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Abstract: The prevalence of big data has caused a notable surge in both the diversity and magnitude of
data. Consequently, this has prompted the emergence and advancement of two distinct technologies:
unstructured data management and data volume reduction. Key–value stores, such as Google’s
LevelDB and Meta’s RocksDB, have emerged as a popular solution for managing unstructured data
due to their ability to handle diverse data types with a simple key–value abstraction. Simultaneously,
a multitude of data management tools have actively adopted compression techniques, such as
Snappy and Zstd, to effectively reduce data volume. The objective of this study is to explore how
these two technologies influence each other. For this purpose, we first examine a classification of
compression techniques and discuss their strength and weakness, especially those adopted by modern
key–value stores. We also investigate the internal structures and operations, such as batch writing and
compaction, in order to grasp the characteristics of key–value stores. Then, we quantitatively evaluate
the compression ratio and performance using RocksDB under diverse compression techniques, block
sizes, value sizes, and workloads. Our evaluation shows that compression not only saves storage
space but also decreases compaction overhead. It also reveals that compression techniques have
their inherent trade-offs, meaning that some provide a better compression ratio, while others yield
better compression performance. Based on our evaluation, a number of potential avenues for further
research have been identified. These include the exploration of a compression-aware compaction
mechanism, selective compression, and revisiting compression granularity.

Keywords: key–value store; compression; log-structured merge tree; evaluation

1. Introduction

Data compression is the technology of condensing information into a more concise
format, hence minimizing the storage space, the amount of storage required to store, and the
number of I/Os needed to access data [1–3]. One prominent advantage of data compression
is the efficient utilization of storage space, resulting in a proportional expansion of the
storage medium’s capacity. Furthermore, it has the potential to enhance performance
by reducing the volume of data that needs to be accessed and transmitted through the
I/O system and interconnection network. Nevertheless, the process of compression and
decompression necessitates supplementary CPU and memory resources, potentially leading
to a decline in data access latency. Hence, it is imperative to thoroughly evaluate these
trade-offs prior to implementing compression in data management systems.

A key–value store is a de facto standard database for unstructured big data [4,5]. Sev-
eral data service providers have their own key–value stores, including Google’s LevelDB [6],
Meta’s RocksDB [7], Amazon’s Dynamo [8], and LinkedIn’s Voldemort [9], among others.
Due to their ability to accommodate many data formats and their support for a straightfor-
ward key–value abstraction, they are actively adopted for various services, including social
graph analysis, AI/ML services, and distributed databases [10]. Key–value stores utilize
a range of compression techniques [11–13], including Snappy [14], Zstandard (Zstd) [15],
and LZ4 [16]. These approaches will be discussed further in Table 1.
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Table 1. Compression techniques adopted by modern key–value stores.

Brotli Gzip LZ4 1 LZMA LZO Snappy Zlib Zstd

LevelDB [6] 3 3

RocksDB [7] 3 3 3 3

Cassandra [17] 3 3 3 3

WiredTiger [18] 3 3 3

HBase [19] 3 3 3 3 3 3 3

1 Implementations of LZ4 also include LZ4HC (LZ4 High-Compression version).

The fundamental data structure used by most key–value stores is the log-structured
merge tree (hereafter, LSM-tree) [20], which has distinct characteristics suitable for com-
pression. Initially, the system records key–value pairs in a log-structured manner. More
precisely, it manipulates two fundamental components, namely Memtable, which is a mem-
ory component, and SSTable, which is a storage component. The concept of a Memtable
refers to a specific type of write buffer that serves as a cache for key–value pairs. These pairs
are then written to storage in a batch style, with a default size of 64 MB. The utilization of
bigger block sizes in compression techniques can be leveraged to improve the compression
ratio in the context of this expansive batch writing. Nevertheless, the increased block size
has both advantages and disadvantages, with one of the drawbacks being a detrimental
effect on read latency. The consideration of this trade-off necessitates careful consideration
when employing compression in a key–value store.

Another notable characteristic of the LSM-tree is its utilization of the out-of-place
update method, wherein updated data is written to a new location while simultaneously
rendering the old data in the original location invalid. Consequently, in order to reclaim
the invalidated location, it introduces an internal operation called compaction. SSTable
files are structured hierarchically, encompassing numerous levels. A Memtable is flushed
into storage, transforming into an SSTable file located at level 0. Compaction is triggered
when the size of a given level exceeds a predetermined threshold. It consists of three steps:
(1) read existing SSTable files from the level and one higher level; (2) conduct merge-sort
while removing the outdated key–value pairs; and (3) write new SSTable files into the higher
level and delete the compacted files. This implies that compression and decompression
operations are frequent in a key–value store, occurring not just during data retrieval but
also during the compaction process. Hence, compression time becomes more critical than
compression ratio, especially for SSTable files at lower levels, which will be compacted and
deleted in the near future.

In this paper, we explore how these characteristics, batch writing and compaction,
affect the compression ratio and how the compression ratio impacts the performance of
key–value stores. We first survey various compression techniques used by key–value stores
and investigate how each technique works, along with its strengths and weaknesses. Then,
we analyze the internal structure and operations of key–value stores in order to identify
primary factors, such as block size, value size, and workload, that influence compression
behaviors significantly. Finally, we evaluate the impact of compression on the performance
of key–value stores, including storage usage, compaction count, throughput, and access
latency. In the evaluation process, RocksDB, a widely recognized key–value store, is tested
with three distinct workloads. The first workload is a db_bench [7] workload that utilizes
synthetic data, while the remaining two workloads utilize real-world data sourced from
Amazon [21] and Twitter [22].

To the best of our knowledge, this is the first survey paper that quantitatively investi-
gates various compression techniques utilized by modern key–value stores. We provide a
taxonomy of compression techniques and discuss their opportunities and requirements
with the consideration of the LSM-tree characteristics. Then, we evaluate the compression
ratio and performance under diverse compression techniques, block sizes, value sizes,
and both synthetic and real-world workloads. Our purpose encompasses not only evaluat-
ing performance but also analyzing the inherent trade-offs linked to compression techniques



Electronics 2023, 12, 4280 3 of 20

and identifying potential areas for enhancement. Our findings lay the groundwork for
future research endeavors focused on fully leveraging the capabilities of compression in
key–value stores. We presents several lessons, insights, and recommendations for improv-
ing compression efficiency and raising the overall performance of key–value stores, thereby
paving the way for novel breakthroughs in this field.

The remainder of this paper is organized as follows: Section 2 explains data compres-
sion in general and examines compression techniques used by key–value stores. In Section 3,
we describe the characteristics and factors of key–value stores that have an influential im-
pact on the compression ratio and performance, as well as the literature related to our work.
Then, we present the evaluation results and observations in Section 4. Section 5 discusses
lessons we have learned and future research directions. Finally, we conclude this paper in
Section 6.

2. Background

In this section, we first describe two representative approaches to compression, lossy
and lossless, and further classify the lossless approach into four categories. Then, we
discuss each technique in detail, including its strengths and weaknesses.

2.1. Compression in General

The earliest evolution of data compression can be associated with Morse code [1]. It
was introduced by Samuel Morse in 1838 to compress letters in telegraphs. In earlier days,
when messages were sent by telegraph, letters were encoded with dots and dashes. Morse
noticed that certain letters occurred more often than others. In order to reduce the average
time spent sending messages, shorter and longer sequences were assigned to more frequent
and less frequent letters, respectively. This idea of using shorter codes for more frequently
occurring characters is also used in Huffman coding [23].

Through the years, compression has been continually developed with consideration
for advanced technology and applications. Nevertheless, its main purpose stays the same:
reducing storage space and the number of I/Os by removing redundancies in the given
data. A lot of compression techniques exist, and they can be broadly divided into lossy
and lossless techniques, as shown in Figure 1. In the figure, we intentionally highlight the
compression techniques that are popularly used by key–value stores.

Figure 1. Taxonomy of compression techniques. They can be classified into lossy and lossless
approaches, and then classified further based on their mechanisms. Note that compression techniques
actively used by modern key–value stores are highlighted in blue.

Lossy compression is used for data that can afford to lose some parts. It removes
some parts of data irreversibly, resulting in the original data not being reconstructed upon
decompression. This approximate reconstruction can be desirable as it leads to better
performance and resource utilization. Lossy compression is commonly applied to videos,
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images, and audio data sources where humans perceive data as complete even though
some portions have been discarded by compression. Commonly used lossy compression
techniques include transfer coding, discrete cosine transform, discrete wavelet transform,
and fractal compression [1,2].

Sensitive information has to be processed with lossless compression, where no data
is lost in the compression process and the original data can be fully reconstructed after
decompression [24]. In text compression, omitting or changing a single character results in
a non-negligible impact on the intended meaning, so lossless compression should be used.
Similarly, data sources containing sensitive information, such as medical images and data
intended for legal purposes, should be compressed in a lossless manner. Key–value stores
use lossless compression since they manipulate diverse types of sensitive data.

Lossless compression can be categorized into four distinct classes, namely transform-
based coding, prediction-based coding, entropy coding, and dictionary-based coding [2,24].
Transform-based coding is a type of data compression technique wherein input data are
transformed into the frequency or wavelet domain, preserving the most important and vi-
sually significant coefficients while discarding less significant ones to achieve compression.
Prediction-based coding takes advantage of statistical regularities through the analysis of
correlations between adjacent symbols or samples, which are used to predict the value of
the next symbol or sample. Entropy coding is a technique that exploits the statistical prop-
erties of the input data and attempts to minimize the number of bits for data representation
by assigning shorter codes to more frequently occurring symbols. Finally, dictionary-based
coding compresses data by encoding pre-existing data patterns using a dictionary and
replacing these patterns with corresponding entries in the dictionary.

It should be noted that this kind of classification is inherently complex due to the fact
that some techniques take both lossy and lossless approaches. For example, the discrete
cosine transform can be used for either lossy or lossless data, as depicted in Figure 1,
by governing a threshold when it transforms original data into the frequency domain.
Furthermore, some lossless techniques make use of a hybrid mechanism derived from
two or more categories. A typical example is Zstd, which, even though it is commonly
categorized as dictionary-based coding, provides compression capabilities based on both a
dictionary and an entropy by combining both at different stages. Certain techniques utilize
a hierarchical mechanism, applying transform-based coding at the first level and then
applying Huffman coding to the transformed data to compress it further. Nevertheless, we
make this classification, since it gives us a global viewpoint, allowing us to discuss each
compression technique in a systematic way.

Now, let us compare four lossless categories further. Entropy coding is known to
be effective at compressing data that contains a wide range of symbols with varying
probabilities of occurrence. On the other hand, prediction-based coding is more effective at
compressing data that contain patterns or redundancies. Transform-based coding is a highly
effective technique for compressing data that exhibit spatial or frequency correlations, such
as images, audio, and video. However, transform-based coding requires more computation
and memory than entropy coding or prediction-based coding. Dictionary-based coding,
compared to other categories, has the lowest compression overhead, hence demanding less
memory and computing resources. This is why most key–value stores choose techniques
based on dictionary-based coding.

Two widely used implementations of dictionary-based coding are LZ77 and LZ78 [25].
The distinction between these techniques lies in how they build and use dictionaries. LZ77
employs a sliding window mechanism to find recurring patterns in the input data and
replace them with references to previously seen patterns stored in a dictionary. On the
contrary, LZ78 builds a complete dictionary of all potential patterns in the input data.
Therefore, LZ77 is faster and more memory-efficient than LZ78, but yields a relatively
lower compression ratio. Since fast compression is indispensable in key–value stores, they
prefer to utilize LZ77-based techniques, as highlighted in Figure 1. In the next subsection,
we will discuss these techniques in detail.
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2.2. Compression Techniques Used by Key–Value Stores

Table 1 summarizes the compression techniques employed by various key–value
stores. LevelDB originally supported Snappy [14] only due to its simplicity, but it has added
Zstd [15] since version 1.23. RocksDB, the successor of LevelDB, supports not only Snappy
and Zstd but also LZ4 [16] and Zlib [26]. Both Cassandra and WiredTiger support similar
techniques as RocksDB. The recent version of HBase equips users with more techniques,
including Brotli [27], Gzip [28], LZMA [29], and Lempel–Ziv–Oberhumer (LZO) [30].
From now on, we will examine how each technique works, taking into consideration their
strengths and weaknesses.

2.2.1. Snappy

Mechanism. Snappy [14], previously known as Zippy, is a compression/decompression
library developed and open-sourced by Google. It aims for high speed and a reasonable
compression ratio. It is based on LZ77, categorized as dictionary-based coding, but also
makes use of Huffman coding. In addition, Snappy can include a checksum at the end of
each compressed block to ensure data integrity.

Strength. In terms of speed, Snappy is fast compared to other compression techniques,
which makes it ideal for use in applications that require quick data access even with
compression and decompression. It provides a reasonable compression ratio, particularly
for smaller files. Moreover, Snappy is designed to use less CPU and memory resources
during both compression and decompression.

Weakness. Snappy’s limited compression ratio, particularly for larger files, can be a
disadvantage. However, since key–value stores compress data per block, this disadvantage
is not that serious. Another weakness is that it does not support all file formats, which
limits its usefulness in certain applications.

2.2.2. Zstd

Mechanism. Zstd is a popular dictionary-based compression technique developed by
Meta [15]. It uses a sliding window of up to 128KB as a dictionary. Furthermore, it supports
dictionary compression using a variant of finite state entropy and Huffman coding. It offers
22 levels of compression (e.g., 1 being the fastest but lowest compression ratio), providing
a knob to balance the compression ratio and resource utilization.

Strength. Zstd provides an excellent compression ratio, particularly for text data. This
is advantageous in scenarios where storage space is a prioritized concern. For interoper-
ability, it supports multiple programming languages, including Java, Python, Rust, Ruby,
and so on.

Weakness. One potential drawback of Zstd is its significant computational overhead,
which necessitates substantial processing capabilities in order to achieve a desirable com-
pression ratio. This could be an concern, especially in resource-constrained environments.

2.2.3. LZ4 and LZ4HC

Mechanism. LZ4 is a dictionary-based coding technique that works by identifying
repeated patterns in data and replacing them with a shorter reference to the previous occur-
rence of the same pattern [16]. With LZ4, speed can be tuned by selecting an acceleration
factor that trades compression ratio for faster speed. It supports a derivative called LZ4HC
(High Compression), which trades CPU time for an improved compression ratio.

Strength. LZ4 is designed to use minimal CPU and memory resources, making it
an efficient choice for resource-constrained environments. In addition, it provides fast
compression and decompression speeds, which are well-suited for applications that have a
fast or real-time data transfer requirement.

Weakness. LZ4 may not be as effective compared to other techniques when compress-
ing certain types of data, such as images or videos, where the data do not have enough
repeating patterns. Another weakness is its lack of error detection and correction mecha-
nisms, such as cyclic redundancy checks, which are found in most compression techniques.
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2.2.4. Gzip, Zlib, and Brotli

Mechanism. Both Gzip [28] and Zlib [26] are based on the Deflate compression
algorithm [31], which uses a combination of LZ77 and Huffman coding. They differ in
file formats, dictionary sizes, and usage contexts. Brotli [27] is a technique designed for
superior compression ratio and faster decompression time compared to Gzip. It utilizes a
dictionary and context model to exploit data patterns for better compression.

Strength. Gzip and Zlib support a good compression ratio. Gzip works well with
most data types. It is particularly useful for applications where memory usage is an issue,
as it has a relatively low memory overhead. Zlib provides additional features such as data
integrity checks and sliding window processing. Brotli offers a higher compression ratio
and faster decompression speed for text data.

Weakness. Both Brotli and Zlib incur high computational costs for compression and
decompression. The distribution of Brotli is also limited, which can be a portability concern.
For larger files, Gzip’s compression and decompression speeds can be an issue.

2.2.5. LZMA

Mechanism. LZMA stands for Lempel–Ziv Markov chain Algorithm [29]. It is a
compression technique that combines both statistical modeling and dictionary mecha-
nisms. The statistical modeling allows for the examination of compressible patterns across
entire datasets, whereas the dictionary enables the compression of small pieces simultane-
ously. Its recent version, LZMA2, supports multithreaded compression and decompression
for scalability.

Strength. LZMA achieves a high compression ratio, which is great for applications
that need to utilize available storage space efficiently for storing large amounts of data.
Another important aspect is LZMA’s support for scalability.

Weakness. To obtain a high compression ratio, LZMA is computationally expensive,
which leads to a large computational overhead. It also needs a significant amount of
memory to conduct the statistical modeling during compression.

2.2.6. LZO

Mechanism. LZO is a dictionary-based compression technique that is geared towards
fast compression and decompression speed through simple and efficient algorithms that
can be implemented in both hardware and software [30]. It also uses a mechanism called
run-length encoding to compress repeated byte sequences, which replaces repeated bytes
with a count and a single copy of the byte. This can be particularly effective for compressing
data with long sequences of repeated bytes, such as zeros.

Strength. LZO provides excellent compression and decompression speeds. In addi-
tion, it can achieve a good compression ratio for certain types of data, such as executable
files and data with long sequences of repeated bytes. Moreover, LZO requires a relatively
small amount of memory.

Weakness. LZO is not suitable for compressing certain types of data, particularly data
with a low degree of repetition. It also has limited support for compression concurrency.
Since key–value stores need to handle multiple requests simultaneously, LZO may not be
as effective as handling concurrent requests.

2.3. Literature Review

This subsection explains prior research related to compression. There exist studies
that are specifically centered around data, such as examining the compression efficiency
of text data [32], image data [33,34], and sensor data [35]. On the other hand, several
studies concentrate on particular research domains, such as hardware acceleration [36,37],
architectural approaches [38], and database design [39]. For instance, Kimura et al. examine
how compression affects choices of appropriate database design, such as indexes [39].
Nevertheless, they focus on traditional relational databases, rather than key–value stores
focused on in this paper.
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Note that databases can be classified into two categories: traditional relational databases
and NoSQL databases. NoSQL databases can be further classified into key–value stores,
column databases, document databases, and graph databases. Among NoSQL databases,
compression is actively studied in column databases [40–43]. However, the internal struc-
ture of column databases is different from that of key–value stores. They manage data
based on columns instead of rows, and they do not have the compaction operation. Hence,
the effect of compression is also different between column databases and key–value stores.

In the area of key–value stores, a number of prior studies have endeavored to either
incorporate or enhance compression techniques. Dong et al. employ compression to reduce
the space amplification in RocksDB [11]. In addition, they devised a mechanism known
as dynamic level-size adaptation and compression, which serves to achieve a balance
between space and read/write amplification. Kim and Vitter suggest a technique that
integrates compression and encryption in a persistent key–value store for high-performance
computing systems [12]. Their technique exploits deep memory hierarchy to achieve both
data reduction and performance enhancement.

Ma et al. present several techniques to integrate data compression into in-memory
key–value stores [44]. They reduce compression-induced read and write amplification,
thereby mitigating compression-induced performance degradation. In order to further
reduce write amplification, they propose to incorporate delta encoding within a background
re-compression process. Zhang et al. develop a storage engine called CompressDB [45].
Since it is integrated directly into file systems, it is able to support various database systems,
one of which is LevelDB. In the context of LSM-tree, since LevelDB uses LSM-tree as its core
architecture, CompressDB, paired with LevelDB’s default compression technique Snappy,
is able to further improve performance as well as space savings.

Guler and Ozkasap propose a periodic incremental checkpoint algorithm with com-
pression to address the communication costs of a backup replication protocol [46]. They set
up replicated key–value stores on distributed nodes and develop compressed incremental
checkpointing to support primary backup replication. In their setup, they use various
performance metrics, which include compression ratio and compression/decompression
times, among others. They conclude that Zstd is the most competent compression method
under all the scenarios in their experiments.

Jia et al. propose a scheme called SlimCache that enhances the hit ratio in key–value
caching [47]. By using dynamic online compression, it expands the usable cache space,
which in turn increases the cache hit ratio and improves cache performance. Jin et al.
identify that the write and space amplification caused by key–value stores can deteriorate
the lifespan of flash-based storage devices [48]. To overcome this problem, they design a
knob that directly controls how data is compressed in RocksDB.

Tkachenko analyzes various database compression techniques [49]. The analysis
makes use of an open-source compression benchmark called lzbench [50] in evaluating
techniques such as Zstd, Snappy, LZ4, Zlib, LZMA, Brotli, and QuickLZ. It shows several
results, including compression ratio, speed, and the influence of different block sizes.
However, a notable distinction between their work and ours lies in the absence of any
findings pertaining to key–value stores, whereas this study delves into the intricate interplay
between compression techniques and the internal processes of key–value stores.

To the best of our knowledge, this is the first paper that explores various compression
techniques using real evaluation, and analyzes how the characteristics of LSM-tree and
compression influence each other.

3. Issues of Compression in Key–Value Stores

In this section, we explain the internal structures and operations of an LSM-tree-based
key–value store. Then, we discuss how compression and key–value stores influence each
other. Finally, we identify the primary factors that affect compression ratio and perfor-
mance.
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3.1. Internal Structure and Operations of Key–Value Stores

Figure 2 presents the internals of an LSM-tree-based key–value store. It stores and
retrieves data using a set of key–value interfaces such as put(), get(), and delete(). It consists
of two components: the Memtable in memory and the SSTable in storage. The Memtable is
an in-memory data structure holding data before it is flushed to storage. Once a Memtable
is full, it becomes immutable and replaced by a new Memtable. A background thread will
flush the content of the immutable Memtable into an SSTable file, after which the Memtable
is set to be removed. The SSTable is a collection of files that are organized in multiple levels,
from L0 to LN in this figure, where the default value of N is six in RocksDB.

(a) LSM-tree data structure

(b) SSTable layout

Figure 2. Internals of an LSM-tree based key–value store and SSTable layout. This image is a modified
version of the one presented by Zhang et al. [51].

LSM-tree is a write-optimized data structure. The basic idea of LSM-tree is writing
data in a log-structured manner and conducting out-of-place updates instead of in-place
updates. Specifically, it keeps incoming key–value pairs in Memtable. When the size of
Memtable is beyond a threshold (e.g., 64 MB), the Memtable becomes immutable and is
eventually written to storage. This operation is called flush. One characteristic of LSM-tree
is to buffer incoming writes in memory using Memtable, and flush it to storage as a new
SSTable file in a batch style. Note that when a key is updated with a new value, a new
key–value pair is written into a new SSTable file, while the outdated pair is also maintained
in an existing SSTable file.

SSTable files are then merge-sorted on a regular basis using an internal operation
called compaction. The compaction operation is illustrated in a box shown on the right
side of Figure 2a. When the number of SSTable files at level Li is beyond a threshold,
compaction is triggered. It first selects a file at level Li according to a selection policy
(e.g., the oldest file or the largest file). Then, it reads all files, from both level Li and level
Li+1, that have overlapped key ranges with the selected file. Then, it performs merge-sort
while deleting outdated key–value pairs. Finally, it writes new SSTable files at level Li+1.
After compaction, old SSTable files are removed and their space is reclaimed.

When a lookup request arrives, it first checks the Memtables (both mutable and
immutable) and serves it if the requested key–value pair exists there. Otherwise, it checks
SSTable files, from the lowest level (L0) to the higher levels, to identify a file whose key
range contains the requested key. Note that the lower level always has the most up-to-date
pair in the LSM-tree. Finally, it reads the data block from the identified file with the help of
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an index block stored at the end of the file that maps keys into data blocks. Note that, since
the SSTable file is identified using key ranges, it does not actually contain the requested
key, which causes an unnecessary read. To avoid this, key–value stores make use of the
bloomfilter to test the non-existence of a key in a file.

The put interface is used for either adding a new key–value pair or updating an
existing pair. Since a key–value pair is first managed in Memtable and later flushed into a
SSTable file, a sudden power failure may cause data loss. To overcome this problem, most
key–value stores employ a write-ahead log (WAL) on storage in order to support durability.
The get interface is used for a lookup, checking the Memtables first and then SSTable files
from Level 0 to the higher levels until the key is either found or determined to be absent.
Finally, the delete interface is used for removing an existing pair. A specific tombstone
marker is inserted into Memtable and written to the WAL during a deletion, indicating that
the key should be deemed deleted.

Updating data in a log-structured manner in key–value stores can enhance write
performance by converting random writes into sequential ones. However, it increases the
write amplification due to compaction. Furthermore, it degrades storage utilization by
storing not only up-to-date data but also old data until compaction. Compression can be a
practical solution to overcome these issues. In the next subsection, we will discuss how
compression is integrated into key–value stores.

3.2. Compression in Key–Value Stores

Data compression is a powerful tool with numerous advantages that can be used
for a wide range of applications. Saving storage space is the most important benefit that
can be expected from compression. Another advantage is the reduced number of I/Os,
which is especially beneficial for key–value stores when we consider compaction. However,
compression has its own drawbacks. We need to consider the compression overhead and
increased CPU usage. Compressed data also result in increased latency when data need to
be decompressed before it can be accessed, which may also increase the memory footprint.

In the context of key–value stores, we need to contemplate two characteristics driven
by the LSM-tree. First is the bulky batch writing. Incoming key–value pairs are buffered
in Memtable, whose default size is 64 MB, and written into storage in batch style. It
gives the encoder a chance to find a lot of repeated patterns, providing a positive impact
on compression. The second characteristic is that, in key–value stores, compression and
decompression occur not only during data access time but also during flush and compaction
time. It implies that key–value stores carry out compression and decompression more
frequently than other databases.

As a result, this high frequency leads to compression speed being considered as a top
priority. This is why most key–value stores choose dictionary-based coding among the four
categories shown in Figure 1, since it has the lowest compression overhead. In addition, key–
value stores apply compression based on a data block instead of a SSTable file, as illustrated
in Figure 2b. This block-based compression can provide better read latency since, when a
lookup is requested, it requires access to only the related block. On the contrary, file-based
compression may degrade read latency to access whole blocks for decompression, whereas
it can yield a better compression ratio.

In key–value stores, compression and decompression are conducted at three main
points: flush, compaction, and block read. For instance, when we enable compression, com-
paction procedures can be divided into five steps: (1) read, (2) decompress, (3) merge–sort,
(4) compress, and (5) write [51]. During compression, a block is fed into an interface where a
repeated pattern is replaced with a reference to the previous offset and length of the pattern.
During decompression, the reference is converted into a pattern, recreating the original data.
Note that, in the current implementation, decompression and merge–sort are performed
separately, meaning that the merge–sort step starts after completing decompression.
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3.3. Key Factors That Affect Compression in Key–Value Stores

There are a variety of factors in key–value stores that influence compression ratio and
performance significantly. In this subsection, we describe the five most influential factors.

First, the choice of compression technique can significantly affect the overall behavior
of key–value stores. Techniques such as Snappy and LZ4 are designed to provide fast
compression and decompression with low CPU usage, making them ideal for systems that
require high read and write throughput. However, these techniques do not necessarily
provide a superior compression ratio. On the other hand, techniques such as Zstd or
LZ4HC can provide a higher compression ratio, but compression and decompression can
take longer and require more CPU.

Second, the size of blocks is another influential factor that affects the compression
ratio and throughput of key–value stores. For dictionary-based compression techniques,
having a bigger block size positively impacts the compression ratio since more data can be
fed through compression. Within a larger pool of data, more data patterns can potentially
be identified as repetitive, which improves the compression ratio. However, larger blocks
require more memory and increase read latency for decompression.

The third factor is workload. We recognize two features of a workload that determine
the effectiveness of compression in key–value stores, one of which is compressibility [52].
If the data has high randomness and does not have enough repeated patterns, compression
may not be beneficial. The other feature is the lifetime. In key–value stores, SSTable files in
lower levels, especially level 0, will be compacted and deleted in the near future. In contrast,
SSTable files at higher levels have a long lifetime. The compression ratio is more critical for
long-term data, while compression speed is more important for short-term data.

Fourth, system resources such as CPU capability and storage type are important
factors. Note that compaction itself is a CPU-intensive job, consuming a large portion of
CPU utilization. Therefore, it is better to use a lightweight compression technique unless
there are abundant CPU resources. For slow storage such as HDDs (hard disk drives),
the latency for compression is relatively small compared to the I/O latency, meaning that it
is possible to employ more powerful techniques to enhance the compression ratio. On the
contrary, for fast storage such as NVMe SSDs (solid state drives), employing more powerful
techniques could increase the overall data access latency considerably.

Finally, key–value store configurations are also crucial factors. For instance, key–
value stores use two different compaction mechanisms: leveled and tiered compaction [10].
The leveled mechanism applies compaction aggressively, obtaining better storage utilization
at the cost of increased compaction counts, while the tiered mechanism applies compaction
in a lazy manner, reducing compaction counts at the cost of worse space utilization. Hence,
when we select a compression technique, we need to consider this trait. As another example,
the block cache of key–value stores maintains uncompressed data in memory, which can be
used effectively to hide the decompression overhead.

4. Analysis

This section presents our experimental results with one of the most popular key–value
stores, RocksDB. Table 2 summarizes our experimental environment. The hardware consists
of an Intel i7 processor with 16 cores, 16 GB of DRAM, and 1 TB of NVMe SSD. In this
hardware, we install Ubuntu 20.04.4 LTS with Linux kernel version 5.4 and use RocksDB
version 7.7.3. We chose RocksDB for our experiments since it is a well-known key–value
store utilized not only in industry [7] but also for research purposes [48,53]. It is derived
from LevelDB, having the same LSM-tree based internal structure, but supporting more
diverse compression techniques.
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Table 2. Experimental system.

CPU Intel(R) Core(TM) i7-10700K CPU @ 3.80 GHz

Memory 16,384 MB

Storage 1 TB Samsung V-NAND NVMe M.2 SSD 970 PRO

OS Ubuntu 20.04.4 LTS (Focal Fossa)

Key-value store RocksDB 7.7.3

Workloads Synthetic (from db_bench), Amazon data (from [21]), Twitter data (from [22])

RocksDB has a micro-benchmark tool called db_bench. It provides a facility to evaluate
the overall performance of RocksDB through various benchmarking options with synthetic
workloads. For our experiments, we insert 100 million key–value pairs. We specify 16 Bytes
for the key size and 100 and 500 Bytes for the value sizes, respectively. While db_bench
is able to evaluate RocksDB’s overall performance, it uses synthetic data by randomly
generating both keys and values. For evaluating real-world data, we use two additional
workloads: Amazon Review data [21] and Twitter Trace data [22].

The Amazon Review data comprises a comprehensive compilation of 233.1 million
reviews, product details, and associated links. The data was gathered during the months
of May 1996 and October 2018, resulting in a total size of 34 GB. On the other hand,
the Twitter data is a collection of key–value traces reflecting the activity directed to key–
value stores from Twitter’s in-memory caching clusters. These data was obtained from a
total of 54 distinct clusters during the month of March in the year 2020, over a period of
one week. In our experiments, a subset of each data, approximately 10 GB, is utilized for
evaluating the compression capability of real-world data.

4.1. Compression Ratio

Figure 3 presents our first experimental result, the compression ratio. As we have
discussed in Section 3.3, the compression ratio depends on various factors, including
compression technique, block/value size, workload, and so on. In this experiment, we
used four compression techniques, namely Snappy, LZ4, LZ4HC, and Zstd. Also, we set
up four block sizes, 1 KB, 4 KB, 16 KB, and 32 KB, and two value sizes, 100 and 500 bytes.
We chose these four compression techniques since they are the most popularly used ones,
as shown in Table 1. Note that the default block size is 4 KB and we select 1 KB, 16 KB,
and 32 KB to assess the effect of smaller and larger block size. Also note that the average
value size is reported as 126 bytes in Meta’s workload analysis [10]. Finally, we use three
workloads: db_bench, Amazon, and Twitter.

From Figure 3, we can make the following observations:

(a) db_bench (value size=100 Bytes) (b) db_bench (value size=500 Bytes)

Figure 3. Cont.
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(c) Amazon (d) Twitter
Figure 3. Impact of compression techniques, block sizes, and value sizes on compression ratio under
synthetic (db_bench (a,b)) and real workloads (Amazon (c) and Twitter (d)).

Effect of compression techniques: Compression can reduce storage usage, and it is
governed by compression techniques. In this paper, we use the space-saving rate as a
metric for comparison, which is defined as Equation (1).

(1 − compressed size
uncompressed size

)× 100 (1)

For example, in the case of the Amazon workload with a 4 KB block size, both Snappy
and LZ4 obtain a similar storage saving rate of 39%, while LZ4HC and Zstd obtain better
rates of 50% and 56%, respectively. These trends are also observed in other techniques
under real-world workloads. Hence, we refer to the latter two techniques, LZ4HC and
Zstd, as ratio-oriented techniques. In contrast, the former two techniques, Snappy and LZ4,
provide better throughput, which will be discussed more evidently in Section 4.3, so we
refer to them as performance-oriented techniques.

Effect of block sizes: Since RocksDB compresses data on block granularity, how the
block sizes are set up makes a difference. For instance, in the case of the Amazon workload
under Snappy, when the block sizes are set to 1 KB, 4 KB, 16 KB, and 32 KB, the space-saving
rates are improved to 22%, 39%, 42%, and 47%, respectively. These improvements are also
observed in other techniques (e.g., Zstd in Figure 3c) and other workloads (e.g., Twitter
in Figure 3d). It means that larger blocks provide more chances to find repeated patterns,
which leads to an enhanced compression ratio. When we increase the value size from
100 bytes to 500 bytes (difference between Figure 3a and Figure 3b), we observe some
improvements, but the difference is small, with an average difference of 2%.

Effect of workloads: Our experiments demonstrate that workloads impact compres-
sion ratios considerably. The Amazon workload is the most compressible, showing space-
saving rates ranging from 22% to 61% (the best case is obtained under Zstd with a 32 KB
block size). It also shows the strongest sensitivity to different techniques and block sizes.
The Twitter workload is modest, obtaining savings rates ranging from 26% to 50%. It is
sensitive to different techniques but less sensitive to block sizes. The db_bench workload
provides a consistent rate but is least sensitive to techniques and block sizes. This is because
it is a synthetic workload, generating random data based on our configuration. In this
experiment, we set the compression ratio at 50%, resulting in a similar amount of space
savings. The small difference obtained by changing the value size from 100 to 500 Bytes is
also due to the synthetic workload trait.

4.2. Impact on Compaction

Compaction is a core internal operation that significantly determines the performance
of key–value stores [53]. During compaction, it generates a large number of I/Os to
read and write SSTables, which can hinder I/O requests triggered by users. In addition,
compaction is a CPU-consuming job, which may cause long-tail latency. This long-tail
latency deteriorates the quality of service, becoming a serious problem in key–value stores.
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To assess how compression impacts compaction, we make two measurements: one
is the amount of compacted data, and the other is the number of compactions, while
running the Amazon and Twitter workloads with a 4 KB block size, as shown in Figure 4.
Compression can reduce the amount of compacted data by up to 69% (Zstd on Amazon
workload), with an average of 53%. This reduction lessens the number of I/Os, eventually
reducing the possibility of hindering user I/O requests. In addition, compression decreases
the number of compactions by up to 33% (Zstd on Amazon workload) and 28% on average.
This decrease can have a positive effect on preventing long-tail latency.

(a) Amount of compacted data (b) Number of compactions
Figure 4. Impact of compression to the size of data cumulatively processed during compaction (a) and
the number of compactions (b) while running the Amazon and Twitter workloads in RocksDB.

In Figure 4, we also observe that the decrease rate of the compaction numbers is
relatively smaller than the reduction rate of the compacted data. This implies that, in the
current implementation of compaction in RocksDB, the compaction numbers do not make
full use of the benefit of compression compared with the compacted data. Our detailed
examination reveals that compaction is triggered based on the number of SSTable files at
the L0 level. At the higher levels, it is triggered based on either the number of SSTable files
or the total size of SSTable files at that level. Note that compression does not change the
number of files, even though it lessens the size of each file. Therefore, with compression,
the size-based triggering can reduce the number of compactions, while the number-based
triggering cannot. Also note that, if we merge multiple files into one during compression,
we can fully utilize compression in terms of not only the compacted data but also the
compaction counts.

4.3. Performance of Key–Value Stores

Compression has both merits and demerits for the performance of key–value stores.
The merit is that it can decrease the number of I/Os, which can lead to better throughput.
In addition, it can reduce the number of compactions and compacted data, which can also
enhance throughput. However, the downside is that the compression and decompression
overhead makes the I/O latency longer, which in turn degrades throughput.

To evaluate this trade-off, we measure the write and read throughput as shown in
Figure 5. In this experiment, we execute the Amazon workload under four compression
techniques and four different block sizes. From this figure, we can make the following
observations: First, compression improves the write and read throughput by an average of
22% and 50%, respectively. This means that the merit of compression outweighs the demerit.

Second, Snappy and LZ4 provide better performance than LZ4HC and Zstd. As we
have already discussed in Section 2.2, the former two techniques have their strengths in
compression speed, while the latter two have a strong point in compression ratio, which
results in these outputs. Especially in key–value stores, due to compaction, we need to
prioritize compression speed over ratio to achieve high throughput. On the other hand,
in an environment with limited storage, ratio-oriented techniques will be an appropriate
choice, as shown in Figure 3.
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(a) Block size = 1 KB (b) Block size = 4 KB

(c) Block size = 16 KB (d) Block size = 32 KB
Figure 5. Impact of compression techniques and block size to the performance of RocksDB. We use
the Amazon workload in this experiment.

Third, a larger block size improves the write throughput, from 28∼37 MB/s with
1 KB block size to 72∼92 MB/s with a 32 KB block size. We also notice that Zstd performs
well at 32 KB block size due to its high compression ratio. However, such improvement
is not noticeable for the read throughput. This is because a write request is handled
asynchronously, whereas a read request is handled synchronously. Specifically, larger block
sizes give several advantages, such as a higher compression ratio, a reduced number of
I/Os, and the ability to exploit the internal parallelism of SSDs. However, it makes the I/O
latency take longer to compress or decompress a larger block. The asynchronous feature
of a write request enables it to hide the longer latency, making full use of the advantages
of the larger block size. However, a synchronous read request is affected directly by the
longer latency, which compensates for the advantages of the larger block size for the
read throughput.

We coducted the same experiment using the Twitter workload and observe similar
trends, as shown in Figure 5. We also identify that compaction and compression are
conducted separately. In RocksDB, there is a special thread, called the compaction thread,
that takes charge of the overall compaction procedures. It first reads data from SSTable
files, decompresses it, performs merge–sort using the decompressed data, compresses it,
and finally writes it to new SSTable files. Note that both merge-sort and compression
are time-consuming jobs. We think that, if they are integrated in a pipelined manner,
compression can enhance throughput further.

4.4. Impact on Resource Utilization

Figure 6 shows the impact of compression techniques on resource consumption. Com-
pression increases CPU utilization, but the extent varies according to compression tech-
niques. Since the ratio-oriented techniques, LZ4 and Zstd, try to enhance compression ratio
while utilizing rather complex algorithms, they show a larger CPU utilization increment.
In contrast, the performance-oriented techniques Snappy and LZ4 show a relatively smaller
increment since they focus on reducing compression overhead while achieving a moderate
compression ratio.
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(a) CPU Utilization (b) Memory Consumption
Figure 6. Impact of compression techniques on CPU utilization and memory consumption.

The memory consumption presented in Figure 6b shows intriguing behaviors. For writes,
compression increases memory consumption, and the ratio-oriented techniques use up
more, as expected. On the other hand, for reads, the setting without compression (denoted
None in the figure) takes up more memory than performance-oriented techniques like
Snappy and LZ4. We think this is because performance-oriented techniques are geared
towards minimal resource consumption, and using no compression means that there is
more data being moved from storage to memory to be fed back to the user.

5. Lessons and Suggestions

In this section, we summarize the lessons we have learned during our evaluation.
In addition, we give four suggestions for future research direction.

5.1. Lessons

One of the primary findings from our study is that the selection of a compression
strategy has a significant impact on the rate of storage savings, the number of compactions,
and the overall throughput of key–value stores. Zstd consistently offers the smallest storage
saving rate across all block sizes, shown in Figure 3, and the fewest number of compactions,
shown in Figure 4. However, it incurs the highest CPU utilization, as shown in Figure 6a.
LZ4 provides the highest write and read throughput, but its compression ratio is relatively
low. LZ4HC enhances compression ratio at the cost of degraded throughput. Snappy,
prioritizing speed and simplicity, achieves a competitive throughput with a moderate com-
pression ratio. We need to consider this trade-off between performance and compression
ratio when we integrate compression into key–value stores.

Another lesson is that, in the current implementation of RocksDB, compaction and
compression work independently. This is inevitable, since they have been designed for
different objectives and at different times without awareness of each other. However, this
unawareness makes it hard for compaction to fully utilize the benefits of compression.

As illustrated in Figure 4, the decrease in compaction counts is not in proportion to
the reduction of compacted data. This implies that compaction is triggered more frequently
than desired. Assume that the optimal trigger point for compaction at a level is N SSTable
files if there is no compression. Then, with compression, the optimal trigger point needs to
be changed to 2 × N when the compression ratio is 50%. However, in the current version, it
is still triggered at N, more frequently. Another example of unawareness is that merge–sort
starts only after decompression is completely finished.

The third lesson pertains to the dependence of compression efficiency on diverse
factors. A larger block size can improve the compression ratio, which results in enhanced
write throughput. However, read throughput does not show such enhancement, since the
increased decompression overhead due to the larger block compensates for the benefit of
the improved compression ratio. It is also affected by workload, especially the lifetime of
data. Note that, in key–value stores, the lifetime is closely associated with the levels due to
the behavior of LSM-tree, which provides an opportunity to boost compression efficiency.
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5.2. Suggestions

These lessons lead us to suggest the following four research directions: The first
suggestion is a compression-aware compaction mechanism. It is devised to overcome
the unawareness between compaction and compression. It consists of two ideas. First, it
triggers compaction with the consideration of compression. One solution is that, if the
compression ratio is R%, we set the trigger point to 100/R × N. However, even though
this can avoid unnecessarily frequent triggering, it causes an increased number of SSTable
files at a level, which has a negative impact on reads, especially at level 0. An alternative
solution is coalescing multiple SSTable files into one during compression. For example,
if we coalesce 100/R files into one, the number of SSTable files in a level does not increase,
and frequent compaction triggering can be prevented. During coalescing, we need to
consider the key ranges of a SSTable file to reduce compaction overhead further.

The second idea is integrating merge-sort and compression/decompression in a
pipelined manner. Compaction is composed of five steps: (1) read, (2) decompress,
(3) merge-sort, (4) compress, and (5) write, as we have already discussed in Section 3.2.
Note that compression and merge-sort are time-consuming jobs. Hence, instead of passing
all data after finishing decompression, our suggested mechanism divides the decompres-
sion step into multiple stages and passes data to the next step at the stage granularity.
In addition, the merge-sort and compress steps also process data with the same granularity.
This fine-granularity processing enables the merge-sort and compression/decompression
times to overlap, eventually reducing the overall compaction latency.

Our second suggestion is a selective compression approach. We have learned that
each compression technique has its own strengths. Some have a strong point in terms of
performance, while others excel in terms of compression ratio. These observations give us
an effective guideline when we choose a compression technique based on our requirements.
For example, Zstd may be the ideal choice when space efficiency is the primary concern,
while LZ4 will be a proper choice to obtain higher throughput.

In addition, the characteristics of key–value stores drive us to propose a new selective
compression approach. Our analysis shows that the lifetime of SSTable files in the lowest
level, L0, is quite short since they are compacted shortly after being created. It implies
that employing a ratio-oriented technique at the lowest level with heavy compression
overhead is meaningless. Our analysis also uncovers that 90% of the data is stored at
the highest level. This analysis leads in the opposite direction in that a ratio-oriented
technique is indispensable at the highest level. To sum up, key–value stores require a
selective compression approach based on levels and/or other data features such as hotness
and compressibility.

The third suggestion is to utilize emerging hardware devices. Our observation shows
that a larger block can enhance the compression ratio, which in turn improves write through-
out. However, it does not improve read throughput due to the increased decompression
overhead for larger blocks. This problem can be addressed using emerging hardware de-
vices such as hardware accelerators [37] or new memory devices called NVM (Non-Volatile
Memory) [54] or PM (Persistent Memory) [55]. This paper is interested in how to exploit
NVM for compression.

NVM has both storage and DRAM features. Specifically, it supports non-volatility,
which is a storage feature, and byte-addressability, which is a DRAM feature. Non-volatility
allows for the storage of SSTable files without concern for durability. Byte-addressability
allows data to be read with fine granularity and written with coarse granularity. Hence,
using NVM, we can design a compression scheme that conducts compression with a
larger block size while decompressing it with a smaller block size. This can enhance read
throughput by decreasing the decompression overhead while achieving the benefit of a
higher compression ratio for a larger block. One challenge of this flexible compression is
how to make a shared dictionary used for both fine- and coarse-grained compression.

The final suggestion is to rethink the compression granularity. Many database
and file system developers agree that block-granularity compression is better than file-
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granularity compression, since applications access data using a block unit. However,
in key–value stores, data are accessed not only as a block unit for reading a key–value pair
but also as a file unit for compaction. Therefore, it is not obvious which one has better
granularity, block or file, in key–value stores.

This depends on various parameters, including not only compression techniques
but also storage types (e.g., slow HDDs or fast SSDs) and request portions generated
by compaction. When storage becomes faster, reading a whole file is a viable solution.
If the page cache in operating systems or the block cache in key–value stores can handle
more requests for reads, requests generated from compaction become dominant. Key–
value stores open a new design space and lead to revisiting the compression granularity,
a spectrum from a fine unit (e.g., block) to a course unit (e.g., file).

6. Conclusions

This paper presents a comprehensive analysis of compression techniques utilized in
key–value stores. We first provide a classification of compression techniques and discuss
their strength and weakness. Then, we investigate the internal structures and operations,
such as LSM-tree and compaction, in order to identify fundamental characteristics of
key–value stores. Finally, we conduct a quantitative evaluation in terms of compression
ratio and performance, while observing how characteristics and compression techniques
influence each other using both synthetic and real-world workloads.

From our evaluation, we make the following four observations. First, by applying
compression, we can achieve a space saving rate in a range from 22% to 61%. This reduc-
tion makes it feasible to boost not only the performance but also the lifespan of storage
media. Second, compression has the potential to mitigate the compaction overhead, re-
sulting in a reduction in the overall size of the compacted data, ranging from 31% to 66%.
Third, both the block size and value size influence the compaction ratio greatly. Larger
blocks and/or value sizes yield better compression ratios, generating more storage savings
and a greater I/O reduction. Finally, some compression techniques such as Zstd and
LZ4HC show better compression ratios, while others such as Snappy and LZ4 show better
compression performance.

Our observations uncover potential avenues for future research, such as compression-
aware compaction mechanism, selective compression, and reconsideration of the com-
pression granularity. For instance, we recognize that existing compaction strategies are
compression-oblivious and do not fully utilize its advantages, leading to compactions being
triggered more frequently than needed. A new compression-aware compaction mechanism
can integrate them in a pipelined manner to overlap their latencies and can perform com-
paction in a lazy manner to decrease the compaction overhead and write amplification. Our
findings also give us a guideline when we choose an relevant compression technique in
key–value stores based on our requirements, whether space efficiency or high throughput.
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