
Citation: Xu, B.; Sun, L.; Mao, X.;

Ding, R.; Liu, C. IoT Intrusion

Detection System Based on Machine

Learning. Electronics 2023, 12, 4289.

https://doi.org/10.3390/

electronics12204289

Academic Editors: Dawid Połap,

Robertas Damasevicius and Hafiz

Tayyab Rauf

Received: 18 September 2023

Revised: 10 October 2023

Accepted: 12 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

IoT Intrusion Detection System Based on Machine Learning
Bayi Xu 1, Lei Sun 2,*, Xiuqing Mao 2, Ruiyang Ding 2 and Chengwei Liu 3

1 School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
2 Three Academy, Information Engineering University, Zhengzhou 450000, China
3 The 28th Research Institute of China Electronics Technology Group Corporation, Nanjing 210007, China
* Correspondence: sl20230221@163.com

Abstract: With the rapid development of the Internet of Things (IoT), the number of IoT devices
is increasing dramatically, making it increasingly important to identify intrusions on these devices.
Researchers are using machine learning techniques to design effective intrusion detection systems. In
this study, we propose a novel intrusion detection system that efficiently detects network anomalous
traffic. To reduce the feature dimensions of the data, we employ the binary grey wolf optimizer
(BGWO) heuristic algorithm and recursive feature elimination (RFE) to select the most relevant
feature subset for the target variable. The synthetic minority oversampling technique (SMOTE) is
used to oversample the minority class and mitigate the impact of data imbalance on the classification
results. The preprocessed data are then classified using XGBoost, and the hyperparameters of the
model are optimized using Bayesian optimization with tree-structured Parzen estimator (BO-TPE)
to achieve the highest detection performance. To validate the effectiveness of the proposed method,
we conduct binary and multiclass experiments on five commonly used IoT datasets. The results
show that our proposed method outperforms state-of-the-art methods in four out of the five datasets.
It is noteworthy that our proposed method achieves perfect accuracy, precision, recall, and an F1
score of 1.0 on the BoT-Iot and WUSTL-IIOT-2021 datasets, further validating the effectiveness of
our approach.

Keywords: intrusion detection; feature selection; BGWO; XGBoost

1. Introduction

The rapid development of the Internet of Things (IoT) has completely transformed
many industries, such as smart homes, smart agriculture, healthcare, and more [1]. Ac-
cording to survey data, the number of IoT devices is projected to exceed 4.1 billion by
2025 [2]. In everyday life, IoT devices play a crucial role in people’s lives. However, the
extensive connectivity of these devices to the internet exposes them to various security
risks. For example, IoT devices exchange information over the internet and are suscep-
tible to numerous network attacks, compromising their security. According to a report
by Nozomi Networks, new IoT botnet attacks increased rapidly in the first half of 2020,
with 57% of IoT devices being vulnerable targets [3]. Furthermore, attackers can launch
denial-of-service (DoS) attacks, depleting network and device resources [4]. Therefore,
enhancing the security of IoT devices has become a critical area of research [5]. To mitigate
the risks posed by different types of attacks, researchers are developing intrusion detection
systems to identify malicious behavior in networks. Intrusion detection systems monitor
systems in real-time and issue warnings in case of any anomalies, thereby enhancing the
security of communication.

In recent years, machine learning, with its rapid development, has found extensive
applications in the field of intrusion detection [6,7]. Machine learning algorithms offer
unique advantages compared to traditional detection methods. They can not only learn
complex patterns and rules from large volumes of data but also handle high-dimensional
and nonlinear data, making them more suitable for intrusion detection in complex systems.

Electronics 2023, 12, 4289. https://doi.org/10.3390/electronics12204289 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12204289
https://doi.org/10.3390/electronics12204289
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12204289
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12204289?type=check_update&version=1

Electronics 2023, 12, 4289 2 of 21

Furthermore, with the advancement of networks, a significant amount of network data,
including samples of various intrusion and abnormal behaviors, has been accumulated.
This rich dataset provides ample training samples for machine learning, ensuring excellent
detection performance of machine learning algorithms. However, despite the achievements
of machine learning algorithms, there are still some challenges and issues that need to
be addressed.

The real-time capability of an IoT device intrusion detection system is a crucial consid-
eration for ensuring network security. IoT devices typically have limited computational
resources and storage capacity. Due to these resource constraints, the system may strug-
gle to efficiently process and analyze a large amount of network traffic data, leading to
delays or inability to meet real-time requirements in detection. Additionally, in the face of
frequent network attacks on IoT devices and the constant evolution of attack techniques,
intrusion detection systems are under increasing pressure to detect such attacks [8]. The
generation of a vast amount of network traffic data introduces significant redundancy and
irrelevant features. Redundant features in the data can lead to overfitting during the model
learning process, ultimately diminishing detection performance [9]. One effective approach
to address feature redundancy is feature selection. Feature selection plays a crucial role in
machine learning-based intrusion detection systems, reducing the dimensionality of the
dataset, lowering training time and computational costs, while improving model perfor-
mance [10]. Recently, metaheuristic algorithms have gained considerable attention in the
field of feature selection due to their excellent global search capabilities [11]. Commonly
used metaheuristic algorithms include genetic algorithm (GA), particle swarm optimization
(PSO) [12], whale optimization algorithm (WOA) [13], grey wolf optimization (GWO) [14],
and simulated annealing (SA), among others. Among these algorithms, GWO has garnered
considerable interest due to its ease of implementation, fast convergence speed, and strong
optimization capabilities. To better utilize GWO for feature selection problems, Emary et al.
proposed a novel binary grey wolf optimization (BGWO) [15]. Hsu et al. [16] pointed out
that hybrid feature selection methods outperform individual feature selection methods.
Furthermore, recursive feature elimination (RFE), a wrapper feature selection method,
strikes a good balance between accuracy and runtime, preserving a certain level of accuracy
while reducing runtime. In this study, we propose a novel two-stage feature selection
method that combines the strengths of BGWO and RFE. This method reduces the search
space for feature subsets and eliminates redundant features.

Our main contributions are as follows:

1. We propose an intrusion detection system based on XGBoost, utilizing a novel two-
stage feature selection method called BGWO-RFE-XGBoost. Initially, BGWO is used
to preliminarily filter a large number of features, removing those that have minimal
impact on the target variable. Then, RFE-XGBoost is employed for further fine-grained
feature selection, resulting in the final feature subset. This two-stage feature selection
method maximizes the accuracy and generalization capability of the model.

2. We conduct extensive experiments on five publicly available datasets in the IoT
domain to validate the effectiveness of our approach. The results outperform other
state-of-the-art methods in both binary and multi-class classification experiments.
Particularly, experiments on the N-BaIoT dataset demonstrate that using the proposed
hybrid feature selection method reduces the model’s runtime by 39.66% without
sacrificing accuracy.

The rest of this paper is organized as follows: Section 2 presents recent relevant
research in the field of intrusion detection. Section 3 describes the proposed method.
Section 4 presents the experimental details and results. Section 5 concludes the paper and
suggests future work.

2. Related Works

Recently, machine learning techniques have been widely applied in the field of intru-
sion detection in the Internet of Things (IoT) and have achieved excellent results. Intrusion

Electronics 2023, 12, 4289 3 of 21

detection systems based on machine learning are typically divided into two parts. The first
part is data preprocessing, which involves preprocessing the data before feeding it into the
model. This includes feature selection and handling imbalanced datasets, to provide better
inputs to the model. The second part is the classifier, where selecting an appropriate model
can maximize the intrusion detection rate. Therefore, many researchers have focused their
efforts on these two aspects to create powerful intrusion detection systems. In this section,
we will review the recent work.

Lazzarini et al. [17] built an IoT intrusion detection system using an ensemble stacking
approach. They combined four different deep learning models (MLP, DNN, CNN, and
LSTM) to detect and classify attacks in IoT environments. Binary and multi-class exper-
iments were conducted on the Ton-IoT and CIC-IDS2017 datasets. The results showed
that the proposed method was able to detect the majority of attacks with particularly low
false positive (FP) and false negative (FN) rates. However, this approach integrates four
different models, which requires a significant amount of resources and further evalua-
tion of its performance on real IoT devices. Alani [18] used feature importance-based
recursive feature elimination (RFE) for feature selection on the dataset, selecting the top
11 most important features. They used a decision tree (DT) classifier for classification
and Shapley additive explanation (SHAP) to explain the selected features and classifier.
The proposed method achieved an accuracy of 0.9997 on the WUSTL-IIOT-2021 dataset.
Nizamudeen [19] employed integer-grading normalization (I-GN) for data preprocessing
and used opposition-based learning (OBL)-rat inspired optimizer (RIO) for feature selection
to retain important features. Experiments on a combined dataset (NF-UQ-NIDS) showed
improved detection accuracy compared to other state-of-the-art methods. Sharma et al. [20]
proposed an IoT intrusion detection system based on a deep neural network (DNN) model
to better protect the security of internet devices. They used a generative adversarial network
(GAN) to synthesize minority attack class data and employed the Pearson’s correlation co-
efficient (PCC) filter method for feature selection. Experimental results on the UNSW-NB15
dataset achieved an accuracy of 91% with balanced data.

Kareem et al. [21] proposed a feature selection algorithm using the algorithm for
bird swarms (BSA) to improve the performance of the gorilla troops optimizer (GTO).
Experiments on the NSL-KDD, CICIDS-2017, UNSW-NB15, and Bot-IoT datasets demon-
strated that the proposed GTO-BSA achieved better convergence speed and performance.
Mohy-eddine et al. [22] presented an IoT intrusion detection system based on the K-nearest
neighbors (K-NN) algorithm, utilizing principal component analysis (PCA), univariate
statistical tests, and genetic algorithm (GA) for feature selection. Experiments on the Bot-
IoT dataset achieved a high accuracy of 99.99% while significantly reducing the prediction
time. Liu et al. [23] addressed the issue of excessive flow features affecting detection speed
in IoT intrusion detection systems by proposing a feature selection method based on a
genetic algorithm. Extensive experiments on the Bot-IoT dataset selected six features from
40 features, achieving an accuracy of 99.98% and an F1 score of 99.63%. Alweshah et al. [24]
proposed a novel wrapping feature selection algorithm that employed the emperor pen-
guin colony (EPC) to explore the search space, selecting K-nearest neighbors (KNN) as
the classifier. Experimental results on well-known IoT datasets showed improved accu-
racy and reduced feature size compared to methods such as the multi-objective particle
swarm optimization (MOPSO). Hassan et al. [25] used an improved binary manta ray for-
aging algorithm for feature selection to remove redundant and irrelevant features from the
dataset, and utilized a random forest (RF) classifier for classification. The proposed method
was evaluated on the NSL-KDD and CIC-IDS2017 datasets, selecting 22 and 38 features,
respectively, and achieved accuracies of 98.8% and 99.3%. Mohiuddin et al. [26] proposed
a modified wrapper-based whale sine-cosine method to reduce the complexity of feature
selection optimization, selecting important features, and used XGBoost as the classifier.
Experimental results on the UNSW-NB15 dataset achieved accuracy rates of 99% and 91%
for binary and multi-class classification, respectively, and an accuracy of 98% for binary
classification on the CIC-IDS2017 dataset.

Electronics 2023, 12, 4289 4 of 21

The literature review indicates that although the aforementioned methods have
achieved relatively high detection performance, there is still room for improvement in
detection rate and optimization of feature selection methods. Additionally, relying solely
on a single feature selection method may not result in the optimal feature subset, which
could impact the detection performance of the models.

3. Proposed Method

This section provides an introduction to the proposed method, and Figure 1 illustrates
the overall architecture. The first step involves dataset cleaning and normalization. The
feature selection process consists of two stages. In the initial stage, BGWO is utilized to
conduct a screening of the original feature set, removing redundant or irrelevant features.
The resulting feature subset then undergoes further optimization using recursive feature
elimination (RFE). During the recursive process, the XGBoost [27] model is employed
to rank the importance of each feature, and features with low scores are selected and
eliminated. This iterative approach enables the identification of an optimal feature subset.
To mitigate the impact of imbalanced data distribution on classifier results and enhance
the detection rate of minority classes, we employ SMOTE technology. Once the data
preprocessing phase is complete, the dataset is split into training and testing sets. Lastly,
XGBoost is employed for classification, and Bayesian optimization with tree-structured
Parzen estimator (BO-TPE) is utilized to optimize the model parameters, aiming to achieve
optimal performance.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 21

respectively, and achieved accuracies of 98.8% and 99.3%. Mohiuddin et al. 26 proposed

a modified wrapper-based whale sine-cosine method to reduce the complexity of feature

selection optimization, selecting important features, and used XGBoost as the classifier.

Experimental results on the UNSW-NB15 dataset achieved accuracy rates of 99% and 91%

for binary and multi-class classification, respectively, and an accuracy of 98% for binary

classification on the CIC-IDS2017 dataset.

The literature review indicates that although the aforementioned methods have

achieved relatively high detection performance, there is still room for improvement in

detection rate and optimization of feature selection methods. Additionally, relying solely

on a single feature selection method may not result in the optimal feature subset, which

could impact the detection performance of the models.

3. Proposed Method

This section provides an introduction to the proposed method, and Figure 1 illus-

trates the overall architecture. The first step involves dataset cleaning and normalization.

The feature selection process consists of two stages. In the initial stage, BGWO is utilized

to conduct a screening of the original feature set, removing redundant or irrelevant fea-

tures. The resulting feature subset then undergoes further optimization using recursive

feature elimination (RFE). During the recursive process, the XGBoost 27 model is em-

ployed to rank the importance of each feature, and features with low scores are selected

and eliminated. This iterative approach enables the identification of an optimal feature

subset. To mitigate the impact of imbalanced data distribution on classifier results and

enhance the detection rate of minority classes, we employ SMOTE technology. Once the

data preprocessing phase is complete, the dataset is split into training and testing sets.

Lastly, XGBoost is employed for classification, and Bayesian optimization with tree-struc-

tured Parzen estimator (BO-TPE) is utilized to optimize the model parameters, aiming to

achieve optimal performance.

Cleaning

Normalization

Dataset

Data Processing

BGWO

RFE-XGBoost

Optimal Feature Subset

Feature Selection
Train Set

Test Set

SMOTE

XGBoost

Evaluation

Classification Result

BO-TPE

Experimental Validation

Figure 1. Architectures implemented in this research.

3.1. Proposed Feature Selection Method

3.1.1. Grey Wolf Optimization Algorithm

Meta-heuristic algorithms possess several advantages, including simplicity, flexibil-

ity, and powerful optimization capabilities, making them widely applicable in various re-

search fields. Mirjalili et al. 14 introduced the grey wolf optimization algorithm, a me-

taheuristic algorithm inspired by the hunting behavior of grey wolf populations. Grey

wolves are skilled hunters that often collaborate in groups for successful prey capture.

Within the grey wolf group, a strict social hierarchy exists, segmented into four distinct

classes, as depicted in Figure 2:

Figure 1. Architectures implemented in this research.

3.1. Proposed Feature Selection Method
3.1.1. Grey Wolf Optimization Algorithm

Meta-heuristic algorithms possess several advantages, including simplicity, flexibility,
and powerful optimization capabilities, making them widely applicable in various research
fields. Mirjalili et al. [14] introduced the grey wolf optimization algorithm, a metaheuristic
algorithm inspired by the hunting behavior of grey wolf populations. Grey wolves are
skilled hunters that often collaborate in groups for successful prey capture. Within the grey
wolf group, a strict social hierarchy exists, segmented into four distinct classes, as depicted
in Figure 2:

(1) The leader of the grey wolf group, known as the alpha (α) wolf, assumes decision-
making responsibilities regarding hunting, sleeping arrangements, and other impor-
tant matters.

(2) Beta (β) is the second-ranking member of the grey wolf class, standing second only to
the αwolf in status.

(3) At the third level of the grey wolf hierarchy, we find the delta (δ) wolves, which
typically fulfill roles such as lookouts and scouts. δwolves are obliged to follow the

Electronics 2023, 12, 4289 5 of 21

leadership of the α and β wolves and exert authority over the lowest-ranked grey
wolf, the omega (ω).

(4) ωwolves make up the largest population within the grey wolf group and are required
to follow the directions of the α, β, and δwolves. They always receive the last portion
of food.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 21

(1) The leader of the grey wolf group, known as the alpha (α) wolf, assumes decision-

making responsibilities regarding hunting, sleeping arrangements, and other im-

portant matters.

(2) Beta (β) is the second-ranking member of the grey wolf class, standing second only

to the α wolf in status.

(3) At the third level of the grey wolf hierarchy, we find the delta (δ) wolves, which typ-

ically fulfill roles such as lookouts and scouts. δ wolves are obliged to follow the

leadership of the α and β wolves and exert authority over the lowest-ranked grey

wolf, the omega (ω).

(4) ω wolves make up the largest population within the grey wolf group and are re-

quired to follow the directions of the α, β, and δ wolves. They always receive the last

portion of food.

Figure 2. Social class.

The GWO algorithm model summarizes the hunting process of grey wolves, which

is divided into three stages: siege, hunting, and attacking prey.

(1) The stage of surrounding the prey. During the hunting process, the hunting behavior

is expressed as follows:

�⃗� ∣ �⃗� ⋅ 𝑁 𝑖 𝑁 𝑖 ∣ (1)

𝑁 𝑖 1 𝑁 𝑖 �⃗� ⋅ �⃗� (2)

�⃗� 2𝑐 ⋅ 𝑑⃗ 2𝑐 (3)

�⃗� 2 ⋅ 𝑑⃗ (4)

𝑎 2 𝑖 ∗
2

𝑖
 (5)

Among these variables, 𝑁 represents the position of the prey that the grey wolf in-

tends to hunt, while 𝑁 represents the position of the grey wolf itself. 𝑑⃗ and 𝑑⃗ are ran-
dom vectors, with values between 0 and 1 in each dimension. As the iteration progresses,

the component a linearly decreases from 2 to 0. Both �⃗� and �⃗� are coefficients correspond-

ing to these positions.

(2) During the group hunting phase, grey wolves are capable of recognizing the location

of the prey and strategically encircling it. The hunting group consists of alpha lead-

ers, betas, and deltas, all actively participating in the hunt. The aforementioned pro-

cess can be described mathematically, with the prey symbolizing a potential optimal

solution. Assuming that alpha (α), beta (β), and delta (δ) wolves can swiftly identify

potential prey (optimal solutions), the top three wolves in the group are updated to

become the alpha, beta, and delta wolves after each iteration. Additionally, the omega

(ω) wolves coordinate their positions based on alpha, beta, and delta, adjusting their

Figure 2. Social class.

The GWO algorithm model summarizes the hunting process of grey wolves, which is
divided into three stages: siege, hunting, and attacking prey.

(1) The stage of surrounding the prey. During the hunting process, the hunting behavior
is expressed as follows:

→
M =| →p ·

→
Np(i)−

→
N(i) | (1)

→
N(i + 1) =

→
Np(i)−

→
q ·
→
M (2)

→
q = 2

→
c ·
→
d1 − 2

→
c (3)

→
p = 2 ·

→
d2 (4)

a = 2− i ∗ 2
imax

(5)

Among these variables,
→
Np represents the position of the prey that the grey wolf

intends to hunt, while
→
N represents the position of the grey wolf itself.

→
d1 and

→
d2 are random vectors, with values between 0 and 1 in each dimension. As the
iteration progresses, the component a linearly decreases from 2 to 0. Both

→
p and

→
q

are coefficients corresponding to these positions.
(2) During the group hunting phase, grey wolves are capable of recognizing the location

of the prey and strategically encircling it. The hunting group consists of alpha leaders,
betas, and deltas, all actively participating in the hunt. The aforementioned process
can be described mathematically, with the prey symbolizing a potential optimal
solution. Assuming that alpha (α), beta (β), and delta (δ) wolves can swiftly identify
potential prey (optimal solutions), the top three wolves in the group are updated to
become the alpha, beta, and delta wolves after each iteration. Additionally, the omega
(ω) wolves coordinate their positions based on alpha, beta, and delta, adjusting their

Electronics 2023, 12, 4289 6 of 21

own positions to gradually enclose the prey. The mathematical model representing
this process can be expressed as follows:

→
N1 =|

→
Nα −

→
p1 ·

→
Mα |,

→
N2 =|

→
Nβ −

→
p2 ·

→
Mβ |,

→
N3 =|

→
Nδ −

→
p3 ·

→
Mδ |,

(6)

→
Mα =| →q1 ·

→
Nα −

→
N |,

→
Mβ =| →q2 ·

→
Nβ −

→
N |,

→
Mδ =|

→
q3 ·

→
Nδ −

→
N |,

(7)

→
N(i + 1) =

→
N1 +

→
N2 +

→
N3

3
(8)

In this context, Mα, Mβ, and Mδ represent the distances between the current candi-

date grey wolf and the α, β, and δ wolves, respectively. Similarly,
→
N1,

→
N2, and

→
N3

respectively denote the estimated prey position based on the positions of grey wolves

α, β, and δ in the current population. Additionally,
→
Nα,

→
Nβ, and

→
Nδ represent the

positions of grey wolves α, β, and δ in the current population.

3.1.2. Binary Grey Wolf Optimization (BGWO)

The main focus of the feature selection problem is determining whether a specific
feature should be included in the optimal subset constructed from a dataset. Mathematically,
this can be described as selecting h features from a total of A features. In the context of
intrusion detection, the chosen feature subset is used for classifying network traffic. In this
case, the objective is to minimize h (the number of selected features) while maximizing the
classification accuracy rate.

To apply the grey wolf optimization (GWO) algorithm to feature selection problems,
a redesign of the algorithm is necessary. Emary et al. [15] propose the binary grey wolf
optimization (BGWO) algorithm specifically for this purpose. The following Algorithm 1
provides the BGWO algorithm.

In BGWO, the update formula is mainly as follows:

Ni+1
j = Crossover(n1, n2, n3) (9)

Among them, the crossover operation between the three solutions of a, b, and c is
represented as Crossover(a, b, c). The binary vectors n1, n2, and n3 represent the α, β, and
δ wolf pairs in the group. The influence of the movement of other grey wolves can be
calculated using the following formulas.

nm
1 =

{
1 if (nm

α + xstepm
α) ≥ 1

0 otherwise
(10)

nm
2 =

{
1 if

(
nm

β + xstepm
β

)
≥ 1

0 otherwise
(11)

nm
3 =

{
1 if

(
nm

δ + xstepm
δ

)
≥ 1

0 otherwise
(12)

Among them, nm
α and xstepm

α represent the position vector of the α wolf in dimension
m and the binary step, respectively. Similarly, nm

β and xstepm
β, xm

δ and bstepm
δ represent the

Electronics 2023, 12, 4289 7 of 21

position vector and binary step of the β and δ wolves in dimension m, respectively. xstepm
α ,

xstepm
β, and xstepm

δ can be calculated using the following formulas.

xstepm
α =

{
1 if ystepm

α ≥ rand
0 otherwise

(13)

xstepm
β =

{
1 if ystepm

β ≥ rand
0 otherwise

(14)

xstepm
β =

{
1 if ystepm

δ ≥ rand
0 otherwise

(15)

Among them, rand belongs to the uniform distribution [0, 1]. ystepm
α , ystepm

β , and
ystepm

δ represent the continuous valued step size for α, β, and δ, respectively, in dimension
m. This can be obtained using the following formulas.

ystepm
α =

1

1 + e−10(qm
1 Mm

α −0.5)
, (16)

ystepm
β =

1

1 + e−10(qm
1 Mm

β −0.5)
, (17)

ystepm
δ =

1

1 + e−10(qm
1 Mm

δ −0.5)
, (18)

Algorithm 1 BGWO algorithm.

Input: Nwolf, Wolf pack size; NIter, Maximum iterations; F, Features in the dataset.

Output: S, Optimal feature subset.

(1). Initialize three parameters a, p and q.

(2). Initializing the position of Nwolf grey wolves

(3). Sorting grey wolves by fitness value and selecting the top three (α, β, and δwolves)

(4). i = 1

While (i < NIter)

For Each individual grey wolf in the pack

Calculate n1, n2, n3 using Equations (10)–(12).

Ni+1
j ← crossover among n1, n2, n3 using Equation (9).

End

I Updating the parameters a, p, and q.

II After updating the location, calculate the fitness value of each grey wolf.

III update α, β and δ.

End

3.1.3. RFE-XGBoost

In network traffic data, redundant and irrelevant information is often present, which
can adversely affect classifier predictions in terms of efficiency and accuracy. To tackle this
issue, Recursive feature elimination (RFE) is utilized as a wrapper feature selection method.
The RFE process involves iteratively removing the least important features, gradually
reducing the number of feature subsets while maintaining classifier accuracy. Figure 3
illustrates the XGBoost-RFE method. Initially, the full feature set is inputted into the
XGBoost classifier, and the accuracy rate of the classifier under this feature set is computed.
The importance of each feature is then calculated and ranked in descending order. In

Electronics 2023, 12, 4289 8 of 21

the subsequent step, the feature with the lowest importance in the ranking is eliminated,
resulting in a new feature subset. This new subset is fed into the XGBoost classifier to
evaluate the accuracy. The current feature subset and classifier accuracy are recorded.
The second step is repeated until the feature subset becomes empty, with features being
removed one by one. Finally, based on the saved classifier accuracy results, the feature
subset with the highest accuracy is identified and considered as the optimal subset.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 21

Feature set after BGWO processing

Train XGBoost with all features

Get the importance of each feature

Sort feature importance in descending order

Remove the least important features

Calculate the accuracy of the classifier under the feature
subset, and store the result in the dictionary

Whether the feature
subset is empty？

YES

NO

Figure 3. Recursive feature elimination process workflow.

3.1.4. Two-Stage Feature Selection

After implementing the aforementioned feature selection techniques, the final opti-

mal feature subset is obtained. This two-stage approach effectively eliminates irrelevant

and redundant features, reduces feature dimensionality, and retains meaningful features,

thereby enhancing both the accuracy and efficiency of the model. The two-stage feature

selection method combines two different techniques to identify a superior feature subset,

enhancing the performance and efficiency of the model. In the first stage, the BGWO al-

gorithm is utilized, which simulates the hunting behavior of grey wolf groups to search

for the optimal feature subset. BGWO is known for its ease of implementation, fast con-

vergence, and strong optimization capabilities. It selects an initial optimal feature subset

by dynamically adjusting the position of grey wolves based on their fitness evaluation and

proximity to other wolves.

The generated feature subset in the first stage is then passed to the second stage,

where the RFE-XGBoost algorithm is employed. RFE-XGBoost is a recursive feature elim-

ination algorithm that utilizes the XGBoost algorithm to assess and rank features. It first

trains an XGBoost model on the original feature set and then sequentially removes fea-

tures with lower importance scores. This process continues until a predetermined number

of features is obtained or the performance of the feature set reaches its maximum poten-

tial. By integrating the two-stage feature selection approach, irrelevant and redundant fea-

tures can be effectively eliminated, reducing the dimensionality of the feature space while

retaining informative features. This results in improved accuracy and efficiency for the

model.

Figure 3. Recursive feature elimination process workflow.

3.1.4. Two-Stage Feature Selection

After implementing the aforementioned feature selection techniques, the final optimal
feature subset is obtained. This two-stage approach effectively eliminates irrelevant and re-
dundant features, reduces feature dimensionality, and retains meaningful features, thereby
enhancing both the accuracy and efficiency of the model. The two-stage feature selection
method combines two different techniques to identify a superior feature subset, enhancing
the performance and efficiency of the model. In the first stage, the BGWO algorithm is
utilized, which simulates the hunting behavior of grey wolf groups to search for the opti-
mal feature subset. BGWO is known for its ease of implementation, fast convergence, and
strong optimization capabilities. It selects an initial optimal feature subset by dynamically
adjusting the position of grey wolves based on their fitness evaluation and proximity to
other wolves.

Electronics 2023, 12, 4289 9 of 21

The generated feature subset in the first stage is then passed to the second stage, where
the RFE-XGBoost algorithm is employed. RFE-XGBoost is a recursive feature elimination
algorithm that utilizes the XGBoost algorithm to assess and rank features. It first trains
an XGBoost model on the original feature set and then sequentially removes features
with lower importance scores. This process continues until a predetermined number of
features is obtained or the performance of the feature set reaches its maximum potential. By
integrating the two-stage feature selection approach, irrelevant and redundant features can
be effectively eliminated, reducing the dimensionality of the feature space while retaining
informative features. This results in improved accuracy and efficiency for the model.

3.2. Extreme Gradient Boosting (XGBoost)

XGBoost [27] is an integrated learning algorithm known for its high efficiency and flex-
ibility, making it widely used in various fields. XGBoost combines a group of weak learners
to create a powerful model through continuous iterative optimization. The XGBoost model
is trained in an additive manner, with the t-th objective function defined as follows:

Obj(t) = ∑n
i=1 l

(
yi, ŷt−1

i + ft(xi)
)
+ Ω(ft) + CONSTANT (19)

Ω(ft) = γ · Tt + λ
1
2∑T

j=1 w2
j (20)

Among these, Ω represents the complexity penalty of the model, and CONSTANT is a
constant value.

Formula (19) expands through Taylor’s formula, resulting in Formula (21).

Obj(t) = ∑n
i=1

[
l
(

yi, ŷt−1
i

)
+ mi ft(xi) +

1
2 ni f 2

t (xi)
]

+Ω(ft) + CONSTANT
(21)

The second derivative of the Taylor formula can be approximated as follows:

f (x0 + ∆x) ≈ f (x0) + f (x0)
′∆x +

1
2

f (x0)
′′(∆x)2 (22)

Here, mi and ni correspond to f (x0)
′ and f (x0)

′′ , respectively, in the second derivative
of Taylor’s formula, representing the first and second derivatives.

mi = ∂ŷt−1
i

l
(

yi, ŷt−1
i

)
(23)

ni = ∂2
ŷt−1

i
l
(

yi, ŷt−1
i

)
(24)

By substituting Equations (20), (23), and (24) into Equation (21), we can calculate the
derivative. The solution is obtained from Equations (25) and (26).

w∗j = − ∑ mi

∑ ni + λ
(25)

Obj∗ = −1
2∑T

j=1
(∑ mi)

2

∑ ni + λ
+ γ · T (26)

Obj∗ can be expressed as a scoring function, used to measure the quality of the tree
structure. The term w∗j refers to the solution for the weights.

3.3. Synthetic Minority Oversampling Technique (SMOTE)

In network traffic datasets, one common issue is the imbalanced distribution of data.
This means that there are significantly more normal samples compared to attack samples.

Electronics 2023, 12, 4289 10 of 21

Unfortunately, this data imbalance can have a negative impact on the prediction results
of the model. One technique used to address this issue is random oversampling, which
involves duplicating samples from the minority class at random. However, this approach
may lead to overfitting. To overcome this limitation, the synthetic minority oversampling
technique (SMOTE) is widely used. SMOTE leverages the K-nearest neighbors (KNN)
method to synthesize new and more representative samples in the minority class [28]. By
applying SMOTE sampling, the model can effectively learn the features of the minority class
and improve its detection rate for minority categories. The steps involved in generating
new samples using SMOTE are as follows:

1. Calculate the desired number of new samples that need to be generated.
2. Determine the K nearest neighbors for each sample in the minority class.
3. Randomly select N samples from the K nearest neighbors and perform random linear

interpolation to create a new sample in the minority class.

3.4. Bayesian Optimization-Tree Parzen Estimator (BO-TPE)

Hyperparameter tuning can be categorized into four main types: traditional manual
tuning, grid search, random search, and Bayesian search [29]. Manual tuning relies heavily
on experience and can be time-consuming. Grid search and random search do not effectively
utilize the correlation between different hyperparameter combinations. On the other hand,
Bayesian optimization is an adaptive method for hyperparameter search that predicts
the next combination of hyperparameters likely to yield the greatest benefit based on the
previously tested combinations. In this study, we utilize the Bayesian optimization-tree
Parzen estimator (BO-TPE) technique [30] to tune the hyperparameters of the model. BO-
TPE offers excellent global search capability and is resistant to becoming trapped in local
optima. During the initial iteration, random search is employed, and samples are drawn
from the response surface to establish the initial distribution

{
θi, yi}(i = 1, 2, . . . , Ninit),

where θ and y represent the set of hyperparameters and their corresponding values on the
response surface, respectively.

BO-TPE employs two density functions, Prog(θ) and Prob(θ), as the generative model
of variables [29]. These functions are used to differentiate good samples from bad samples
based on a predefined threshold y’, as shown below:

p(θ | y) =
{

Prog(θ) i f y < y′

Prob(θ) i f y ≥ y′
(27)

Next, the expected improvement (EI) is calculated for each step.

EI(θ) =
Prog(θ)

Prob(θ)
(28)

Finally, the optimal hyperparameter value is selected by maximizing the EI.
When optimizing the hyperparameters of the XGBoost model using BO-TPE, the

key hyperparameters to consider are n_estimators, max_depth, and learning_rate. The
hyperparameter n_estimators signifies the number of weak learners to be integrated,
max_depth determines the maximum depth of the tree, and learning_rate represents the
step size for each iteration.

4. Experiments and Results
4.1. Hardware and Environment Setting

Our experiments were conducted on a Windows Server 2019 operating system desktop,
utilizing hardware specifications including 128GB of RAM, an Intel(R) Xeon(R) Silver 4214
processor, and an RTX 3090 graphics card. Python 3.7 was the programming language
employed, with Scikit-Learn, NumPy, pandas, and Matplotlib providing data processing
and visualization functionalities for our experiments. Further details of the experimental
parameter configuration can be found in Table 1.

Electronics 2023, 12, 4289 11 of 21

Table 1. Experimental environment.

Environment Value

Operating System Windows Server 2019

Processor Intel(R) Xeon(R) Silver 4214

GPU RTX 3090

RAM 128 GB

Programing Language Python 3.7

4.2. Evaluation Metrics

The evaluation metrics used to assess the performance of the proposed model in this
paper include accuracy, recall, precision, and F1 score. These metrics are calculated based
on true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

Accuracy =
TP + TN

TP + TN + FP + FN
(29)

Precision =
TP

TP + FP
(30)

Recall =
TP

TP + FN
(31)

F1− score =
2 ∗ precision ∗ recall

precision + recall
(32)

The specific definitions of TP, FP, FN, and TN in the field of intrusion detection are
as follows: TP refers to the classification of an actual attack category as an attack category.
FP refers to the classification of an actual normal category as an attack category. FN refers
to the classification of an actual attack category as a normal category. TN refers to the
classification of an actual normal category as a normal category.

4.3. Data Preprocessing

After acquiring the data, preprocessing becomes essential. This stage primarily in-
volves data cleaning, oversampling, feature selection, data normalization, and dataset
partitioning, among others.

4.3.1. Data Cleaning

In the data set, we remove any duplicate values and replace empty values with zeros.

4.3.2. Oversampling

To address the issue of imbalanced data distribution and mitigate its impact on the
experimental results, we employ the SMOTE method to oversample the samples belonging
to the minority class.

4.3.3. Normalization

Following the conversion of all features into numerical types, the dataset undergoes
normalization. In this paper, the min-max regularization method is employed to normalize
the dataset, scaling the data within the range of [0, 1]. This normalization process enhances
the convergence speed and training effectiveness of the model.

x′ =
x− xmin

xmax − xmin
(33)

Electronics 2023, 12, 4289 12 of 21

4.3.4. Train and Test Split

Finally, we split the transformed image set into an 80% training set and a 20% test set.

4.4. Dataset

We perform experiments on five datasets: N-BaIot [31] BoT-Iot [32], WUSTL-IIOT-
2021 [33], WUSTL-EHMS-2020 [34], and NSL-KDD [35].

4.4.1. N-BaIoT

The N-BaIoT dataset, created by [31], is the latest dataset on IoT zombie network
attack data and is freely available for research purposes in the field of network security.
These data originate from nine commercial Internet of Things (IoT) devices that have been
infected by real zombie networks. In the laboratory, two IoT zombie networks, namely
BASHLITE and Mirai, were deployed to collect traffic data before and after infection. The
dataset consists of 115 feature attributes, encompassing both normal traffic and 10 types
of attack traffic. BASHLITE attacks include scanning the network for vulnerable devices
(Scan), sending spam data (Junk), UDP flooding (UDP), TCP flooding (TCP), and sending
spam data and opening a connection to a specified IP address and port (COMBO). The
Mirai attacks include automatic scanning for vulnerable devices (Scan), Ack flooding (Ack),
Syn flooding (Syn), UDP flooding (UDP), and optimized for higher packets per second
(UDPplain). In this study, we selected the zombie network attack traffic data from the fifth
device for experimentation. In our study, we focus on the botnet attack traffic data from the
fifth device to conduct our experiments. However, due to imbalances within the dataset,
we resample the data for each attack type and remove any duplicate values. The specific
attack types and their corresponding distributions can be found in Table 2.

Table 2. Distribution of N-BaIot dataset.

Class Samples Resampling Ratio Sampled Data

mirai_udp 156,248 0.10 15,625
gafgyt_tcp 104,510 0.15 15,485
gafgyt_udp 104,011 0.15 15,461
mirai_scan 96,781 0.15 14,517
mirai_syn 65,746 0.25 16,436
benign 62,154 0.25 14,894
gafgyt_combo 61,380 0.25 15,345
mirai_ack 60,554 0.25 15,138
mirai_udpplain 56,618 0.27 15,304
gafgyt_junk 30,898 0.50 15,449
gafgyt_scan 29,297 0.50 14,648

4.4.2. BoT-Iot

The BoT-IoT dataset, proposed by the Cyber Range Lab of UNSW Canberra, includes
both normal traffic and zombie network traffic [32]. The BoT-IoT dataset consists of various
attacks such as DDoS, DoS, OS and Service Scan, Keylogging, and Data exfiltration attacks.
It encompasses 46 attribute features with a total of 3,668,522 data entries. The attack types
and their specific distribution are illustrated in Table 3.

Table 3. Distribution of BoT-Iot dataset.

Class Samples Distribution (%)

DDoS 1,926,624 52.52
DoS 1,650,260 44.98
Reconnaissance 91,082 2.483
Normal 477 0.013
Theft 79 0.002
Total 3,668,522 100

Electronics 2023, 12, 4289 13 of 21

4.4.3. WUSTL-IIOT-2021

The WUSTL-IIOT-2021 dataset, developed through the IIoT testing platform, [33]
consists of network data related to Industrial Internet of Things (IIoT) for research purposes.
The dataset includes various types of traffic, namely normal traffic, command injection
traffic, DoS traffic, reconnaissance traffic, and backdoor traffic. The attack types and their
specific distribution can be found in Table 4.

Table 4. Distribution of WUSTL-IIOT-2021 dataset.

Class Samples Distribution (%)

Normal 1,106,747 92.71
DoS 78,304 6.559
Reconn 8240 0.690
CommInj 258 0.018
Backdoor 212 0.018
Total 1,193,761 100

4.4.4. WUSTL-EHMS-2020

The WUSTL-EHMS-2020 dataset is a dataset created by [34] using the Enhanced
Healthcare Monitoring System (EHMS). It encompasses both normal traffic and attack
traffic scenarios. The dataset includes various attack types, each with its own specific
distribution. Table 5 provides detailed information about the attack types present in the
WUSTL-EHMS-2020 dataset and their corresponding distribution.

Table 5. Distribution of WUSTL-EHMS-2020 dataset.

Class Samples Distribution (%)

Normal 14,272 87.46
Attack 2046 12.54
Total 16,318 100

4.4.5. NSL-KDD

The NSL-KDD dataset is an enhanced version of the KDDCup99 dataset, with dupli-
cate data removed [35]. It was created to address some of the limitations of the KDDCup99
dataset. The NSL-KDD dataset consists of four major attack types, namely denial of service
(DoS), probing attacks (Probe), remote to local (R2L), and user to root (U2R). Table 6 pro-
vides detailed information on the attack types present in the NSL-KDD dataset, including
their specific distribution.

Table 6. Distribution of NSL-KDD dataset.

Class Samples Distribution (%)

Normal 77,054 51.88
DoS 53,385 35.95
Probe 14,077 9.478
U2R 3749 2.524
R2L 252 0.170
Total 148,517 100

4.5. Experimental Results
4.5.1. Binary Classification

Tables 7 and 8 present the experimental results of a proposed method for binary
classification on two datasets: N-BaIoT and NSL-KDD. To assess the effectiveness of the
proposed method, a comparison was made with other state-of-the-art models. However,
since different papers utilize distinct experimental settings, we compared our method

Electronics 2023, 12, 4289 14 of 21

with the latest three state-of-the-art approaches: CNN-BiLSTM [36], CANET [37], and
FNN-Focal [38]. Looking at Table 7, on the N-BaIoT dataset, XGBoost achieved a higher
accuracy rate and F1 score of 0.999970 compared to the other three methods. As for
the NSL-KDD dataset, the CANET method exhibited an accuracy of 0.9979 and a recall
of 0.9990, surpassing CNN-BiLSTM and FNN-Focal but still falling short of XGBoost’s
performance. In general, our proposed method outperformed the other three methods
across all performance indicators on both datasets. Furthermore, Figure 4a,b illustrate the
confusion matrices for N-BaIoT and NSL-KDD binary classification, respectively.

Table 7. Performance of the evaluated methods on N-BaIoT (binary classification).

Model Accuracy Precision Recall F1 Score

CNN-BiLSTM 0.999726 0.999726 0.999726 0.999726
CANET 0.999726 0.999726 0.999726 0.999726
FNN-Focal 0.999691 0.999691 0.999691 0.999690
Our Model 0.999970 0.999970 0.999970 0.999970

Table 8. Performance of the evaluated methods on NSL-KDD (binary classification).

Model Accuracy Precision Recall F1 Score

CNN-BiLSTM 0.9940 - 0.9904 -
CANET 0.9979 - 0.9990 -
FNN-Focal 0.997831 0.997834 0.997831 0.997831
Our Model 0.999427 0.999427 0.999427 0.999427

Electronics 2023, 12, x FOR PEER REVIEW 14 of 21

indicators on both datasets. Furthermore, Figure 4a,b illustrate the confusion matrices for

N-BaIoT and NSL-KDD binary classification, respectively.

Table 7. Performance of the evaluated methods on N-BaIoT (binary classification).

Model Accuracy Precision Recall F1 Score

CNN-BiLSTM 0.999726 0.999726 0.999726 0.999726

CANET 0.999726 0.999726 0.999726 0.999726

FNN-Focal 0.999691 0.999691 0.999691 0.999690

Our Model 0.999970 0.999970 0.999970 0.999970

Table 8. Performance of the evaluated methods on NSL-KDD (binary classification).

Model Accuracy Precision Recall F1 Score

CNN-BiLSTM 0.9940 - 0.9904 -

CANET 0.9979 - 0.9990 -

FNN-Focal 0.997831 0.997834 0.997831 0.997831

Our Model 0.999427 0.999427 0.999427 0.999427

(a) (b)

Figure 4. Confusion matrix for binary classification of N-BaIoT and NSL-KDD datasets.

4.5.2. Multiclass Classification

Tables 9–13 display the experimental results of the proposed method for multi-clas-

sification on five datasets: N-BaIoT, BoT-IoT, WUSTL-IIOT-2021, WUSTL-EHMS-2020,

and NSL-KDD. In order to validate the superiority of our proposed method, we compared

it with the latest state-of-the-art methods: CNN-BiLSTM 36, CANET 37, FNN-Focal 38,

and CNN-Focal 38.

Considering Table 9, on the N-BaIoT dataset, CNN-BiLSTM, CANET, and FNN-Focal

achieved accuracy rates of around 0.90, while XGBoost achieved a significantly higher ac-

curacy rate of 0.999941, surpassing the performance of the other three methods. According

to Table 12, on the WUSTL-EHMS-2020 dataset, FNN-Focal achieved the highest accuracy

rate among the three methods with a rate of 0.9326, which is lower than XGBoost’s accu-

racy rate of 0.988970. Examining Table 13, on the NSL-KDD dataset, CANET attained an

accuracy of 0.9977 and a recall of 0.9972, CNN-BiLSTM achieved an accuracy of 0.9922

Figure 4. Confusion matrix for binary classification of N-BaIoT and NSL-KDD datasets.

4.5.2. Multiclass Classification

Tables 9–13 display the experimental results of the proposed method for multi-
classification on five datasets: N-BaIoT, BoT-IoT, WUSTL-IIOT-2021, WUSTL-EHMS-2020,
and NSL-KDD. In order to validate the superiority of our proposed method, we compared
it with the latest state-of-the-art methods: CNN-BiLSTM [36], CANET [37], FNN-Focal [38],
and CNN-Focal [38].

Electronics 2023, 12, 4289 15 of 21

Table 9. Performance of the evaluated methods on N-BaIoT.

Model Accuracy Precision Recall F1 Score

CNN-BiLSTM 0.907371 0.879846 0.907371 0.876788
CANET 0.907335 0.907386 0.907335 0.907335
FNN-Focal 0.907407 0.895980 0.907407 0.876837
Our Model 0.999941 0.999941 0.999941 0.999941

Table 10. Performance of the evaluated methods on BoT-Iot.

Model Accuracy Precision Recall F1 Score

CNN-BiLSTM 0.999918 0.999896 0.999918 0.999899
CANET 0.999997 0.999997 0.999997 0.999997
CNN-Focal 0.8677 0.6165 0.6325 0.5853
FNN-Focal 0.9155 0.5559 0.6380 0.5784
RFS-1 [39] 0.999993 - 0.995798 -
Our Model 1.0 1.0 1.0 1.0

Table 11. Performance of the evaluated methods on WUSTL-IIOT-2021.

Model Accuracy Precision Recall F1 Score

CNN-BiLSTM 0.999944 0.999944 0.999944 0.999943
CANET 0.999956 0.999956 0.999956 0.999955
BA [40] 0.9999 0.996 0.996 0.996
CNN-Focal 0.9821 0.8854 0.6651 0.7050
FNN-Focal 0.9895 0.7722 0.6406 0.6848
Our Model 1.0 1.0 1.0 1.0

Table 12. Performance of the evaluated methods on WUSTL-EHMS-2020.

Model Accuracy Precision Recall F1 Score

CNN-BiLSTM 0.928667 0.929824 0.928667 0.917534
CANET 0.928422 0.929330 0.928422 0.917309
CNN-Focal 0.9308 0.9423 0.7338 0.6431
FNN-Focal 0.9326 0.9524 0.7369 0.8011
Our Model 0.988970 0.988923 0.988970 0.988846

Table 13. Performance of the evaluated methods on NSL-KDD.

Model Accuracy Precision Recall F1 Score

CNN-BiLSTM 0.9922 - 0.9888 -
CANET 0.9977 - 0.9972 -
FNN-Focal 0.996566 0.996611 0.996566 0.996576
Our Model 0.999427 0.999426 0.999427 0.999426

Considering Table 9, on the N-BaIoT dataset, CNN-BiLSTM, CANET, and FNN-
Focal achieved accuracy rates of around 0.90, while XGBoost achieved a significantly
higher accuracy rate of 0.999941, surpassing the performance of the other three methods.
According to Table 12, on the WUSTL-EHMS-2020 dataset, FNN-Focal achieved the highest
accuracy rate among the three methods with a rate of 0.9326, which is lower than XGBoost’s
accuracy rate of 0.988970. Examining Table 13, on the NSL-KDD dataset, CANET attained
an accuracy of 0.9977 and a recall of 0.9972, CNN-BiLSTM achieved an accuracy of 0.9922
and a recall of 0.9888, FNN-Focal achieved an accuracy and recall of 0.996566, and our model
obtained an accuracy and recall of 0.999427, clearly exhibiting the highest performance in
terms of accuracy and recall.

Electronics 2023, 12, 4289 16 of 21

Importantly, as depicted in Tables 10 and 11, our proposed method achieved per-
fect accuracy, precision, recall, and an F1 score of 1.0 on the BoT-IoT and WUSTL-IIOT-
2021 datasets.

To gain better insights into the model’s performance, the confusion matrices for
multi-classification on the N-BaIoT, BoT-IoT, WUSTL-IIOT-2021, WUSTL-EHMS-2020, and
NSL-KDD datasets are shown in Figures 5–9, respectively. Overall, the proposed method
outperformed other state-of-the-art methods across all indicators on the five datasets,
demonstrating its effectiveness.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 21

Table 13. Performance of the evaluated methods on NSL-KDD.

Model Accuracy Precision Recall F1 Score

CNN-BiLSTM 0.9922 - 0.9888 -

CANET 0.9977 - 0.9972 -

FNN-Focal 0.996566 0.996611 0.996566 0.996576

Our Model 0.999427 0.999426 0.999427 0.999426

Figure 5. Confusion matrix for N-BaIoT multi-classification.

Figure 6. Confusion matrix for BoT-Iot multi-classification.

Figure 5. Confusion matrix for N-BaIoT multi-classification.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 21

Table 13. Performance of the evaluated methods on NSL-KDD.

Model Accuracy Precision Recall F1 Score

CNN-BiLSTM 0.9922 - 0.9888 -

CANET 0.9977 - 0.9972 -

FNN-Focal 0.996566 0.996611 0.996566 0.996576

Our Model 0.999427 0.999426 0.999427 0.999426

Figure 5. Confusion matrix for N-BaIoT multi-classification.

Figure 6. Confusion matrix for BoT-Iot multi-classification. Figure 6. Confusion matrix for BoT-Iot multi-classification.

Electronics 2023, 12, 4289 17 of 21Electronics 2023, 12, x FOR PEER REVIEW 17 of 21

Figure 7. Confusion matrix for WUSTL-IIOT-2021 multi-classification.

Figure 8. Confusion matrix for WUSTL-EHMS-2020 multi-classification.

Figure 7. Confusion matrix for WUSTL-IIOT-2021 multi-classification.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 21

Figure 7. Confusion matrix for WUSTL-IIOT-2021 multi-classification.

Figure 8. Confusion matrix for WUSTL-EHMS-2020 multi-classification. Figure 8. Confusion matrix for WUSTL-EHMS-2020 multi-classification.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 21

Figure 9. Confusion matrix for NSL-KDD multi-classification.

4.5.3. Ablation Studies

In order to validate the effectiveness of the proposed method, we focused on con-

ducting a detailed experimental analysis and investigation on the N-BaIoT dataset. We

performed two experiments, the first one aimed to verify the performance improvement

brought by optimizing hyperparameters, and the second one aimed to validate the bene-

fits of feature selection.

For the optimization of hyperparameters, we used BO-TPE to optimize three hy-

perparameters of XGBoost, with the specific values shown in Table 14. We compared the

model performance before and after hyperparameter optimization, as shown in Table 15.

From Table 15, it can be seen that after hyperparameter optimization, the model demon-

strated improvements in all four metrics, with an increase of 0.002791 in accuracy. This

validates that the model’s performance can be enhanced to a certain extent through hy-

perparameter optimization.

The N-BaIoT dataset consists of 115 feature attributes and one label attribute. After

applying the proposed two-stage feature selection method, the most important 25 feature

attributes were selected. We compared the performance and runtime of the model before

and after feature selection using the XGBoost model with hyperparameter optimization.

From Table 16, it can be observed that after feature selection, the model’s runtime de-

creased by 9.2 s while maintaining the same level of performance. This validates the effec-

tiveness of the proposed method. The advantages of BGWO include global search capa-

bility, adaptive adjustment of the fitness function, and the ability to avoid getting trapped

in local optima. The advantages of RFE-XGBoost lie in ranking and selecting features

based on their individual importance and contribution, which enables the acquisition of a

more stable and robust feature subset while reducing feature dimensionality. The combi-

nation of these two methods allows for a good balance between accuracy and runtime.

Table 14. Hyper-parameter configuration of XGBoost model.

Hyper-Parameter Optimal Value

n_estimators 95

max_depth 10

learning_rate 0.55987

Figure 9. Confusion matrix for NSL-KDD multi-classification.

Electronics 2023, 12, 4289 18 of 21

Our proposed method incorporates a two-stage feature selection process to select
important features, utilizes SMOTE for oversampling the minority class, employs the
XGBoost model for efficient detection, and applies hyperparameter optimization to further
enhance the model’s performance.

4.5.3. Ablation Studies

In order to validate the effectiveness of the proposed method, we focused on con-
ducting a detailed experimental analysis and investigation on the N-BaIoT dataset. We
performed two experiments, the first one aimed to verify the performance improvement
brought by optimizing hyperparameters, and the second one aimed to validate the benefits
of feature selection.

For the optimization of hyperparameters, we used BO-TPE to optimize three hyperpa-
rameters of XGBoost, with the specific values shown in Table 14. We compared the model
performance before and after hyperparameter optimization, as shown in Table 15. From
Table 15, it can be seen that after hyperparameter optimization, the model demonstrated
improvements in all four metrics, with an increase of 0.002791 in accuracy. This validates
that the model’s performance can be enhanced to a certain extent through hyperparame-
ter optimization.

Table 14. Hyper-parameter configuration of XGBoost model.

Hyper-Parameter Optimal Value

n_estimators 95

max_depth 10

learning_rate 0.55987

Table 15. Comparison of the performance of the model in N-BaIoT before and after using hyperpa-
rameter optimization.

Model Accuracy Precision Recall F1 Score

XGBoost 0.997119 0.997155 0.997119 0.997118

XGBoost-HPO 0.999910 0.999910 0.999910 0.999910

The N-BaIoT dataset consists of 115 feature attributes and one label attribute. After
applying the proposed two-stage feature selection method, the most important 25 feature
attributes were selected. We compared the performance and runtime of the model before
and after feature selection using the XGBoost model with hyperparameter optimization.
From Table 16, it can be observed that after feature selection, the model’s runtime decreased
by 9.2 s while maintaining the same level of performance. This validates the effectiveness
of the proposed method. The advantages of BGWO include global search capability,
adaptive adjustment of the fitness function, and the ability to avoid getting trapped in
local optima. The advantages of RFE-XGBoost lie in ranking and selecting features based
on their individual importance and contribution, which enables the acquisition of a more
stable and robust feature subset while reducing feature dimensionality. The combination of
these two methods allows for a good balance between accuracy and runtime.

Table 16. Comparison of the performance of the model in N-BaIoT using feature selection.

Model Accuracy Precision Recall F1 Score Time

XGBoost-HPO 0.999910 0.999910 0.999910 0.999910 23.2s

XGBoost-HPO-feature-selection 0.999941 0.999941 0.999941 0.999941 14s

Electronics 2023, 12, 4289 19 of 21

In addition, the WUSTL-EHMS-2020 dataset consists of only two types of data: Normal
and Attack. Therefore, we analyzed the F1 scores for both types of data in the WUSTL-
EHMS-2020 dataset, as shown in Tables 17 and 18.

Table 17. The F1 score for the “Normal” type in the WUSTL-EHMS-2020 dataset.

Model F1 Score

XGBoost 0.963933

XGBoost-HPO 0.992288

XGBoost-HPO-feature-selection 0.993675

Table 18. The F1 score for the “Attack” type in the WUSTL-EHMS-2020 dataset.

Model F1 Score

XGBoost 0.673846

XGBoost-HPO 0.946472

XGBoost-HPO-feature-selection 0.956937

From Tables 17 and 18, it can be seen that the XGBoost model performs well for
the “Normal” type data in the WUSTL-EHMS-2020 dataset, with an F1 score of 0.963933.
After conducting hyperparameter optimization (XGBoost HPO), the F1 score improved
to 0.992288. Furthermore, through feature selection and hyperparameter optimization
(XGBoost HPO feature selection), the F1 score increased to 0.993675. However, for the
“Attack” type data, the detection rate of the XGBoost model is significantly lower, with an
F1 score of 0.673846. Although the F1 score improved to 0.946472 after hyperparameter
optimization (XGBoost HPO), and further increased to 0.956937 after feature selection and
hyperparameter optimization (XGBoost HPO feature selection), it still cannot match the
performance of the “Normal” type data, possibly due to the small number of samples.

5. Conclusions

With the rapid development of the Internet of Things (IoT), the need to protect IoT
network security has become increasingly urgent. In this paper, we propose an effective
intrusion detection system to safeguard the security of IoT networks. The proposed
intrusion detection system is based on the XGBoost classifier and utilizes the BGWO
and RFE-XGBoost two-stage feature selection methods to identify the most important
feature subsets. The class imbalance problem is addressed using the SMOTE method. The
hyperparameters of the XGBoost classifier are optimized using the BO-TPE method. In
our research, we conducted experiments on five commonly used public datasets in the
field of IoT, involving binary and multi-class classification. The results demonstrate that
our proposed method outperformed state-of-the-art methods in terms of accuracy, recall,
precision, and F1 score on all five datasets, validating the effectiveness of our approach.
While the proposed two-stage feature selection method is highly effective, extending
this method to larger datasets presents challenges in terms of computational complexity,
memory requirements, efficiency, generalization ability, and robustness. In the future,
further research and solutions can be explored to address these issues and enhance the
performance of feature selection algorithms.

Author Contributions: Author Contributions: Conceptualization, B.X. and L.S.; methodology, X.M.
and B.X.; validation, B.X. and R.D.; formal analysis, B.X. and C.L.; investigation, B.X. and C.L.;
resources, B.X. and L.S.; writing—original draft preparation, B.X. and C.L.; writing—review and
editing, B.X. and X.M.;visualization, R.D. and X.M.; supervision, B.X. and C.L. All authors have read
and agreed to thepublished version of the manuscript.

Funding: The authors received no specific funding for this study.

Electronics 2023, 12, 4289 20 of 21

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study.

References
1. Fraihat, S.; Makhadmeh, S.; Awad, M.; Al-Betar, M.A.; Al-Redhaei, A. Intrusion detection system for large-scale IoT NetFlow

networks using machine learning with modified Arithmetic Optimization Algorithm. Internet Things 2023, 22, 100819. [CrossRef]
2. The Growth in Connected IoT Devices Is Expected to Generate 79.4zb of Data in 2025, according to a New IDC Forecast. 2019.

Available online: https://www.businesswire.com/news/home/20190618005012/en/The-Growth-in-Connected-IoT-Devices-
is-Expected-to-Generate-79.4ZB-of-Data-in-2025-According-to-a-New-IDC-Forecast (accessed on 1 January 2020).

3. Pinto, A. Ot/iot Security Report: Rising Iot Botnets and Shifting Ransomware Escalate Enterprise Risk. 2020. Available
online: https://www.nozominetworks.com/blog/whatit-needs-to-know-about-ot-io-securitythreats-in-2020/ (accessed on
1 January 2020).

4. Santhosh Kumar, S.V.N.; Selvi, M.; Kannan, A. A comprehensive survey on machine learning-based intrusion detection systems
for secure communication in internet of things. Comput. Intell. Neurosci. 2023, 2023, 8981988. [CrossRef]

5. Kponyo, J.J.; Agyemang, J.O.; Klogo, G.S.; Boateng, J.O. Lightweight and host-based denial of service (DoS) detection and defense
mechanism for resource-constrained IoT devices. Internet Things 2020, 12, 100319. [CrossRef]

6. Awajan, A. A novel deep learning-based intrusion detection system for IOT networks. Computers 2023, 12, 34. [CrossRef]
7. Si-Ahmed, A.; Al-Garadi, M.A.; Boustia, N. Survey of Machine Learning based intrusion detection methods for Internet of

Medical Things. Appl. Soft Comput. 2023, 140, 110227. [CrossRef]
8. Elaziz, M.A.; Al-qaness, M.A.A.; Dahou, A.; Ibrahim, R.A.; El-Latif, A.A.A. Intrusion detection approach for cloud and IoT

environments using deep learning and Capuchin Search Algorithm. Adv. Eng. Softw. 2023, 176, 103402. [CrossRef]
9. Halim, Z.; Yousaf, M.N.; Waqas, M.; Sulaiman, M.; Abbas, G.; Hussain, M.; Ahmad, I.; Hanif, M. An effective genetic algorithm-

based feature selection method for intrusion detection systems. Comput. Secur. 2021, 110, 102448. [CrossRef]
10. Dubey, G.P.; Bhujade, R.K. Optimal feature selection for machine learning based intrusion detection system by exploiting attribute

dependence. Mater. Today Proc. 2021, 47, 6325–6331. [CrossRef]
11. Li, X.; Ren, J. MICQ-IPSO: An effective two-stage hybrid feature selection algorithm for high-dimensional data. Neurocomputing

2022, 501, 328–342. [CrossRef]
12. Unler, A.; Murat, A. A discrete particle swarm optimization method for feature selection in binary classification problems. Eur. J.

Oper. Res. 2010, 206, 528–539. [CrossRef]
13. Mafarja, M.; Mirjalili, S. Whale optimization approaches for wrapper feature selection. Appl. Soft Comput. 2018, 62, 441–453.

[CrossRef]
14. Zhou, Y.Y.; Cheng, G.; Jiang, S.Q.; Dai, M. Building an efficient intrusion detection system based on feature selection and ensemble

classifier. Comput. Netw. 2020, 174, 107247. [CrossRef]
15. Hassan, I.H.; Abdullahi, M.; Aliyu, M.M.; Yusuf, S.A.; Abdulrahim, A. An improved binary manta ray foraging optimization

algorithm based feature selection and random forest classifier for network intrusion detection. Intell. Syst. Appl. 2022, 16, 200114.
[CrossRef]

16. Hsu, H.H.; Hsieh, C.W.; Lu, M.D. Hybrid feature selection by combining filters and wrappers. Expert Syst. Appl. 2011, 38,
8144–8150. [CrossRef]

17. Lazzarini, R.; Tianfield, H.; Charissis, V. A stacking ensemble of deep learning models for IoT intrusion detection. Knowl.-Based
Syst. 2023, 279, 110941. [CrossRef]

18. Alani, M.M. An explainable efficient flow-based Industrial IoT intrusion detection system. Comput. Electr. Eng. 2023, 108, 108732.
[CrossRef]

19. Nizamudeen, S.M.T. Intelligent Intrusion Detection Framework for Multi-Clouds–Iot Environment Using Swarm-Based Deep
Learning Classifier. J. Cloud Comput. 2023, 12, 134. [CrossRef]

20. Sharma, B.; Sharma, L.; Lal, C.; Roy, S. Anomaly based network intrusion detection for IoT attacks using deep learning technique.
Comput. Electr. Eng. 2023, 107, 108626. [CrossRef]

21. Kareem, S.S.; Mostafa, R.R.; Hashim, F.A.; El-Bakry, H.M. An effective feature selection model using hybrid metaheuristic
algorithms for iot intrusion detection. Sensors 2022, 22, 1396. [CrossRef]

22. Mohy-eddine, M.; Guezzaz, A.; Benkirane, S.; Azrour, M. An efficient network intrusion detection model for IoT security using
K-NN classifier and feature selection. Multimed. Tools Appl. 2023, 82, 23615–23633. [CrossRef]

23. Liu, X.; Du, Y. Towards Effective Feature Selection for IoT Botnet Attack Detection Using a Genetic Algorithm. Electronics 2023,
12, 1260. [CrossRef]

24. Alweshah, M.; Hammouri, A.; Alkhalaileh, S.; Alzubi, O. Intrusion detection for the internet of things (IoT) based on the emperor
penguin colony optimization algorithm. J. Ambient Intell. Humaniz. Comput. 2023, 14, 6349–6366. [CrossRef]

25. Othman, S.M.; Ba-Alwi, F.M.; Alsohybe, N.T.; Al-Hashida, A.Y. Intrusion detection model using machine learning algorithm on
Big Data environment. J. Big Data 2018, 5, 34. [CrossRef]

26. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]

https://doi.org/10.1016/j.iot.2023.100819
https://www.businesswire.com/news/home/20190618005012/en/The-Growth-in-Connected-IoT-Devices-is-Expected-to-Generate-79.4ZB-of-Data-in-2025-According-to-a-New-IDC-Forecast
https://www.businesswire.com/news/home/20190618005012/en/The-Growth-in-Connected-IoT-Devices-is-Expected-to-Generate-79.4ZB-of-Data-in-2025-According-to-a-New-IDC-Forecast
https://www.nozominetworks.com/blog/whatit-needs-to-know-about-ot-io-securitythreats-in-2020/
https://doi.org/10.1155/2023/8981988
https://doi.org/10.1016/j.iot.2020.100319
https://doi.org/10.3390/computers12020034
https://doi.org/10.1016/j.asoc.2023.110227
https://doi.org/10.1016/j.advengsoft.2022.103402
https://doi.org/10.1016/j.cose.2021.102448
https://doi.org/10.1016/j.matpr.2021.04.643
https://doi.org/10.1016/j.neucom.2022.05.048
https://doi.org/10.1016/j.ejor.2010.02.032
https://doi.org/10.1016/j.asoc.2017.11.006
https://doi.org/10.1016/j.comnet.2020.107247
https://doi.org/10.1016/j.iswa.2022.200114
https://doi.org/10.1016/j.eswa.2010.12.156
https://doi.org/10.1016/j.knosys.2023.110941
https://doi.org/10.1016/j.compeleceng.2023.108732
https://doi.org/10.1186/s13677-023-00509-4
https://doi.org/10.1016/j.compeleceng.2023.108626
https://doi.org/10.3390/s22041396
https://doi.org/10.1007/s11042-023-14795-2
https://doi.org/10.3390/electronics12051260
https://doi.org/10.1007/s12652-022-04407-6
https://doi.org/10.1186/s40537-018-0145-4
https://doi.org/10.1016/j.advengsoft.2013.12.007

Electronics 2023, 12, 4289 21 of 21

27. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 785–794.

28. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

29. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,
415, 295–316. [CrossRef]

30. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kegl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 24th
International Conference on Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; pp. 2546–2554.

31. Meidan, Y.; Bohadna, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Elovici, Y. N-BaIoT—Network-based detection of IoT botnet attacks
using deep autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. [CrossRef]

32. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of
things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

33. Zolanvari, M.; Teixeira, M.A.; Gupta, L.; Khan, K.M.; Jain, R. Machine learning-based network vulnerability analysis of industrial
Internet of Things. IEEE Internet Things J. 2019, 6, 6822–6834. [CrossRef]

34. Hady, A.A.; Ghubaish, A.; Salman, T.; Unal, D.; Jain, R. Intrusion detection system for healthcare systems using medical and
network data: A comparison study. IEEE Access 2020, 8, 106576–106584. [CrossRef]

35. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009 IEEE
Symposium on Computational Intelligence for Security and Defense Applications (CISDA), Ottawa, ON, Canada, 8–10 July 2009.

36. Sinha, J.; Manollas, M. Efficient deep CNN-BiLSTM model for network intrusion detection. In Proceedings of the 2020 3rd
International Conference on Artificial Intelligence and Pattern Recognition, Chengdu, China, 28–30 August 2020; pp. 223–231.

37. Ren, K.Y.; Yuan, S.; Zhang, C.; Shi, Y.; Huang, Z.Q. CANET: A hierarchical CNN-Attention model for Network Intrusion Detection.
Comput. Commun. 2023, 205, 170–181. [CrossRef]

38. Dina, A.S.; Siddique, A.B.; Manivannan, D. A deep learning approach for intrusion detection in Internet of Things using focal loss
function. Internet of Things 2023, 22, 100699. [CrossRef]

39. Nimbalkar, P.; Kshirsagar, D. Feature selection for intrusion detection system in Internet-of-Things (IoT). ICT Express 2021, 7,
177–181. [CrossRef]

40. Gaber, T.; Awotunde, J.B.; Folorunso, S.O.; Ajagbe, S.A.; Eldesouky, E. Industrial internet of things intrusion detection method
using machine learning and optimization techniques. Wirel. Commun. Mob. Comput. 2023, 2023, 3939895. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1109/MPRV.2018.03367731
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1109/JIOT.2019.2912022
https://doi.org/10.1109/ACCESS.2020.3000421
https://doi.org/10.1016/j.comcom.2023.04.018
https://doi.org/10.1016/j.iot.2023.100699
https://doi.org/10.1016/j.icte.2021.04.012
https://doi.org/10.1155/2023/3939895

	Introduction
	Related Works
	Proposed Method
	Proposed Feature Selection Method
	Grey Wolf Optimization Algorithm
	Binary Grey Wolf Optimization (BGWO)
	RFE-XGBoost
	Two-Stage Feature Selection

	Extreme Gradient Boosting (XGBoost)
	Synthetic Minority Oversampling Technique (SMOTE)
	Bayesian Optimization-Tree Parzen Estimator (BO-TPE)

	Experiments and Results
	Hardware and Environment Setting
	Evaluation Metrics
	Data Preprocessing
	Data Cleaning
	Oversampling
	Normalization
	Train and Test Split

	Dataset
	N-BaIoT
	BoT-Iot
	WUSTL-IIOT-2021
	WUSTL-EHMS-2020
	NSL-KDD

	Experimental Results
	Binary Classification
	Multiclass Classification
	Ablation Studies

	Conclusions
	References

