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Abstract: In this study, a novel algorithm for optimizing the coverage of directed sensor networks
is proposed. The deployment of sensor networks is typically random, leading to the potential
issues of extensive coverage overlaps and blind areas. To address this challenge and enhance the
effectiveness of network coverage, a directional sensor network coverage optimization algorithm is
developed based on the principles of virtual force and particle swarm optimization. Firstly, the article
introduces the concept of a segmented virtual negative centroid model. This model revolutionizes
the configuration of the virtual negative centroid, thereby enabling a more efficient adjustment of
the gravitational forces exerted by the coverage blind areas on the sensor nodes. Therefore, the
influence of these blind areas on the improvement of network coverage is significantly amplified.
Secondly, taking into account the characteristics of global optimization and the inherent randomness
of particle swarm optimization, the algorithm synergistically combines the principles of virtual force
and particle swarm optimization. This integration effectively fine-tunes the sensing direction of the
sensor nodes, thereby optimizing their overall performance. The algorithm in this study incorporates
an adjusted inertia weight strategy and introduces Gaussian disturbance in the local optimization
enhancement phase to prevent local optimization, accelerate particle convergence, and facilitate
the sensor network’s attainment of an optimal distribution for coverage optimization. Simulation
experiments were conducted to verify the algorithm’s effectiveness. The initial sensor network
coverage was 31.04%. After applying the algorithm, the average coverage increased to 80.16%, with a
maximum coverage of 84.2%. These results verify the effectiveness of the algorithm.

Keywords: directed sensor network; virtual force model; particle swarm optimization; coverage
optimization

1. Introduction

A directional sensor network is composed of numerous directional sensor nodes
possessing wireless communication and computing capabilities [1,2]. Through wireless
communication, a multi-hop self-organizing network is established, facilitating information
collection, transmission, and processing in the designated area. Sensors employing direc-
tional perception models, including video sensors, ultrasonic sensors, and infrared sensors,
find extensive applications in various domains such as industry, agriculture, military de-
fense, and intelligent transportation [3–6]. The network’s efficacy in monitoring tasks relies
on its effective coverage, which serves as a prerequisite. The degree of coverage directly
reflects the sensor network’s capacity to perceive the target, thus playing a crucial role.

The monitoring environment, which assumes a pivotal role in determining the quality
of network services, has been the subject of extensive research aimed at enhancing the
regional coverage of sensor networks. Scholars have delved into various algorithms
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pertaining to sensor node mobility, sensing direction adjustment, and the integration of
both aspects. The primary objective behind relocating sensor nodes is to minimize coverage
blind spots and overlaps in the network by strategically adjusting their positions, thereby
optimizing regional coverage [7–10]. By considering the adjustability of sensor sensing
directions, the movement and adjustment of sensor nodes are harmoniously combined
to collectively optimize the distribution of sensor nodes in the network, thus yielding
optimal results [11–14]. It is worth noting, however, that the integration of sensor node
movement and sensing direction adjustment holds the potential to maximize network
coverage in theory. Nevertheless, the mobility of sensor nodes necessitates the utilization
of energy-intensive motors, resulting in exorbitant application costs.

At present, considerable attention is being devoted by numerous researchers to the
investigation of algorithms that can effectively adjust the sensing direction of directional
sensors. The authors of [15] employed the virtual force model in conjunction with the
particle swarm optimization algorithm. By utilizing the virtual force as a perturbation
factor to guide the evolution of the particle swarm, they achieved remarkable results in ad-
dressing the coverage optimization problem in directional sensor networks. Reference [16]
proposed a multi-objective optimization model aimed at enhancing network coverage and
reducing the redundancy rate of sensor nodes through the optimization of their sensing
direction. Conversely, in reference [17], the directed covering model was transformed
into a time covering model. By employing an integer linear programming optimization
problem and local information, the authors successfully obtained the optimal solution for
the time series covering problem. In addition, reference [18] focused on optimizing two
objectives in directed sensor networks, namely the presence of redundant sensor nodes
and network energy consumption. When optimizing the effective coverage in directed
sensor networks, the objective is to maximize network coverage while minimizing the
number of sensors and energy consumption. In the pursuit of addressing the coverage
optimization problem in directional sensor networks, the deployment method of randomly
throwing aircraft is commonly employed to initially establish sensor nodes in the network.
During the deployment of sensor nodes, consideration must be given to the number of
sensors in order to strike a balance that ensures the network operates efficiently. Insufficient
initial sensor deployment may result in incomplete coverage of the target area, leading
to data insufficiency or disruptions in operations. Conversely, an excessive number of
sensors may result in unnecessary costs due to excessive network coverage. At present, the
predominant focus in the advanced sensor optimization algorithms lies in the optimization
of sensor network coverage based on a Voronoi diagram [19], as well as the implementa-
tion of an efficient Bayesian sensor placement algorithm for structural identification [20].
The Voronoi diagram-based approach facilitates the decentralized optimization of local
coverage within each individual cell. On the other hand, the Bayesian sensor placement
algorithm serves to circumvent potential issues of unrecognizability that may arise during
the sequential process.

Despite the achievement of favorable coverage optimization results in the research on
directional sensor networks, the fixed positioning of nodes imposes significant limitations
on the service performance of sensor networks, as nodes are unable to move in the network.

In this paper, a novel approach, namely the segmented virtual negative centroid model,
is proposed to enhance the gravity of coverage. This is achieved by strategically placing
the virtual negative centroid in the blind areas of coverage and employing a combination
of virtual force and particle swarm optimization to effectively adjust the sensing direction
of the sensor nodes. By improving the inertia weight of the particle swarm optimization
and introducing Gaussian disturbance to the particle swarm updating mechanism, the
efficiency of the optimization process is significantly enhanced. This prevents premature
convergence and enables the particles to promptly detect the optimal distribution of node
perception direction in the network, thereby mitigating coverage overlap and blind spots.

This paper seeks to introduce the segmentation virtual negative centroid model,
explain the improvements made, and discuss the adjustments made to the sensing direction
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of the sensor nodes. In addition, the inertia weight strategy in the algorithm is fine-tuned
to expedite the attainment of the optimal distribution in the sensor network, thereby
facilitating coverage optimization.

2. Perception Model and Problem Description
2.1. Problem Hypothesis

With respect to the enhancement of regional coverage, this study optimizes the sensing
direction of the sensor nodes to minimize both coverage overlap and blind areas. The
following assumptions were made during the course of this research:

(1) The positions of the sensor nodes remain fixed after their initial deployment.
(2) All sensor nodes possess identical sensing radii and sensing angles.
(3) Each sensor node is capable of acquiring its own position information and sensing

direction, while also being able to obtain such information from other sensor nodes.

2.2. Direction Perception Model

The sensing area of a directed sensor node is a fan-shaped region centered around the
sensor node, with the sensing radius as its radius. The schematic diagram is illustrated
in Figure 1, where p represents the position of the sensor node, R represents the nodal
perception radius and the nodal perception direction (from P to C), α represents half the
sensing angle of the node, and 2α denotes the sensing angle of the sensing area of the sensor
(when the sensing angle of the sensor is 0, the sensor is considered an omnidirectional
sensing model), C denotes the position of the centroid of a node on the symmetry axis of the
sector, and the distance from the center of the circle is 2rsinα

3α . The centroid circle is divided
into n parts, excluding the sensing sector, and each part’s arc center point is considered
a virtual negative centroid point. For instance, f1, f2, n represents the number of virtual
negative centroids.
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2.3. Direction Perception Model

The coverage rate, initially introduced by Gage [21,22], is defined as the ratio of the
coverage area of all sensor nodes in the monitoring area to the total monitoring area. To
simplify coverage calculation, this paper discretizes the continuous monitoring area and
transforms the coverage calculation into the calculation of discrete points in the area. The
target area is divided into intervals of ∆x in both the horizontal and vertical directions,
and discrete points are selected accordingly. If a discrete point in the region is covered by
at least one sensor node, it is denoted as t∗, as depicted in Figure 2. Finally, according to
the ratio of the total number of discrete points marked n to the total number of discrete
points N, the coverage rate P of the monitoring area is calculated. The calculation formula
is as follows:

P =
∑n

t=1 t∗

N
(1)
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In the coverage calculation of sensor networks, discrete points are considered covered
when they fall within the sensing area of nodes. For a discrete point to be covered, the
following conditions must be met:

(1)
∣∣∣∣∣∣∣∣ →PPi

∣∣∣∣∣∣∣∣ ≤ r;
∣∣∣∣∣∣∣∣ →PPi

∣∣∣∣∣∣∣∣ represents the modulus from P to Pi discrete points.

(2) The range of values for the angle between
∣∣∣∣∣∣∣∣ →PPl

∣∣∣∣∣∣∣∣ and
→
V(t) is [−α, α].

Assuming that the number of sensor nodes in the monitoring area is n, the initial cov-
erage rate is P0, and the sensing direction of the i-th sensor is (), the coverage optimization
problem can be transformed into an optimization problem. The objective is to solve the

optimal direction of a group of directional sensor nodes P(
→
V1,

→
V2, . . . . . . ,

→
Vn) and satisfy the

following:

P
(→

V1,
→
V2, . . . . . . ,

→
Vn

)
≥ P0 (2)

3. Segment Virtual Negative Centroid Coverage Algorithm for Directed
Sensor Networks

In light of the limitations in the existing references, a novel segmented virtual negative
centroid model was devised in the framework of this study. The primary objective of
this model was to rectify the gravitational inconsistencies arising from the blind area by
enhancing the methodology employed for establishing the virtual negative centroid [23].
Subsequently, this model was integrated into the virtual force model to tackle the is-
sue of directional sensor network coverage. Therefore, a segmented virtual negative
centroid directional sensor network coverage algorithm was formulated to augment the
network’s coverage.

3.1. Split Virtual Negative Centroid Model

To explore the directed sensor network coverage, an algorithm predicated on the
virtual potential field was introduced. This algorithm incorporated the force model of the
virtual potential field into the study of directed sensor network coverage. In the virtual
force model, the node’s sensing direction was guided towards the network’s blind area
through the attractive force exerted by the virtual negative centroid on the sensor node. In
this study, two virtual negative centroids were established in the blind area of the sensing
circle through equal division. As the blind area in the sensing circle expanded, the attractive
force generated by the two virtual negative centroids gradually weakened, thereby effecting
minimal adjustments to the sensor nodes. Therefore, significantly enhancing the effective
coverage of the sensor network posed a challenge.

In the current paper, the establishment of the virtual negative centroid was achieved
through the equitable division of directional sensors, as depicted in Figure 3. Firstly, the
perception angle of the node was evenly divided into n equal parts, and the angle of each
equal part was set to 2a

n . The possible sensing area (except the node sensing area in the
sensing circle) was segmented with an angle 2a

n as the segmentation benchmark, and a
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virtual negative centroid was set at the centroid of each possible sensing area. Subsequently,
a virtual negative centroid was positioned at the centroid of each potential sensing area.
These virtual negative centroids exerted a virtual gravitational force on the sensor nodes,
inducing their rotation towards the coverage blind area (i.e., the possible sensing area) and
thereby enhancing the coverage of the sensor network. The number of “virtual negative
centroids” that can be established in the sensing area of the sensor network is given by
the following:

num =
(360− 2α)

2α/n
(3)
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3.2. Force Analysis

When the Euclidean distance between sensor node sj and sensor node si (i.e., the
distance between their respective centroid points) is less than twice the sensing radius of
the sensor, they are considered neighboring nodes. As a result of the overlapping coverage
areas between neighboring nodes, repulsive forces are generated to mitigate the overlap.
The repulsive forces act on the centroid points ci and cj of the sensor, respectively. When
the Euclidean distance between the sensors is greater than or equal to twice the sensing
radius, the nodes do not affect each other, and the repulsion is 0. When the virtual negative
centroid fk is covered by the neighbor node, mark fk = 0, indicating that the virtual
negative centroid fk has been covered and does not generate gravity; when the virtual
negative centroid fk is not covered by the neighbor node, mark fk = 1, indicating that the
virtual negative centroid fk generates gravity on the sensor node fk. The force analysis of
the virtual force model is as follows:

Repulsion model:
→
Fij =


(

∑m
j=1

KR
D2

ij
, αij

)
, i f Dij < 2r

→
0 , otherwise

(4)

Gravity model:
→
Fik =


(

∑
fk_max
k=1

1
D2

ik
, αik

)
, i f fk = 1

→
0 , otherwise

(5)

where Di j denotes the Euclidean distance between the centroid point ci and the centroid
point cj; Dik represents the Euclidean distance between the virtual negative centroid fk of
the centroid point ci and the sensor node si; KR indicates the virtual repulsion coefficient
(KR = 1); αik stands for the direction of gravity (from the centroid point cj to the virtual
negative centroid fk); αi j represents the unit vector, indicating the direction of repulsion
(from the center of mass point cj to the center of mass point ci); and fk_max stands for the
maximum number of virtual negative centroids.
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In the context of sensor networks, the adjustment of sensing directions in sensor
nodes is influenced not only by the virtual repulsion from neighboring nodes, but also
by the virtual attraction generated by uncovered virtual negative centroid points. This
combined force effectively reduces coverage overlap and blind areas in sensor networks.
The magnitude of the force experienced by a sensor node si, which perceives the rotation of
the sensing direction, can be expressed as follows (6):

→
Fi =

m

∑
j=1,j 6=i

→
Fij +

fk_max

∑
k=1

→
Fik (6)

The rotational motion of a directional sensor node in its sensing direction can be
considered as circular motion, with the centroid point as the center and the sensing radius
as the radius. The repulsive force from the neighbor node sj and the gravitational force from
the virtual negative centroid fk of the node si can be decomposed into component forces
along the tangent direction and the force parallel to the sensing direction of the node. Since
the position of the node si remains unchanged, the force generated by the component force
parallel to the sensing direction of the node during rotation in the direction of the node is
zero. Therefore, the force experienced by the directional sensor node during movement in
its sensing direction is the component force of the resultant force of the sensor node along
the tangent direction. The force analysis of the directed sensor node si is shown in Figure 4.
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4. Coverage Enhancement Algorithm for Directed Sensor Networks under the Synergy
of Virtual Force and Particle Swarm Optimization

Particle swarm optimization (PSO) is a global optimization algorithm in the field of
swarm intelligence optimization algorithms. It possesses advantages such as fast conver-
gence and simple calculation and has found extensive applications in coverage algorithms
for directional sensor networks. In this study, the coverage enhancement algorithm for
a directional sensor network, based on particle swarm optimization, was combined with
the coverage enhancement algorithm for a directional sensor network utilizing segmented
virtual negative centroids. The resulting optimization mechanism maximized the coverage
optimization algorithm for directional sensor networks, incorporating virtual force and
particle swarm optimization.

4.1. Coverage of Directed Sensor Networks Based on Particle Swarm Optimization Algorithm

Assuming an initial random deployment of D sensors and S particles, where particle i
represents the distribution of D sensors in the target area, the particles are influenced by
the historical optimal positions of individuals (p best) and groups (g best) during motion.
Through a generation-by-generation search, the optimal solution is obtained. The fitness of
particle i is defined as fi = C(xi1, xi2, . . . . . . , xid), which is the coverage of the target area
when the perception angle of the N sensors of particle i is (xi1, xi2, . . . . . . , xid). It is assumed
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that the initial angle of the particle is xt
id = (xt

i1, xt
i2, . . . . . . , xt

id); the angle adjustment is
vt

id = (vt
i1, vt

i2, . . . . . . , vt
id); in a particle swarm of size N, particle i will update its velocity

and position according to the following formula:

vt+1
id = wvt

id + c1r1
(

pt
id − xt

id
)
+ c2r2

(
pt

gd − xt
id

)
(7)

xt+1
id = xt

id + vt+1
id (8)

The optimal position of individual history is pt
id = (pt

i1, pt
i2, . . . . . . , pt

id); the global
optimal position is pt

gd = (pt
g1, pt

g2, . . . . . . , pt
gd). Therefore, the updated formula for angle

adjustment and the perception angle of particle flight is as follows:

w = wmax − (wmax − wmin) ∗ t/Tmax (9)

Here, 1 ≤ d ≤ D; 1 ≤ i ≤ M; w indicates the inertia weight, and its size determines
the memory degree of the particle to the current velocity; c1, c2 represent learning factors; r1,
r2 express random numbers between 0 and 1; wmax signifies the maximum inertia weight;
wmin stands for the minimum inertia weight; and Tmax pertains to the maximum number
of iterations.

4.2. Coverage Optimization Algorithm for Directed Sensor Networks under the Synergy of Virtual
Force and Particle Swarm Optimization

According to the analysis conducted using the virtual force model, the virtual force
experienced by each individual node in the sensor network was determined for a specific
deployment scenario. By referring to Equation, it is evident that the angle of rotation for
each node remains fixed [14]. Therefore, the coverage result derived from the virtual force
model is inherently unique, thereby predisposing the network to suboptimal regions and
thus impeding its coverage enhancement potential. This paper proposes a novel approach
to optimize the coverage of directional sensor networks by combining the principles of
virtual negative centroids and particle swarm optimization. Notably, a combined effect is
observed when integrating the concepts of virtual force and particle swarm optimization.
The proposed methodology involves utilizing the virtual force model to compute the
resultant force acting upon each sensor node. Subsequently, the angular adjustment of
particles in the solution space is calculated. Through the combined influence of the virtual
resultant force and the angular adjustment of particles, the sensing direction of each sensor
node is effectively modified. The flight update formula for particle I is expressed as follows:

vt+1
ij = wvt

ij + c1r1

(
pt

ij − θt
ij

)
+ c2r2

(
pt

gj − θt
ij

)
(10)

f t+1 = c3r3δij(t) (11)

θt+1
ij = θt

ij + vt+1
ij + f t+1 (12)

ki =
arctanFi

π/2
(13)

δij(t) = ki ∗ δmax (14)

Here, the inertia weight is w; c1, c2, c3 represent learning factors; r1, r2, r3 denote
random numbers between 0 and 1; Fi expresses the virtual resultant force of sensor node i;
the value of δmax is 5◦; and vt

ij indicates the angle adjustment of the j-dimensional sensor
node of the i-th particle in the t-th iteration. θt

ij expresses the sensing direction of the j-
dimensional sensor node of the i-th particle in the t-th iteration; pt

ij stands for the individual
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optimal position of the j-dimensional sensor node of the i-th particle in the t-th iteration;
pt

gj illustrates the global optimal position of the sensor node in the t-th iteration.
The role of inertia weight in the PSO optimization algorithm is of paramount impor-

tance. The linear decrease in inertia weight endows particles with a positive performance
in global search at the onset of the search process, swiftly identifies the global optimal
region, and confers favorable local search capability in the later stages. This collective
behavior enables the accurate identification of the global optimal solution. However, due
to its linear decrease characteristics, escaping from local optima becomes challenging once
the algorithm reaches a local extreme point during the later stages. Building upon the afore-
mentioned analysis, this study proposes an inertia weight strategy based on the properties
of the cosine function, which divides the inertia weight into two stages: an increasing stage
(the first stage) and a decreasing stage (the second stage). The enhanced inertia weight
strategy is outlined as follows:

w =

{wmax − (wmax − wmin)cos
(

πt
Tmax

)
, 0 ≤ t

Tmax
≤ 0.5

{wmax + (wmax − wmin)cos
(

πt
Tmax

)
, 0.5 ≤ t

Tmax
≤ 1

(15)

Here, wmax represents the maximum inertia weight, wmin denotes the minimum inertia
weight, and Tmax expresses the maximum number of iterations.

It can be inferred from Equation (15) that, in the initial stage, the particle enhances its
global optimization capability by consistently increasing the inertia weight and detecting
the global optimal region. Notably, in the subsequent stage, the particle improves its
local optimization capability by reducing the inertia weight to identify the global optimal
solution. However, the local capability gradually strengthens during this stage, making
it susceptible to falling into the local optimum and resulting in a slow convergence rate
in the later evolutionary phase. To address this issue, Gaussian disturbance is introduced
during the particle update in the second stage, thereby augmenting its ability to escape
local optimization and preventing premature convergence of the algorithm. Therefore, the
convergence speed and accuracy of the algorithm are enhanced. The updated formulation of
the coverage optimization algorithm for directional sensor networks, under the synergistic
effect of the improved virtual force and particle swarm optimization algorithm, is presented
as follows: vt+1

ij = wvt
ij + c1r1

(
pt

ij − θt
ij

)
+ c2r2

(
pt

gj − θt
ij

)
, 0 ≤ t

Tmax
≤ 0.5

vt+1
ij = wvt

ij + c1r1

(
pt

ij + r2gausst
ij − θt

ij

)
+ c2r3

(
pt

gj − θt
ij

)
, 0.5 ≤ t

Tmax
≤ 1

(16)

f t+1 = c3r3δij(t) (17)

θt+1
ij = θt

ij + vt+1
ij + f t+1 (18)

gausst
ij = r4gaussian

(
µ, σ2

)
(19)

Here, w represents the inertia weight; c1, c2 denote learning factors; r1, r2, r3, r4
indicate random numbers between 0 and 1; vt

ij expresses the velocity of particle i in the t-th
iteration; pt

ij conveys the historical optimal position of the particle i in the t-th iteration; pt
gj

stands for the global optimal position of the particle i in the t-th iteration; pt
gj refers to the

Gaussian disturbance generated by particle i in the t-th iteration; µ pertains to the mean;
and σ2 illustrates the variance. The specific steps of the algorithm in this paper are shown
in Figure 5.
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Here, it is the initial number of iterations, cnow = cinitial represents the initial coverage
rate, ci denotes the centroid point, sN indicates the virtual negative centroid set, sM depicts
the neighbor node set, M conveys the number of neighbor nodes, and N expresses the num-

ber of virtual negative centroids.
⇀
F ij is generated by the neighbor node sj to the calculated

node si,
⇀
F J stands for virtual repulsion vector sum,

⇀
F ik illustrates the virtual gravity,

⇀
F I

stands for the sum force of si, pt
gj signifies the optimal particle position of the population,

and gausst
ij expresses the Gaussian disturbance value of the calculated particles.

5. Algorithm Simulation and Result Analysis
5.1. Experimental Results and Analysis
5.1.1. Experimental Environment and Parameter Setting

An Intel (R) Core (TM) i5-7200U (2.5 GHz) CPU, with 4 GB of memory, running on
a 64-bit Windows 10 operating system was employed in the experimental setup. The
algorithm was validated using C++ programming and the control variable method. The
experimental section consists of two parts: firstly, the experimental results and analysis of
the algorithm proposed in this paper; secondly, a comparison of the algorithm with similar
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approaches to verify its effectiveness. The parameters used in the experimental setup are
presented in Tables 1 and 2.

Table 1. Scene parameters.

Parameter Region Area Number of
Logistics Nodes N Sensing Radius r Perception Angle α

value 500× 500m2 106 60 m 45◦

Table 2. Algorithm parameters.

Parameter Population Size Iterations wmax wmin c1 c2 c3

value 40 50 0.9 0.4 0.729 0.729 1.414

5.1.2. Diagram of Experimental Results and Comparative Analysis

1. Coverage algorithm for directional sensor networks with segmented virtual
negative centroid.

For this paper, the sensing angles of directional sensor nodes were partitioned into n
(n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 15) equal segments to establish the virtual negative centroid,
while considering various radii, sensing angles, and target areas. The optimization of sensor
network coverage yielded diverse results based on different preconditions and n values, as
elaborated in Table 3.

Table 3. Coverage under different parameters (%).

Initial Value VF One Two Three Four Five Six Seven Eight Nine Ten Fifteen

r = 50 65.04 71.8 74.76 74.96 75.36 75.6 75.16 75.08 75.56 74.92 75.48 74.96 75.64 3.84
r = 60 66 71.96 73.12 73.4 74.2 73.88 74.24 74.44 73.84 73.52 74.72 73.48 74.4 2.24
r = 70 68.96 72.28 73.2 73.24 73.88 73.56 73.96 73.76 73.64 73.8 73.92 74.04 73.84 1.76
α = 30 68.44 76.48 77.76 78.56 78.28 78.12 78.4 78.4 77.56 74.72 76.68 78.08 77.88 2.08
α = 45 65 70.44 71.88 72.44 72.84 72.52 72.6 72.52 72.68 72.64 72.68 72.72 72.52 2.4
α = 60 69.2 72.36 72.64 72.96 73.32 73.6 73.68 73.68 74.44 74 74.76 73.96 74.08 2.4

s = 400× 400 m2 66.69 72.75 72.94 73.12 74.06 73.44 74.13 74.31 74.94 75 74.56 75.06 74.75 2.31
S = 500× 500 m2 64.72 70.2 71.76 71.96 72.96 72.72 73.52 73.56 73.8 74.24 73.56 74.12 73.64 4.04
S = 600× 600 m2 65.14 70.56 74.44 74.69 75.36 75.14 75.31 75.61 75.25 74.89 75.42 75.14 75.67 5.11
S = 700× 700 m2 66.22 71.5 75.84 75.69 76.22 76 76.33 76.29 76.1 75.55 76.2 75.16 76.27 4.83

As depicted in Table 4, when compared to the VF algorithm proposed in the reference,
the coverage algorithm for directional sensor networks presented in this paper exhibited
notable enhancements. Specifically, the directional sensor was divided into multiple equal
segments, and the number of virtual negative centroids established in the coverage blind
area was increased. Therefore, the gravitational influence exerted on the coverage blind
area was effectively enhanced, thereby guiding the sensor nodes to swiftly transition from
the coverage overlapping area to the coverage blind area. This approach significantly
improved the coverage of the sensor network. Regardless of the partitioning scheme, the
achieved coverage value surpassed that optimized by the VF algorithm. For instance, when
S = 600× 600 m2, the coverage value obtained from this algorithm exceeded that of the VF
algorithm by 5.11%. Moreover, when r = 60, α = 45, and S = 500 × 500 m2, three distinct
initialization scenarios with identical parameters were considered, and the directional
sensor was subjected to multi-initialization. According to Table 4, when the number of
directional sensors equaled or exceeded five, the optimal coverage ratio reached 80%.
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Table 4. Comparative analysis of data.

Algorithm Mean Coverage Rate Maximum Coverage

Algorithm in this paper 80.61% 84.2%
LAASD 75.5% -
VF-PSO 75% 78%

OSRCEA 73.8% -
PSO 70.13% 70.52%
VF 64.64% 64.64%

2. Coverage algorithm of directional sensor networks under the synergistic effect of
virtual force and particle swarm optimization.

Regarding the designated area of 500× 500m2, as per the computational methodology
expounded in reference [24], in order to achieve a coverage rate surpassing 70%, it is
necessary to establish the initial deployment of sensor nodes in a random manner, with a
count of 106. The sensing radius of each sensor should be set at 60 m, while particle α = 45

◦
,

and the population size should be set at 40. The positional coordinates and orientation
angles of the randomly deployed sensor nodes are depicted in Figure 6a, with the initial
coverage rate being estimated at 61.96%, according to Formula (1). Subsequently, the VF,
3-MD-VF, and VF-PSO algorithms, as well as the algorithm devised in this study, were
executed independently for 30 iterations, utilizing the aforementioned initial value. The
optimal coverage rates obtained from the four algorithms were 66.80%, 69.68%, 73.58%, and
84.2%, respectively. The corresponding coverage topologies are represented in Figure 6b–e.

In comparison to the initial coverage rate of 61.96%, the VF algorithm exhibited an
enhancement, elevating the coverage rate to 66.80%. In addition, our superior 3-MD-VF
algorithm demonstrated a further increase in the coverage rate, reaching 69.68%, which was
2.82% higher than that achieved by the VF algorithm. Intriguingly, the VF-PSO algorithm
yielded a coverage rate of 73.58%, while our proposed algorithm achieved a remarkable
coverage rate of 84.2%, surpassing the initial coverage rate by 22.24%. Therefore, the
algorithm presented in this paper outperformed the other algorithms in terms of optimizing
the coverage effect for sensor networks.

To evaluate the optimization performance of the algorithm across various initial de-
ployments, ten random node deployments were generated, yielding corresponding initial
coverage rates of 59.88%, 61.64%, 61.96%, 62.2%, 63.36%, 63.96%, 64.32%, 64.56%, 65.05%,
and 65.24%, respectively. For each initial deployment, separate experiments were con-
ducted, and the coverage curve depicted the average coverage achieved by each algorithm
over ten iterations, as illustrated in Figure 7.
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Subsequent to the 10 random initial deployments, the VF algorithm, the 3-MD-VF
algorithm, the VF-PSO algorithm, and our algorithm were subjected to testing, resulting in
coverage rates of 67.24%, 68.77%, 73.99%, and 80.41%, respectively. Figure 6, displaying
the graph of the coverage across the ten deployments (average), reveals that our algorithm
outperformed the VF algorithm, 3-MD-VF algorithm, and VF-PSO algorithm in terms of
coverage effectiveness for different initial deployments. This finding substantiates the
robust adaptability of our algorithm to diverse deployment scenarios.
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5.2. Comparison between Our Algorithm and Other Similar Algorithms
5.2.1. Experimental Parameter Settings

Compared with LAASD [18], VF-PSO [25], OSRCEA [26], PSO [23], and VF [27],
the number of nodes in the experimental parameter setting was 100, and the remaining
parameters were consistent with Tables 1 and 2.

5.2.2. Analysis of Experimental Results

To further verify the effectiveness of the algorithm, a comparison was made between
our algorithm and the LAASD, VF-PSO, OSRCEA, PSO, and VF algorithms, with a focus on
their average coverage and maximum coverage. The results of this analysis are presented
in Table 4.

As illustrated in Table 4, the mean coverage rate of the VF algorithm was found to be
64.64%. Subsequently, through optimization, the PSO algorithm achieved a coverage rate of
70.13%. Following the optimization of the OSRCEA algorithm, its coverage rate increased
to 73.8%. Moreover, the VF-PSO algorithm led to a coverage rate of 75% after optimization,
while the LAASD algorithm achieved a coverage rate of 75.5% after optimization. Finally,
our algorithm resulted in an average coverage rate of 80.16% for the network, with a
maximum coverage rate of 84.2%. These findings suggest that the proposed coverage
optimization algorithm for directional sensor networks, which combines virtual force and
particle swarm optimization, outperforms other algorithms in terms of achieving a larger
coverage area and a desirable coverage effect.

5.3. Influence of Different Parameters on Coverage Rate

In this experiment, the researchers employed the control variable method, with the
number of nodes, perception radius, and perception angle serving as the controlled vari-
ables, while keeping the remaining parameters constant. Subsequently, the algorithm
developed in this study was compared with the VFPSO, MD-VF, and VF algorithms.
Through a series of comparative experiments, the relationship between coverage and the
number of nodes, perception radius, and perception angle was analyzed. The monitoring
area for the experiment was 8.500× 500m2, with the number of nodes set at 50, 70, 90, 110,
and 130; the sensing radius at 40, 50, 60, 70, and 80; and the sensing angle at 30

◦
, 40

◦
, 50

◦
, 60

◦
,

and 70
◦
. The experimental results are presented in Figure 8.
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It is evident from Figure 7 that as the number of nodes increases, the coverage rate also
exhibits an upward trend. However, excessive node deployment leads to a significant over-
lap in coverage, resulting in a surplus of redundant nodes and therefore impeding coverage
growth. Specifically, when N = 130, the proposed algorithm demonstrates improvements
of 4.77, 11.24, and 12.16 over the VF-PSO algorithm, MD-VF algorithm, and VF algorithm,
respectively. From the coverage distribution map of the sensing radius from 40 to 80, it
can be seen that the coverage of the three algorithms increases with the increase in the
sensing radius R. Notably, when R = 80, the proposed algorithm outperforms the VF-PSO
algorithm, MD-VF algorithm, and VF algorithm by 4.06, 11.76, and 12.36, respectively.
In addition, for the perception angle α, when gradually increasing from 30◦ to 70◦, the
coverage increases with the increase in the perception angle α. Specifically, when α = 70◦,
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the algorithm is improved by 3.69, 8.33, and 8.65, respectively, compared with the VF-PSO
algorithm, MDVF algorithm, and VF algorithm.

The aforementioned analysis suggests that the integration of the virtual force model
and particle swarm optimization algorithm not only overcomes the limitations associated
with virtual force optimization results but also expedites particle optimization. This inte-
gration effectively guides sensor nodes towards the optimal direction, thereby minimizing
coverage overlap and blind areas. Therefore, sensor networks can promptly detect the
global optimal solution.

5.4. The Universality Analysis of This Model

The analysis in this study primarily relies on directional mobile sensors. These sensors
possess the capability to autonomously perceive and collect data in the designated detection
area, subsequently transmitting the collected data. The sensor system primarily comprises
a sensor module, a data processing module, a wireless communication module, and an
energy supply module, as depicted in Figure 9.
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The sensor module assumes responsibility for the perception and collection of data
in the monitoring area. Subsequently, the collected data undergo conversion through
an A/D converter before being transmitted to the data processing module. The data
processing module is tasked with storing and processing the converted data, while also
coordinating the various modules in the sensor node. The wireless communication module
is responsible for managing the exchange, reception, transmission, and forwarding of
information, serving as a crucial “bridge” between the two nodes. Finally, the energy
supply module ensures the provision of sufficient energy to sustain the operation of each
module in the sensor node. Therefore, directional sensors are generally capable of fulfilling
the aforementioned tasks.

The detection of common regions is not limited to rectangular shapes; rather, it
comprises irregular regions as well. In such cases, the irregular region can be converted
into a minimum bounding rectangle that encapsulates it. By employing the algorithm
presented in this study to validate the rectangular region, it becomes evident that the
irregular region, being a subset of the rectangular region, adheres to the algorithm’s
requirements. Thus, this paper successfully verifies the algorithm’s applicability to both
rectangular and irregular regions.

6. Conclusions

Under the context of the coverage optimization problem encountered in directional
sensor networks, an algorithm for coverage optimization is proposed in this study. The
algorithm leverages the cooperative efforts of a virtual force model and a particle swarm op-
timization algorithm. Notably, the algorithm enhances the conventional virtual force model
by refining the methodology for establishing the virtual negative centroid and adjusting
the optimization impact of coverage blind areas on the network. Subsequently, the virtual
force model and particle swarm optimization algorithm are synergistically employed to
regulate the orientation of sensor nodes. In the particle optimization process, improve-
ments are made to the inertia weight strategy to prevent particles from converging towards
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local optima. Additionally, the introduction of Gaussian disturbance expedites particle
convergence, facilitating the rapid attainment of an optimal distribution across the entire
network. The experimental findings demonstrate that the coverage optimization algorithm,
which integrates virtual force and particle swarm optimization, achieves superior coverage
performance, thereby substantiating its efficacy. This study employed a series of simulation
experiments to evaluate the algorithm. Initially, the sensor network exhibited a coverage
of 31.04%. However, following the algorithm’s optimization, the average coverage of the
network increased to 80.16%, with a maximum coverage of 84.2%, thereby confirming the
algorithm’s effectiveness.

The S-VFPSO algorithm, as proposed in the confines of this paper, serves the purpose
of adjusting the sensing direction of nodes. Additionally, the enhanced particle swarm
optimization algorithm is employed to optimize the positioning of said nodes in the
network. Through the combined influence of these two algorithms, the nodes in the
sensor network are guided towards attaining an optimal distribution throughout the
network, thereby enhancing the network’s effective coverage. As the application scenarios
pertaining to sensor networks grow increasingly complex, the exploration of coverage
optimization in three-dimensional space for directional mobile sensor networks emerges
as a pivotal area of research. Sensor nodes in such networks possess the capacity for
directional adjustability and mobility, albeit at the cost of significant energy expenditure. In
addition, the multifaceted functionalities of these nodes necessitate higher configurations.
Considering the widespread implementation of directional mobile sensor networks, it
is necessary to delve into various key technologies, including but not limited to energy
consumption reduction, network lifespan extension, and topology control; these issues
warrant in-depth study.
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