method with DSPs and approximate multipliers [17,25].
Compared with them, our proposed multiplier and multiply–accumulate structure reduce
LUT by 43.9%. For further verifying, Table 4 lists the comparison results of our proposed
convolutional process unit and the others with the bit-width of 16 and convolution kernel
size of 4 × 4, which is not commonly used, implementing only for comparison. It should be
noted that although the bit-width and multiplication times are the same, the implemented
FPGAs are different, which means some important performances are not comparable, such
as frequency and power. However, the architectures of the present mainstream Xilinx
FPGAs are similar, so we directly compare the utilization of hardware resources. In fact,
for most existing convolutional process units of the hardware accelerator, the realization
of multipliers and multiply–accumulate structures are either ignored or just optimized by
ASIC-based multipliers, which easily leads to performance degradation. Compared with
them, our proposed multiplier and multiply–accumulate structure reduce LUTs by 22.7%.

Table 3. Implementation results of 3 × 3 convolutional process units (including approximate multi-
pliers).

Designs LUT DSP Freq. (MHz) Power (mW)

Proposed 362 0 395 71
Vivado’s default synthesis 766 0 407 80
DSP blocks 68 9 400 81
Rehman [17] 570 0 397 89
H. Waris [25] 604 0 383 69

Table 4. Implementation results of 4 × 4 convolutional process units.

Designs LUT DSP Freq. (MHz) Power (mW)

Proposed 2792 0 342 154
R. Cai [26] 5342 0 330 293
DSP blocks 158 16 177 226
F. Farrukh [18] 3612 0 533 176

Electronics 2023, 12, 4333 10 of 13

For the high-level application environment, we applied the multiply–accumulate
structure to discrete cosine transform (DCT) in JPEG compression. For each 8 × 8 block,
the DCT is employed as two matrix multiplications of sizes 8 × 8 and thus requires
1024 multiplications and 896 additions. As shown in Figure 9a, the input image with
bit-width of 16 is from the MIT Adobe FiveK dataset. The peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM) are used to evaluate the quality of the
output images. Figure 9 and Table 5 indicate that even compared with the ones using
approximate multipliers [17,25], our proposed structure can obviously reduce the LUT
utilization without loss of accuracy.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 13

For the high-level application environment, we applied the multiply–accumulate
structure to discrete cosine transform (DCT) in JPEG compression. For each 8 × 8 block,
the DCT is employed as two matrix multiplications of sizes 8 × 8 and thus requires 1024
multiplications and 896 additions. As shown in Figure 9a, the input image with bit-width
of 16 is from the MIT Adobe FiveK dataset. The peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) are used to evaluate the quality of the output
images. Figure 9 and Table 5 indicate that even compared with the ones using approxi-
mate multipliers [17,25], our proposed structure can obviously reduce the LUT utilization
without loss of accuracy.

(a) (b) (c) (d)

Figure 9. Image compression results: (a) Input image; (b) our proposed method; (c) approximate
multiplier proposed in [17]; (d) approximate multiplier proposed in [25].

Table 5. Comparison results of DCT transformation.

Design LUT DSP Freq. (MHz) Power (W) PSNR SSIM
Proposed 9688 0 379 1.144 ∞ 1
DSP blocks 608 64 383 1.181 ∞ 1
Rehman [17] 11,025 0 393 1.296 56.17 0.990
H. Waris [25] 10,870 0 387 1.004 52.58 0.974

We also implemented LeNet, shown in Table 6, with two convolutional layers on
FPGA, to realize the target recognition of 10 types of common objects by the Cifar-10 da-
taset. For hardware resource reduction, the 8-bit fixed-point quantization was used, re-
sulting in an accuracy of 69.32%. The implementation results of using our proposed mul-
tiply–accumulate structure and directly using DSPs are listed in Table 7. They show that
when dealing with multiplier-intensive applications, our proposed method can promote
maximum clock frequency and save 58% of the DSP resources by only increasing LUTs by
12%.

Table 6. LeNet architecture on FPGA.

Layer Input Filter Size Stride Output
Conv1 32 × 32 × 3 16 3 × 3 1 30 × 30 × 16
Conv2 30 × 30 × 16 16 3 × 3 1 28 × 28 × 16
Max pooling1 28 × 28 × 16 N/A 2 × 2 2 14 × 14 × 16
Conv3 14 × 14 × 16 32 3 × 3 1 12 × 12 × 32
Conv4 12 × 12 × 32 32 3 × 3 1 10 × 10 × 32
Max pooling2 10 × 10 × 32 N/A 2 × 2 2 5 × 5 × 32
Full connect1 800 N/A N/A N/A 120
Full connect2 120 N/A N/A N/A 84

Table 7. Comparison results of LeNet implementation.

Design LUT Utilization FF Utilization DSP Utilization Freq. (MHz)
Proposed 23,887 (34%) 6172 (4.37%) 0 (0%) 175
DSP blocks 15,695 (22%) 6172 (4.37%) 211 (58%) 173

Figure 9. Image compression results: (a) Input image; (b) our proposed method; (c) approximate
multiplier proposed in [17]; (d) approximate multiplier proposed in [25].

Table 5. Comparison results of DCT transformation.

Design LUT DSP Freq.
(MHz) Power (W) PSNR SSIM

Proposed 9688 0 379 1.144 ∞ 1
DSP blocks 608 64 383 1.181 ∞ 1
Rehman [17] 11,025 0 393 1.296 56.17 0.990
H. Waris [25] 10,870 0 387 1.004 52.58 0.974

We also implemented LeNet, shown in Table 6, with two convolutional layers on
FPGA, to realize the target recognition of 10 types of common objects by the Cifar-10
dataset. For hardware resource reduction, the 8-bit fixed-point quantization was used,
resulting in an accuracy of 69.32%. The implementation results of using our proposed
multiply–accumulate structure and directly using DSPs are listed in Table 7. They show that
when dealing with multiplier-intensive applications, our proposed method can promote
maximum clock frequency and save 58% of the DSP resources by only increasing LUTs by
12%.

Table 6. LeNet architecture on FPGA.

Layer Input Filter Size Stride Output

Conv1 32 × 32 × 3 16 3 × 3 1 30 × 30 × 16
Conv2 30 × 30 × 16 16 3 × 3 1 28 × 28 × 16
Max pooling1 28 × 28 × 16 N/A 2 × 2 2 14 × 14 × 16
Conv3 14 × 14 × 16 32 3 × 3 1 12 × 12 × 32
Conv4 12 × 12 × 32 32 3 × 3 1 10 × 10 × 32
Max pooling2 10 × 10 × 32 N/A 2 × 2 2 5 × 5 × 32
Full connect1 800 N/A N/A N/A 120
Full connect2 120 N/A N/A N/A 84

Table 7. Comparison results of LeNet implementation.

Design LUT Utilization FF Utilization DSP Utilization Freq. (MHz)

Proposed 23,887 (34%) 6172 (4.37%) 0 (0%) 175
DSP blocks 15,695 (22%) 6172 (4.37%) 211 (58%) 173

Electronics 2023, 12, 4333 11 of 13

For more complicated applications, we implemented MobileNet-V3 on FPGA. The
architecture of MobileNet-V3 is shown in [27]. The overall architecture of the implemented
MobileNet-V3 accelerator is shown in Figure 10, including controller, memory, data pro-
cessing module, and convolutional process units. It is very similar to the previous FPGA
implementations of CNN, except that the controller and memory are optimized for depth-
wise convolution and pointwise convolution. The data processing module is used for
processing activation functions and the convolutional process units are used for MAC
operations. For higher efficiency, the accelerator requires 436 multipliers in this accelerator,
while there are only 360 DSP blocks on our FPGA. In this case, LUTs have to be used for
multipliers. The corresponding results are listed in Table 8. It should be noted that when
using Vivado IPs for multipliers, MobileNet-V3 cannot be directed implemented, which
verifies the effectiveness of our proposed design. It should be noted that this is not the
case with all architectures, and the requirement of 436 multipliers is only for our proposed
architectures.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 13

For more complicated applications, we implemented MobileNet-V3 on FPGA. The
architecture of MobileNet-V3 is shown in [27]. The overall architecture of the imple-
mented MobileNet-V3 accelerator is shown in Figure 10, including controller, memory,
data processing module, and convolutional process units. It is very similar to the previous
FPGA implementations of CNN, except that the controller and memory are optimized for
depthwise convolution and pointwise convolution. The data processing module is used
for processing activation functions and the convolutional process units are used for MAC
operations. For higher efficiency, the accelerator requires 436 multipliers in this accelera-
tor, while there are only 360 DSP blocks on our FPGA. In this case, LUTs have to be used
for multipliers. The corresponding results are listed in Table 8. It should be noted that
when using Vivado IPs for multipliers, MobileNet-V3 cannot be directed implemented,
which verifies the effectiveness of our proposed design. It should be noted that this is not
the case with all architectures, and the requirement of 436 multipliers is only for our pro-
posed architectures.

Figure 10. Overall architecture of implemented MobileNet-V3 accelerator.

Table 8. Results of MobileNet-V3 implementation.

Design LUT Utilization FF Utilization DSP Utilization Freq. (MHz)
Proposed 51,798 (73%) 34,408 (24%) 308 (85%) 116

5. Conclusions
In this paper, a design methodology for a convolution accelerator was presented.

Based on LUTs and carry chains on FPGA, we first introduced two types of resource-effi-
cient optimization of the radix-4 Booth multiplier. Then, a generic multiply–accumulate
structure was proposed, which directly accumulates the partial products without inter-
mediate multiplication and addition results. The proposed methods are implementable
on the Xilinx FPGA Virtex-7 xczu3cg-sfvc784-1-e. Compared to the Vivado area-optimized
multiplier IP, the optimized multipliers achieved a maximum 51% reduction in area
(LUT). The proposed multiply–accumulate structure achieved a maximum of 22.7% LUT
reduction compared to the existing methods. For verifying our proposed convolutional
process unit, we finally presented high-level applications by implementing DCT transform
and LeNet on FPGA. In DCT transform, our proposed method reduced LUT utilization by
12% without accuracy loss, while in LeNet on FPGA, our proposed convolution accelerator
saved 58% of the DSP resources. Using our proposed method, more complicated applica-
tions like MobileNet-V3 can be implemented on FPGA with insufficient DSP blocks.

Author Contributions: Conceptualization, Y.M. and Q.X.; methodology, Q.X.; validation, Q.X. and
Z.S.; formal analysis, Y.M. and Q.X.; investigation, Y.M. and Q.X.; resources, Q.X.; data curation,
Z.S.; writing—original draft preparation, Q.X.; writing—review and editing, Y.M., Q.X. and Z.S.;
visualization, Z.S.; supervision, Y.M. All authors have read and agreed to the published version of
the manuscript.

Figure 10. Overall architecture of implemented MobileNet-V3 accelerator.

Table 8. Results of MobileNet-V3 implementation.

Design LUT Utilization FF Utilization DSP Utilization Freq. (MHz)

Proposed 51,798 (73%) 34,408 (24%) 308 (85%) 116

5. Conclusions

In this paper, a design methodology for a convolution accelerator was presented. Based
on LUTs and carry chains on FPGA, we first introduced two types of resource-efficient
optimization of the radix-4 Booth multiplier. Then, a generic multiply–accumulate structure
was proposed, which directly accumulates the partial products without intermediate
multiplication and addition results. The proposed methods are implementable on the Xilinx
FPGA Virtex-7 xczu3cg-sfvc784-1-e. Compared to the Vivado area-optimized multiplier IP,
the optimized multipliers achieved a maximum 51% reduction in area (LUT). The proposed
multiply–accumulate structure achieved a maximum of 22.7% LUT reduction compared to
the existing methods. For verifying our proposed convolutional process unit, we finally
presented high-level applications by implementing DCT transform and LeNet on FPGA. In
DCT transform, our proposed method reduced LUT utilization by 12% without accuracy
loss, while in LeNet on FPGA, our proposed convolution accelerator saved 58% of the DSP
resources. Using our proposed method, more complicated applications like MobileNet-V3
can be implemented on FPGA with insufficient DSP blocks.

Author Contributions: Conceptualization, Y.M. and Q.X.; methodology, Q.X.; validation, Q.X. and
Z.S.; formal analysis, Y.M. and Q.X.; investigation, Y.M. and Q.X.; resources, Q.X.; data curation,
Z.S.; writing—original draft preparation, Q.X.; writing—review and editing, Y.M., Q.X. and Z.S.;
visualization, Z.S.; supervision, Y.M. All authors have read and agreed to the published version of
the manuscript.

Electronics 2023, 12, 4333 12 of 13

Funding: This research was funded in part by the National Science and Technology Major Project
under Grant J2019-I-0019-0018; in part by the Aeronautical Science Foundation of China under Grant
20200013063001; in part by the Science and Technology Innovation Foundation of Dalian under Grant
2021JJ12GX012; and in part by the Fundamental Research Funds for the Central Universities under
Grant DUT22QN204.

Data Availability Statement: The Cifar-10 dataset is available on http://www.cs.toronto.edu/~kriz/
cifar.html (access on 21 July 2023) and the MIT Adobe FiveK dataset is available on https://data.csail.
mit.edu/graphics/fivek (access on 21 July 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mittal, S. A survey of FPGA-based accelerators for convolutional neural networks. Neural Comput. Appl. 2020, 32, 1109–1139.

[CrossRef]
2. Wang, D.; Xu, K.; Guo, J.; Ghiasi, S. DSP-efficient hardware acceleration of convolutional neural network inference on FPGAs.

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 4867–4880. [CrossRef]
3. Ullah, S.; Sripadra, S.; Murthy, J.; Kumar, A. SMApproxLib: Library of FPGA-based approximate multipliers. In Proceedings of

the IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 24–28 June 2018; pp. 1–6.
4. Xilinx LogiCORE IP v12.0. Available online: https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/

v12_0/pg108-mult-gen.pdf (accessed on 21 July 2023).
5. Lentaris, G. Combining arithmetic approximation techniques for improved CNN circuit design. In Proceedings of the IEEE

International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 23–25 November 2020; p. 9294869.
6. Ebrahimi, Z.; Ullah, S.; Kumar, A. LeAp: Leading-one detection-based softcore approximate multipliers with tunable accuracy. In

Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, China, 13–16 January 2020; pp.
605–610.

7. Csordás, G.; Fehér, B.; Kovácsházy, T. Application of bit-serial arithmetic units for FPGA implementation of convolutional neural
networks. In Proceedings of the International Carpathian Control Conference (ICCC), Szilvasvarad, Hungary, 28–31 May 2018;
pp. 322–327.

8. Zhang, H.; Xiao, H.; Qu, H.; Ko, S. FPGA-based approximate multiplier for efficient neural computation. In Proceedings of the
IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Gangwon, Republic of Korea, 1–3 November 2021; pp.
1–4.

9. Lammie, C.; Azghadi, M. Stochastic computing for low-power and high-speed deep learning on FPGA. In Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5.

10. Thamizharasan, V.; Kasthuri, N. High-Speed Hybrid Multiplier Design Using a Hybrid Adder with FPGA Implementation. IETE
J. Res. 2021, 69, 2301–2309. [CrossRef]

11. Balasubramanian, P.; Nayar, R.; Maskell, D.L. Digital Image Blending Using Inaccurate Addition. Electronics 2022, 11, 3095.
[CrossRef]

12. Kumar, S.R.; Balasubramanian, P.; Reddy, R. Optimized Fault-Tolerant Adder Design Using Error Analysis. J. Circuits Syst.
Comput. 2023, 32, 6.

13. Sarwar, S.S.; Venkataramani, S.; Raghunathan, A.; Roy, K. Multiplier-less artificial neurons exploiting error resiliency for energy-
efficient neural computing. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE),
Dresden, Germany, 14–18 March 2016; pp. 145–150.

14. Kala, S.; Jose, B.; Mathew, J.; Nalesh, S. High-performance CNN accelerator on FPGA using unified Winograd-GEMM architecture.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 2019, 27, 2816–2828. [CrossRef]

15. Toan, N.V.; Lee, J.G. FPGA-based multi-Level approximate multipliers for high-performance error-resilient applications. IEEE
Access 2020, 8, 25481–25497. [CrossRef]

16. Wang, X.; Wang, C.; Cao, J.; Gong, L. WinoNN: Optimizing FPGA-Based Convolutional Neural Network Accelerators Using
Sparse Winograd Algorithm. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 4290–4302. [CrossRef]

17. Ullah, S.; Rehman, S.; Shafique, M.; Kumar, A. High-performance accurate and approximate multipliers for FPGA-based hardware
accelerators. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 2022, 41, 211–224. [CrossRef]

18. Farrukh, F. Power efficient tiny Yolo CNN using reduced hardware resources based on Booth multiplier and Wallace tree adders.
IEEE Open J. Circuits Syst. 2020, 1, 76–87. [CrossRef]

19. Rooban, S. Implementation of 128-bit radix-4 booth multiplier. In Proceedings of the International Conference of Computer
Communication and Informatics (ICCCI), Coimbatore, India, 27–29 January 2021; pp. 1–7.

20. Chang, Y.; Cheng, Y.; Liao, S.; Hsiao, C. A low power radix-4 booth multiplier with pre-encoded mechanism. IEEE Access 2020, 8,
114842–114853. [CrossRef]

21. Kumm, M.; Kappauf, J. Advanced compressor tree synthesis for FPGAs. IEEE Trans. Comput. 2018, 67, 1078–1091. [CrossRef]
22. Ullah, S.; Nguyen, T.; Kumar, A. Energy-efficient low-latency signed multiplier for FPGA-based hardware accelerators. IEEE

Emded. Syst. Lett. 2021, 13, 41–44. [CrossRef]

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://data.csail.mit.edu/graphics/fivek
https://data.csail.mit.edu/graphics/fivek
https://doi.org/10.1007/s00521-018-3761-1
https://doi.org/10.1109/TCAD.2020.2968023
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://doi.org/10.1080/03772063.2021.1912655
https://doi.org/10.3390/electronics11193095
https://doi.org/10.1109/TVLSI.2019.2941250
https://doi.org/10.1109/ACCESS.2020.2970968
https://doi.org/10.1109/TCAD.2020.3012323
https://doi.org/10.1109/TCAD.2021.3056337
https://doi.org/10.1109/OJCAS.2020.3007334
https://doi.org/10.1109/ACCESS.2020.3003684
https://doi.org/10.1109/TC.2018.2795611
https://doi.org/10.1109/LES.2020.2995053

Electronics 2023, 12, 4333 13 of 13

23. Ullah, S. Area-optimized low-latency approximate multipliers for FPGA-based hardware accelerators. In Proceedings of the IEEE
Design Automation Conference (DAC), San Francisco, CA, USA, 24–28 June 2018; pp. 1–6.

24. Kumm, M.; Abbas, S.; Zipf, P. An efficient softcore multiplier architecture for Xilinx FPGAs. In Proceedings of the Symposium on
Computer Arithmetic (ARITH), Lyon, France, 22–24 June 2015; pp. 18–25.

25. Waris, H.; Wang, C.; Liu, W.; Lombardi, F. AxBMs: Approximate radix-8 booth multipliers for high-performance FPGA-based
accelerators. IEEE Trans. Circuits Syst. Express Briefs 2021, 68, 1566–1570. [CrossRef]

26. Yan, S. An FPGA-based MobileNet accelerator considering network structure characteristics. In Proceedings of the International
Conference on Field-Programmable Logic and Applications (FPL), Virtual, Dresden, Germany, 30 August 2021; pp. 17–23.

27. Howard, A.; Sandler, M.; Chu, G. Seatrching for MobileNetV3. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), Seoul, Republic of Korea, 27 October 2019; pp. 1314–1324.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TCSII.2021.3065333

	Introduction
	Problem Formulation
	Proposed Designs
	Radix-4 Booth Multiplier and Its Sign Bit Extension
	LUT-Based Optimization of Radix-4 Booth Multiplier
	Carry-Chain-Based Optimization of Radix-4 Booth Multiplier
	Partial Product Accumulation Based Optimization of Convolutional Process Unit

	Discussion
	Experimental Setup
	Implementation Results of Optimized Multiplier
	Implementation Results of Multiply–Accumulate Structure

	Conclusions
	References

