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Abstract: This article introduces a techno-economic analysis aimed at identifying the optimal total
size of movable energy resources (MERs) to enhance the resilience of electric power supply. The
core focus of this approach is to determine the total size of MERs required within the distribution
network to expedite restoration after extreme events. Leveraging distribution line fragility curves, the
proposed methodology generates numerous line outage scenarios, with scenario reduction techniques
employed to minimize computational burden. For each reduced multiple line outage scenario, a
systematic reconfiguration of the distribution network, represented as a graph, is executed using
tie-switches within the system. To evaluate each locational combination of MERs for a specific number
of these resources, the expected load curtailment (ELC) is calculated by summing the load curtailment
within microgrids formed due to multiple line outages. This process is repeated for all possible
locational combinations of MERs to determine minimal ELC for each MER total size. For every MER
total size, the minimal ELCs are determined. Finally, a techno-economic analysis is performed using
power outage cost and investment cost of MERs to pinpoint an optimal total size of MERs for the
distribution system. To demonstrate the effectiveness of the proposed approach, case studies are
conducted on the 33-node and the modified IEEE 123-node distribution test systems.

Keywords: distribution system resilience; expected load curtailment; graph theory; movable energy
resources; techno-economic analysis

1. Introduction

The frequency of extreme events, both natural (e.g., hurricanes, wildfires, earthquakes,
and windstorms) and man-made (e.g., cyber and physical attacks), has increased signif-
icantly over the recent decades [1]. In the United States, there has been a noticeable rise
in the frequency of outages caused by weather-related extreme events between 1992 and
2012, according to research conducted by the U.S. Energy Information Administration [2].
Figure 1 shows the frequency of weather-related billion-dollar extreme events that have
occurred in the United States from 1980 to 2022 based on the data collected by National
Oceanic and Atmospheric Administration [3]. In the year 2022, the United States experi-
enced 18 severe weather-related disasters, each resulting in economic damages exceeding
one billion dollars. These events have caused destruction to major power system com-
ponents and subsequently grid-wide prolonged power disruptions. Failures of power
distribution system components (contribute to about 90% outages in the United States [4])
are major causes of outages to a significant number of customers [5]. Severe weather events
and their subsequent power outages have posed a significant challenge to electric utilities
in fulfilling their mission of providing reliable and resilient electricity services to customers.
To mitigate the impact of these disruptions on end-users, strategies for power distribution
system restoration (PDSR) are essential. The primary objective of PDSR is to minimize
load disruptions and outage durations by optimizing available resources. Smart grid
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technologies, including microgrid deployment, network reconfiguration, efficient repair
crew dispatch, distributed generation resources, energy storage systems, movable energy
resources (MERs), and combinations thereof, have emerged as highly effective solutions for
PDSR in such scenarios.

MERs encompass several fundamental features that render them indispensable in
enhancing distribution system resilience. These versatile assets possess the crucial ability
to be rapidly relocated from one location to another, allowing for rapid deployment to
fault locations, which is especially valuable in mitigating the impact of non-coincidental
outage patterns across widespread areas [6]. MERs are not only mobile but also scalable,
offering the flexibility to be configured to variable sizes, thereby catering to diverse load
requirements [7]. They play a pivotal role in ensuring uninterrupted power supply to
critical loads, especially in islanded distribution systems when conventional resources are
unavailable or compromised due to equipment failures or damages [8].
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Figure 1. Frequency of weather-related extreme events in the United States.

The utilization of MERs for PDSR has witnessed a notable surge in interest and
implementation. To improve the resilience of distribution systems, a robust two-stage
optimization technique is introduced in [9]. This technique focuses on the scheduling and
routing of MERs. Similarly, in the pursuit of enhancing seismic resilience, a two-stage
PDSR approach based on Mixed-Integer Linear Programming (MILP) is presented in [10],
tailored specifically for systems with MERs. Furthermore, a PDSR strategy based on MILP
is put forth in [11] for active distribution systems. This strategy coordinates the schedul-
ing and routing of mobile energy storage systems to enhance resilience. Another facet
of PDSR is showcased in [12], where an optimization technique is presented to restore
unbalanced distribution systems effectively. This technique exhibits the versatility to coor-
dinate diverse sources of distributed generating resources, encompassing both renewable
and non-renewable types, in conjunction with battery energy storage systems. Addi-
tionally, ref. [12]includes the optimization of mobile generator dispatch, optimizing their
contribution to resilience enhancement. In the pursuit of enhancing distribution system
resilience with the integration of mobile energy storage systems, a two-stage optimization
strategy is introuduced in [13]. This strategy encompasses dynamic microgrid formation,
offering a multifaceted approach to resilience enhancement. Moreover, in [14], a concept of
separable mobile energy storage systems is introduced. This approach aims to broaden the
horizons of MER applications by enhancing their adaptability. The scheduling constraints
for MERs are meticulously derived, taking into account their intricate interactions with the
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distribution system. In [15], an optimal decision support system is presented to assist micro-
grid operators in managing various emergencies, including extreme weather and technical
issues, by maximizing the autonomy of the microgrid and prioritizing renewable energy
sources. In [16], an emergency power supply recovery strategy for distribution networks
with microgrid support is investigated to address uncertainties caused by renewable energy
sources, demonstrating its effectiveness in improving energy safety and stabilty in such net-
works. A robust approach is presented in [17] to coordinate repair and dispatch resources,
including renewable energy sources, to maximize the restored load in a distribution system
after extreme weather events while ensuring resilience against uncertainties, ultimately
enhancing the efficiency of service restoration. Despite the substantial progress in the field
of PDSR, as evidenced by the emergence of various optimization strategies for routing,
scheduling, and coordination of MERs, a noticeable research gap remains. The majority
of the above literature primarily concentrates on the coordination and dispatch of MERs
alongside other PDSR techniques for enhanced distribution system resilience. However,
a critical aspect often left unaddressed is the optimal sizing of MERs, specifically tailored to
enhance distribution system resilience. This omission underscores the need for an approach
that not only considers the deployment and utilization of MERs but also assesses their size
in the context of distribution system resilience enhancement. This research bridges this
existing gap by introducing a comprehensive techno-economic framework for determining
the optimal total size of MERs, thereby contributing a crucial dimension to the evolving
field of PDSR.

In our previous research [18], the focus was to determine the optimal number and
total size of MERs based on technical criteria. In this article, a techno-economic criterion for
determining the optimal total size of MERs is introduced. We continue to use high wind
speed as an example of extreme weather events, which aligns with our earlier study [18].
Within this framework, a wide range of multiple line outage instances is generated utilizing
forecasted wind speeds, leveraging distribution line fragility curves. Scenario reduction is
performed on this diverse set of scenarios applying the fuzzy k-means algorithm. These
reduced scenarios form the basis for assessing expected load curtailments (ELCs) contingent
on the strategic placement of MERs at various network nodes. The reduction in scenarios
plays a pivotal role in this process, minimizing computational complexity while preserving
the core attributes of the original dataset. Importantly, each reduced scenario requires
the reconfiguration of the distribution network, which is modeled as a graph, enabling
systematic evaluation. The ELC of each locational combination of MERs is then calculated
for a given number of MERs. For any MER total size, the minimal ELCs are determined.
Case studies are conducted using a 33-node system and a modified IEEE 123-node system
to demonstrate the practical utility and promising potential of the proposed approach
in enhancing distribution system resilience. The main contributions of this article are
as follows:

• Introduction of a comprehensive techno-economic framework to determine the opti-
mal total size of MERs to enhance distribution system resilience.

• Employing the fuzzy k-means algorithm for efficient scenario reduction, reducing
computational complexity while preserving key attributes of original scenarios.

• Conduction of practical case studies using the 33-node and 123-node systems to
showcase the real-world applicability of the proposed approach.

• Comparison of technical and techno-economic criteria, consistently showing that the
latter results in cost-effective solutions for distribution system resilience.

The remainder of the article is structured as follows: Section 2 elaborates on the
fundamental mathematical modeling ideas that form the foundation of this research on
optimizing MER sizes. In Section 3, we delve into the details of our proposed approach
and present the solution algorithm. To demonstrate the application of our approach, case
studies are conducted on both 33-node and modified IEEE 123-node systems in Section 4.
The discussion of the case study results are presented in Section 5. Finally, in Section 6,
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our findings and contributions are summarized, offering concluding remarks and insights
we gained.

2. Mathematical Modeling

In this section, we introduce some key mathematical ideas that form the foundation of
our research. First, we explore graph theory, which helps us create models of distribution
networks. Then, we explain graph-related concepts like “spanning trees” and “spanning
forests”. These concepts are crucial for us to figure out how to fit MERs perfectly into
resilient and reliable distribution networks. These mathematical tools are the keys to
finding the optimal total size of MERs.

2.1. Graph Theory

Within the domain of mathematics, graph theory is the discipline devoted to exploring,
constructing, and scrutinizing graphs. In this context, a graph serves as a structured
arrangement of objects, where certain pairs of these objects are conceptually linked. These
objects are symbolized through mathematical entities referred to as vertices (also known
as nodes or points), and every connection between pairs of vertices is designated as an
edge (alternatively described as a link or line) [19]. Graphs are conventionally depicted
visually, often as an assembly of dots or circles signifying the vertices, accompanied by
lines or curves symbolizing the edges. It is important to note that these edges can take on
two forms: they may either be directed or undirected. From a mathematical standpoint,
a graph can be formally represented as a pair denoted as G = (N, E), where N constitutes
a set encompassing entities referred to as nodes, and E signifies a set of nodes that are
interconnected, termed edges.

The size of a graph is contingent upon the quantity of nodes it contains. Within a
graph, a path denotes a route that can be traversed by following edges and passing through
nodes. Every component of a path, including its edges and nodes, maintains a connection
with one another. Conversely, a cycle, sometimes referred to as a circuit, represents a
specific type of path that commences and concludes at the very same node. The length
of a path or cycle is precisely determined by the count of its edges. When there exists a
path connecting each pair of nodes within a graph, it is classified as a connected graph [20].
Within the realm of connected graphs, there is a special type known as a tree, characterized
by its lack of cycles. In the context of a tree graph featuring |N| nodes and |E| edges, this
particular relationship is expressed by equation below:

|N| = |E| − 1. (1)

2.2. Graph Representation of Distribution Grid

In distribution system networks, there exist two types of switches: sectionalizing
switches (typically in a closed state) and tie-switches (typically in an open state). When all
switches within a distribution network are in the closed position, it results in the formation
of a meshed network. This meshed network can be effectively depicted as an undirected
graph, denoted as G = (N , E ), wherein N represents a collection of nodes (also known
as vertices), and E signifies a collection of edges (also referred to as branches).

2.2.1. Spanning Tree

A “spanning tree” is a fundamental concept closely associated with connected graphs.
Understanding the concept of a spanning tree is essential for comprehending more complex
graph structures. A spanning tree of the undirected graph G = (N , E ) is essentially a
subgraph that includes all the vertices of the original graph G and forms a tree structure,
which means it is acyclic (no cycles) and connected (there is a path between any two
vertices). Spanning trees are used in graph theory and network analysis to understand
the structure and connectivity of a graph while minimizing the number of edges needed
to connect all the vertices [21]. In a connected graph, there exist multiple spanning trees,
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and each of these trees shares an equal count of edges and vertices. Within the undirected
graph G , each edge is assigned a distinct numerical value, often referred to as weights,
and these weights can vary depending on the specific problem at hand. The sum of these
edge weights is minimized when the minimum spanning tree is constructed. In Figure 2a,
we can observe a spanning tree within an imaginary 12-node system. This particular
spanning tree, depicted in the figure, encompasses all the nodes within the system, which
amounts to a total of 12 nodes, and it includes 11 closed branches or edges.
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Figure 2. (a) A spanning tree and (b) a spanning forest of an imaginary 12-node system.

2.2.2. Spanning Forest

In the realm of graph theory, the concept of a “spanning forest” is intimately tied
to undirected graphs. To understand the concept of a spanning forest, it is essential to
first understand the concept of a “forest” in graph theory. A forest is a collection of trees,
where each tree comprises a set of nodes connected by edges, and no two trees within the
forest are interconnected. Essentially, a forest is a graph that contains multiple isolated
trees, and there are no cycles within each tree. Now, when discussing a spanning forest,
we are referring to a specific scenario within an undirected graph G . In this context,
a spanning forest encompasses all the nodes of the graph but is composed of a collection of
distinct, non-connected spanning trees [21]. In scenarios where all the spanning trees are
interconnected, every node within the undirected graph G is incorporated into one of these
spanning trees, as emphasized in [22]. Conversely, when a disconnected graph comprises
multiple linked segments, it assembles a spanning forest, encompassing a spanning tree for
each of these individual components, as highlighted in [23]. In Figure 2b, we can observe
a spanning forest that formed due to removal of two other edges (2–3 and 3–10) in the
previously depicted spanning tree in Figure 2a. This particular spanning forest, depicted in
Figure 2b, is composed of three distinct spanning trees (ST-1, ST-2, and ST-3).

Kruskal’s spanning forest search algorithm (KSFSA) [24] is employed in this work to
seek out the spanning forest. KSFSA commences by forming an initial forest denoted as F,
where each node within the graph is considered an individual tree. Operating in a greedy
fashion, KSFSA then proceeds to link the next least-weighted edge that does not create
loops or cycles within the existing forest F during each iteration. Ultimately, the resultant
forest F after the final iteration stands as the optimal spanning forest. Figure 3 illustrates
the process through the flowchart of KSFSA.
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Formulate a forest F, comprised of individual 

trees, with each node serving as a solitary tree 

Input an undirected graph 

Start

Is set E empty and forest F 

spanning?

Create a set E encompassing all edges 

within the graph

Remove the edge with the smallest 

weight from set E

If the removed edge connects two distinct trees, incorporate 

it into forest F to unify the two trees into a single entity.

Stop

Yes

No

Figure 3. Flowchart depicting Kruskal’s algorithm to search for spanning forest [25].

3. Proposed Approach

In this section, we explore our proposed approach, which involves several critical
stages. This comprehensive methodology includes extreme event modeling, scenario
generation and reduction, calculating expected load curtailment, and a techno-economic
analysis to find the optimal total size of MERs in a distribution system.

3.1. Generating Line Outage Scenarios in Extreme Weather with Fragility Curves

In this article, weather-related fragility curves are employed as a tool to simulate
extreme events and create numerous scenarios involving line outages. These fragility
curves serve as a means to depict how different components within the system perform
and their susceptibilities when faced with unpredictable extreme weather conditions.
To determine the failure probabilities of different components, weather forecast data are
utilized to map them onto the fragility curve, as detailed in [26]. For the purpose of this
study, the concept is illustrated with the example of multiple line outages triggered by high
wind speeds, which is a prime illustration of an extreme weather event. The likelihood of
line failure induced by high wind speeds is mathematically expressed as follows [27]:

Pl(w) =


Pl , if w < wcrl
Pl_hw(w), if wcrl ≤ w < wcpse
1, if w ≥ wcpse

, (2)

where Pl represents the probability of line failure, and this probability is influenced by the
wind speed w; Pl signifies the failure probability under standard weather conditions; Pl_hw
represents the line failure probability when faced with high winds; wcrl is the critical wind
speed, meaning the threshold at which distribution lines begin to experience failures; and
wcpse is the speed when distribution lines entirely collapse.

3.2. Fuzzy k-Means Scenario Reduction

While mimicking a substantial number of multiple line outage scenarios can undoubt-
edly enhance the accuracy of an approach, handling such an extensive dataset can be
computationally challenging and time-consuming. This is where the fuzzy k-means algo-
rithm comes into play. Fuzzy k-means is a form of soft clustering that permits scenarios to
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belong to multiple reduced clusters, thereby introducing a degree of fuzziness and overlap
between these clusters [28]. By incorporating this technique, the computational complexity
of the proposed approach is effectively streamlined while retaining its essential features
intact. This allows striking a balance between precision and computational efficiency.

Let us consider an initial collection of scenarios, denoted asX = {x1, . . . , xr}, andM =
{µ1, . . . , µK} as the set of reduced scenarios, often referred to as cluster centroids. If we
define the extent to which any data point xi from X belongs to the jth scenario cluster with
a weight uji, then the cluster centroid of the jth reduced scenario can be determined by
calculating the weighted average of all the original scenarios. The mathematical expression
to calculate the cluster centroid can be represented as follows:

µj =

r
∑

i=1
um

ji × xi

r
∑

i=1
um

ji

. (3)

In (3), m ∈ [1, ∞) is the hyperparameter, referred to as fuzzifier, that plays a crucial
role in shaping the level of fuzziness within the clusters [29]. The value of m controls
the level of of influence that each data point has on the assignment of multiple clusters.
When m is set to 1, the clustering algorithm behaves more like traditional hard clustering
(i.e., k-means clustering), where data points are distinctly assigned to a single cluster with
no overlap. As m increases, the influence of each data point on multiple clusters becomes
more pronounced, resulting in softer, more overlapping cluster assignments.

To arrive at the final values of cluster centroids, we engage in an iterative minimization
process of the objective Function (4), as detailed in [30].

min
r

∑
i=1

K

∑
j=1

um
ji ||xi − µj||2, (4)

where
uji =

1
K
∑

k=1

( ||xi−µj ||
||xi−µk ||

) 2
m−1

. (5)

To assess the quality of the scenario reduction process, a comprehensive evaluation is
conducted, comparing the effectiveness and quality of the fuzzy k-means algorithm with
that of the k-mean and k-median algorithms. Our assessment relies on a set of important
metrics, including the Silhouette (SL) index, the Calinski–Harabasz (CH) index, and the
Davies–Bouldin (DB) index.

The SL index, one of our primary evaluation metrics, plays a crucial role assessing
the quality of scenario reduction. It serves as a yardstick to measure how well an original
scenario aligns with its own cluster when contrasted with other clusters. Operating on a
scale from −1 to +1, the SL index provides valuable insights into the degree of alignment.
A higher SL index signifies a strong alignment between the scenario and its designated
cluster, whereas a lower value suggests a weaker alignment with other clusters. Mathemati-
cally, the SL index is expressed as shown in (6), which enables us to quantitatively evaluate
the alignment of scenarios within their respective clusters and their distinctiveness from
scenarios in other clusters [31].

SL =
1
r

r

∑
i=1

(
bi − ai

max{ai, bi}

)
. (6)

Each element in (6) is defined as follows: ai represents the mean separation between the ith
scenario and the remaining scenarios belonging to the same cluster, indicating the degree of
cohesiveness within the cluster. Conversely, bi represents the shortest separation between



Electronics 2023, 12, 4256 8 of 23

the ith scenario and scenarios found in different clusters, indicating the degree of separation
or dissimilarity between clusters.

The CH index assesses how widely clusters are distributed from each other. It quanti-
fies the ratio of dispersion between clusters to dispersion within clusters [32]. This index is
also known as the variance ratio index, and higher CH values signify superior clustering.
Mathematically, the CH index is represented as follows [32]:

CH =
BK × (r− K)
WK × (K− 1)

, (7)

where BK represents inter-cluster covariance and WK represents intra-cluster covariance.
The DB index employs the built-in qualities and attributes of data to assess the cluster-

ing performance. It achieves this by comparing the mean similarity of each cluster with
respect to its nearest neighbor. Here, similarity signifies the ratio of distances within a
cluster to distances between clusters [33]. Consequently, clusters that are more uniformly
distributed receive higher scores. The DB index ranges from a minimum value of 0, where
lower values signify better clustering. The mathematical expression for the DB index is
given by (8) shown below [33]:

DB =
1
K

K

∑
j=1

max
i 6=j

Sj + Si

Mji
, (8)

where Sj is a metric for quantifying the distance within the jth cluster, and Mji is a metric
for measuring the separation between clusters j and i.

3.3. Computing Expected Load Curtailment (ELC)

The ELC refers to the expected value of the total amount of the curtailed critical loads.
Since the amounts of curtailed critical loads are different for different outage scenarios,
the ELC is calculated to obtain an expected value of load curtailment out of all reduced
scenarios. It reflects the weighted average of load curtailments across multiple scenarios,
considering their likelihood of occurrence.

The ELC for the ith locational combination is calculated by summing the product of
the probability of every reduced scenario and the critical load curtailment for that scenario,
as shown in (9).

ELCi =
M

∑
j=1

Pr(j)× LCi(j), (9)

where M denotes the total count of reduced scenarios obtained after applying the fuzzy
k-means algorithm; Pr(j) denotes the probability of the jth reduced scenario; and LCi(j)
represents the amount of curtailed critical load of the jth reduced scenario for locational
combination i.

The critical load curtailment is calculated as the sum of the load curtailments at each
node in the system, weighted by the critical laod factor. Mathematically, the critical load
curtailment is represented by (10) shown below:

LCi(j) =
N

∑
x=1

ωx∆Pxi(j), (10)

where ∆Pxi(j) denotes the load curtailment at node x of the jth reduced scenario for
locational combination i; ωx denotes the critical load level at node x; and N signifies the
total number of system nodes.

When calculating the critical load curtailment, it is essential to ensure compliance with
node power balance constraints and the radiality constraint, as outlined below.

(a) Nodal power balance constraints: The nodal power balance constraint ensures that
the sum of power injected from sources, including MERs, and the power flowing through
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lines at each node equals the load demand of the node. The balance of power at each node
within the system is represented as follows:

∑
k∈Ωg(k)

Pg,k + ∑
b∈ΩB(k)

Pb,k = PD,k. (11)

In (11), Ωg(k) represents the set of generating sources, including MER, linked to node k;
ΩB(k) represents the set of branches connected to node k; Pg,k signifies the power supplied
by generating source k; PD,k indicates the power demand at node k; and Pb,k represents the
branch power flow from node b to node k.

(b) Radiality constraint: A fundamental requirement for a distribution system is radiality,
meaning that each potential configuration must adhere to this constraint. In essence,
the radiality constraint demands that every spanning tree within the network maintains
a tree-like or radial structure. The radiality constraint in a power distribution system can
be described mathematically using the node-branch incidence matrix and the concept of
Kirchoff’s Current Law (KCL). The node-branch incidence matrix is used to describe how
branches are connected to nodes in any network.

Let us suppose that each spanning tree is modeled as a sub-graph Gs = (Ns, Es),
where Ns constitutes the set of nodes, and Es encompasses the set of branches within this
sub-graph. If we denote ns as the count of nodes and es as the count of branches within a
specific spanning tree, the node–branch incidence matrix A ∈ Rns×es is constructed with its
elements, aij, determined according to (12). Specifically, aij is assigned the following values:
+1 if branch j originates at node i, −1 if branch j terminates at node i, and 0 otherwise.

aij =


+1 if branch j starts at node i
−1 if branch j ends at node i
0 otherwise

. (12)

For a distribution system to be radial, it should satisfy the following conditions:

• Single Root Node: There should be one designated root node (usually the substation
denoted by 0s) from which all other nodes receive power. This can be represented as
follows:

∑
j∈Es

aij = 0, ∀i ∈ Ns \ {0s}. (13)

In this equation, the sum of incoming branches to all nodes (except the root node 0s)
should be zero indicating all power comes from the root node.

• No Loops or Cycles: There should be no closed loops or cycles in the network. This
contraint can be expressed as follows:

∑
i∈Ns

aij ≤ 1, ∀j ∈ Es. (14)

This equation ensures that each branch has either one or zero nodes connected to it.
If a branch has more than one node connected to it, it implies the existence of a loop.

3.4. Determination of Optimum Total Size of MERs

Based on the optimum number of MERs, a techno-economic analysis is performed to
determine the optimum total size of MERs for a distribution system. While performing
the techno-economic analysis, the total of two types of costs, i.e., power outage cost and
investment cost is computed to select the optimum total size of MERs. The power outage
cost Coutage is calculated for each total MER size based on (15).

Coutage = ELCmin × toutage ×VoLL, (15)
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where ELCmin is the minimum expected load curtailment for a particular total MER size
PMER−tot; toutage is the duration of power outage; and VoLL is the value of lost load (VoLL).

For the calculation of the investment cost of MERs, the levelized cost of electricity
(LCOE) of MER is considered in addition to backup time requirement and the total size
of MERs. The investment cost of MERs Cinvestment is calculated for total MER size based
on (16).

Cinvestment = PMER−tot × LCOEMER × tbackup, (16)

where LCOEMER is LCOE of the backup generator considered for MERs; and tbackup is the
backup duration requirement.

The Levelized Cost of Electricity (LCOE), also referred to as levelized cost of energy, is
the net present worth of electricity generated by a power plant or an electricity generated
averaged over its lifetime [34]. It is commonly used for investment decision making and
comparing different sources of electricity. It is the ratio of the discounted total cost of
constructing and operating a power plant over the course of its lifetime to the discounted
value of the actual energy that can be produced over the lifetime of the power plant.
The LCOE can alternatively be thought of as the lowest price that the energy should be
sold for the power plant to break even during its lifetime [34]. Mathematically, the LCOE
can be calculated as follows [35]:

LCOE =

T
∑

t=0

Ct
(1+r)t

T
∑

t=0

Et
(1+r)t

, (17)

where Ct denotes net expenditure that includes capital cost, operation and maintenance cost
(O and M), and fuel costs (if applicable) in year t; Et denotes the actual energy generated in
year t; T denotes total assumed lifetime; and r denotes discount rate.

The flowchart in Figure 4 shows the overall steps to determine the optimal total size
of MERs using the proposed solution algorithm.

Start Read system data

Enumerate all 

candidate MER total 

sizes

Stop

Generate a set of 

reduced scenarios 

using the fuzzy k-

means method

Yes

No

Generate a set of line 

outage scenarios based 

on weather forecasting 

and monitoring data

Select an MER total 

size

Calculate ELCs for all 

locational 

combinations of 

MERs

Find the minimum 

ELC corresponding to 

the MER total size 
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4. Numerical Analysis and Results

In this section, the applicability and effectiveness of the proposed approach is show-
cased by conducting numerical analyses on two diverse distribution systems: the 33-node
and the IEEE 123-node systems. These numerical studies help us illustrate how our pro-
posed methodology works in practice and its impact on optimal MER sizing.

4.1. Systems Descriptions

This study relies on numerical simulations conducted using the 33-node system and a
modified IEEE 123-node system.

The 33-node distribution test system [36] is a widely recognized benchmark system
used for research and analysis in the field of power distribution. It is characterized by
a radial configuration, meaning it follows a tree-like structure. The key attributes of the
33-node system are as follows:

• Topology: This system comprises 33 nodes, 32 branches, and five tie-lines, resulting
in a total of 37 branches. The system’s branches, including the tie-lines, are uniquely
numbered from 1 to 37 for the purpose of analysis as depicted in Figure 5.

• Aggregate Load: The aggregate load within the 33-node system is approximately
3.71 MW. The total load is distributed across different system nodes.

• Critical Loads: To evaluate the system performance during extreme events, specific
critical loads are considered within the 33-node system. The amounts and locations
of critical loads within the 33-node system are shown in Table A1 of Appendix A.
The total amount of critical loads in this system is 1265 kW and the distribution of
critical loads across various nodes are indicated in Figure 5.

The modified IEEE 123-node system serves as another testbed for our research and
analysis. It shares similarities with the 33-node system in terms of radial configuration and
critical load considerations but offers a larger and more complex network for investigation.
The key characteristics of the modified IEEE 123-node system are as follows:

• Topology: This system consists of 123 nodes and 126 branches, which form a radial
distribution network as depicted in Figure 6. Similar to the 33-node system, it adheres
to a tree-like structure.

• Branches with Tie-Switches: Within the network, two branches (specifically branches
94–54 and 151–300) are equipped with tie-switches, allowing for controlled reconfigu-
ration during system disturbances.

• Aggregate Load: The aggregate load within the IEEE 123-node system is approximately
3.47 MW. The total load is distributed across different system nodes.

• Load Balance: All branches and loads within the modified IEEE 123-node system
are assumed to be balanced, simplifying the analysis while maintaining a realistic
representation of a distribution system.

• Critical Loads: As in the case of the 33-node system, specific critical loads within this
system are identified. The critical load details for this system are shown in Table A2
of Appendix A. The total amount of critical loads in this system is 815 kW and the
distribution of critical loads across various nodes are indicated in Figure 6.

4.2. Implementation and Results in Case of the 33-Node System

To implement the proposed approach for determining the optimal total size of MERs
in the case of the 33-node system, multiple line outage scenarios are generated using a high
wind speed condition as a representative extreme weather event. In this study, the critical
wind speed and the collapse speed of 30 m/s and 55 m/s, respectively, are assumed as
parameters associated with the fragility model (2) [27]. During normal weather conditions,
a failure probability of 0.01 is considered. The failure probability starts to increase after
reaching 30 m/s and follows a linear pattern up to 55 m/s. The resulting wind fragility
curve for distribution lines is depicted in Figure 7. To create a robust dataset for analysis,
10,000 random outage scenarios are generated.
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Figure 6. Modified IEEE 123-node system.

Subsequently, the fuzzy k-means algorithm is employed to effectively reduce the
initially generated scenarios into a more manageable set of 200 reduced outage scenarios,
all occurring at wind speeds of 38 m/s. This application of the fuzzy k-means algorithm
results in 200 reduced line outage scenarios, each associated with its respective probability
of occurrence. To assess the quality of our scenario reduction approach, it is compared with
alternative clustering algorithms, specifically k-mean [37] and k-median [38] algorithms.
To conduct this comparison, three evaluation indices, namely the Silhouette (SL) index,
the Calinski–Harabasz (CH) index, and the Davies–Bouldin (DB) index, are employed.
These indices help gauge the effectiveness of the fuzzy k-means algorithm in relation to the
other clustering techniques.

Table 1 provides a summary of the index values for all three clustering algorithms.
The results of this comparison reveal that the fuzzy k-means algorithm outperforms the
other algorithms in terms of all three indices, indicating its superior performance in sce-
nario reduction.
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Table 1. Comparative Assessment of Scenario Reduction for the 33-node System.

Index/Algorithm k-Means k-Medians Fuzzy k-Means

SL index 0.0257 0.0119 0.0292

CH index 19.507 16.947 20.211

DB index 2.869 3.116 2.833

 

Figure 7. Distribution Line Wind Fragility Curve.

The total sizes of MERs ranging from 500 kW to 1900 kW are taken at a granularity level
of 100 kW. The methodology outlined in our previous work [18] is adopted to determine
the optimal number of MERs, which is seven for the 33-node system. The individual sizes
of MERs are determined by dividing the total MER size by the optimal number of MERs.
For each candidate total MER size, there are multiple locational combinations. Seven
MERs could be distributed on various nodes using a number of ways. For each locational
combination of MERs, the expected load curtailment (ELC) is determined by considering
critical load curtailments corresponding to each of the 200 reduced line outage scenarios
and their probabilities. Based on these ELC values, the minimum ELC for each MER total
size is calculated.

Results of Techno-Economic Criteria: For techno-economic analysis, the sum of power
outage cost (15) and investment cost (16) is used to determine the optimum total size of
MERs. The value of lost load, i.e., VoLL in (15) is taken as USD 10/kWh. The outage
time and backup time in (15) and (16) are both set equal to 72 h based on backup duration
suggested by Federal Emergency Management Agency (FEMA) for a long-term power
outage [39]. The LCOE of MER is calculated using the LCOE calculator [40] developed by
National Renewable Energy Laboratory (NREL). During the calculation of LCOE, the MER
is assumed to be a mobile diesel generator and the calculated value of LCOEMER used for
the analysis is USD 0.6/kWh.

Figure 8 shows the plot of total cost as a function of total MER size based on techno-
economic analysis. The investment cost is the increasing function of the total MER size,
whereas the power outage cost is the decreasing function of the total MER size. When both
the costs are added together, the total cost initially decreases, reaches a minimum at the
total MER size of 1300 kW, and starts increasing. Therefore, the optimal total MER size is
1300 kW for the case of the 33-node system based on techno-economic analysis.
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Figure 8. Plot of techno-economic analysis for the case of the 33-node system.

4.3. Implementation and Results in Case of the IEEE 123-Node System

In the context of the IEEE 123-node system, a case study approach similar to the
previous one is replicated. Here, as well, 10,000 random outage scenarios are generated,
and the fuzzy k-means algorithm is employed to reduce them down to 200 scenarios, each
accompanied by its respective probability distribution. For a comparative assessment, three
distinct indices are utilized. Table 2 presents a comparison between the fuzzy k-means al-
gorithm and alternative scenario reduction techniques based on these indices. The analysis
reveals that the fuzzy k-means algorithm outperforms the alternative algorithms in terms
of scenario reduction effectiveness. The methodology outlined in our previous work [18] is
adopted to determine the optimal number of MERs, which is eight for the modified IEEE
123-node system.

Results of Techno-Economic Criteria: Figure 9 shows the plot of total cost as a function of
total MER size based on techno-economic analysis. The investment cost is the increasing
function of the total MER size, whereas the power outage cost is the decreasing function of
the total MER size. When both the costs are added together, the total cost initially decreases,
reaches a minimum at the total MER size of 700 kW, and starts increasing. Therefore,
the optimal total MER size is 700 kW for the case of IEEE 123-node system based on
techno-economic analysis.
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Figure 9. Plot of techno-economic analysis for the case of the IEEE 123-node system.
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Table 2. Comparative Assessment of Scenario Reduction for the 123-node System.

Index/Algorithm k-Means k-Medians Fuzzy k-Means

SL index −0.006 −0.001 0.010

CH index 5.851 5.262 6.597

DB index 4.523 4.919 4.415

4.4. Comparison

To compare the results of the techno-economic analysis for both the 33-node and IEEE
123-node systems, they were evaluated against a technical criterion based on the sensitivity
of the minimum ELC with respect to the total MER size, as proposed in [18].

For the 33-node system, a total MER size of 1200 kW was suggested by the technical
criterion, while a total MER size of 1300 kW was indicated by the techno-economic criterion
of this study. This difference in MER sizing resulted in total costs of USD 101,200 and USD
95,607, respectively, when considering both outage costs and investment costs. In contrast,
for the IEEE 123-node system, both criteria converged on a total MER size of 700 kW,
resulting in identical total costs of USD 45,554, considering both technical and techno-
economic criteria.

Overall, the techno-economic criterion was consistently associated with either lower
or equal total costs compared to the technical criterion, as illustrated in the bar chart in
Figure 10. This comparison highlights the advantages of the proposed techno-economic
criterion in achieving cost-effective solutions for enhancing power supply resilience in both
test distribution systems.

33-node system 123-node system
Distribution System

0.00

20,000

40,000

60,000

80,000

100,000

To
ta

l C
os

t (
$)

Technical Criterion
Techno-Economic Criterion

Figure 10. Total Cost Comparison between Technical and Techno-Economic Criteria in both Test
Distribution Systems.

4.5. Sensitivity Analysis

To assess the sensitivity of both the total MER size and the total cost in relation
to outage duration and the Value of Lost Load (VoLL), a series of sensitivity analyses
were conducted.

4.5.1. Outage Duration Sensitivity Analysis

The first sensitivity analysis focuses on the impact of changes in outage duration
on the total MER size and total cost for both the 33-node and IEEE 123-node systems.
Outage duration was systematically varied from 24 h (equivalent to a 1-day outage) to
168 h (equivalent to a 1-week outage).
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Figures 11 and 12 present the outcomes of this sensitivity analysis for the 33-node
and IEEE 123-node systems, respectively. As evident from the figures, an increase in
outage duration leads to a corresponding rise in total cost, which aligns with expectations.
However, intriguingly, the figures also demonstrate that the total MER size remains constant
throughout the varied outage durations. This observed constancy in the total MER size
may seem counterintuitive, as it might be expected that longer outages would necessitate
larger MER sizes for an effective resilience strategy.
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Figure 11. Sensitivity Analysis of Total MER Size and Total Cost with Outage Duration for the case of
the 33-node system.
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Figure 12. Sensitivity Analysis of Total MER Size and Total Cost with Outage Cost for the case of the
IEEE 123-node system.

This constancy in the total MER size can be attributed to the underlying assumption
that VoLL remains unchanged regardless of the outage duration. However, empirical
research indicates that VoLL can indeed vary with outage duration, as indicated in refer-
ences [41,42]. To account for this variability, an additional sensitivity analysis is required,
wherein VoLL is considered as a variable of sensitivity.

4.5.2. VoLL Sensitivity Analysis

In the second sensitivity analysis, the VoLL parameter is varied from USD 1/kWh to
USD 20/kWh, and the optimal total MER size and total cost are determined for each VoLL
value. Figures 13 and 14 illustrate the results of this sensitivity analysis for the 33-node and
IEEE 123-node systems, respectively. These figures distinctly illustrate that the total cost
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consistently increases with higher VoLL values. However, the behavior of the total MER
size exhibits a somewhat discontinuous pattern, with periods of constancy within specific
VoLL ranges.
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Figure 13. Sensitivity Analysis of Total MER Size and Total Cost with VoLL for the case of the
33-node system.
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Figure 14. Sensitivity Analysis of Total MER Size and Total Cost with VoLL for the case of the IEEE
123-node system.

Typically, VoLL values considered for outages lasting from 24 to 72 h fall within the
range of USD 5/kWh to USD 15/kWh. Notably, the VoLL value of USD 10/kWh utilized
in this study to determine the optimal total MER size aligns with this typical range.

5. Discussion

In this section, a comprehensive discussion is undertaken regarding the findings,
with a focus on the results of several key aspects of the study. These include the outcomes
of the fuzzy k-means scenario reduction, the insights gained from the techno-economic
analysis, a comparison of the findings with technical criteria, and a detailed exploration of
the results from the sensitivity analyses. Through these facets, the aim is to illuminate the
implications of the research for enhancing power supply resilience in distribution systems.

5.1. Fuzzy k-Means Scenario Reduction

The application of the fuzzy k-means algorithm for scenario reduction yielded promis-
ing results in both the 33-node and IEEE 123-node systems. As shown in Tables 1 and 2,
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the fuzzy k-means algorithm consistently outperformed alternative clustering techniques,
including k-means and k-medians, as evidenced by higher Silhouette (SL) indices, Calinski–
Harabasz (CH) indices, and lower Davies–Bouldin (DB) indices. These findings demon-
strate the effectiveness of fuzzy k-means in reducing the complexity of the initial scenario
dataset while preserving crucial information regarding outage probabilities and their re-
spective scenarios.

The superiority of fuzzy k-means can be attributed to its ability to capture the inherent
uncertainty and overlap in outage scenarios, a feature that distinguishes it from traditional
clustering methods. By assigning membership degrees to each data point, fuzzy k-means
accommodates the possibility of scenarios having multiple cluster memberships, which
is often the case in practical power system problems. This enhanced representation of
scenario uncertainty contributes to more accurate and robust resilience planning.

5.2. Techno-Economic Analysis

The techno-economic analysis provides valuable insights into the determination of
the optimal total size of MERs. By considering both outage costs and investment costs,
this approach offers a comprehensive perspective on the trade-offs involved in enhancing
power supply resilience. The results, as illustrated in Figures 8 and 9, demonstrate that the
optimal total MER size depends on both outage costs and investment costs. These costs,
in turn, are contingent upon specific characteristics inherent to distribution systems, such
as network topology and the quantity and distribution of critical loads.

Furthermore, the techno-economic analysis reveals that the optimal total size of MERs
within a distribution system is also influenced by the quantity of critical loads present in
the system. Specifically, the total amounts of critical loads in the 33-node and 123-node
systems are 1265 kW and 815 kW, respectively. Remarkably, this aligns with the optimal
MER sizes obtained for these two systems, which were 1300 kW and 700 kW. Additionally,
the optimal total size is impacted by the system’s topology and the distribution of critical
loads; these subtleties become evident only through meticulous analysis.

5.3. Comparison with Technical Criteria

The comparison between technical and techno-economic criteria, as presented in
Figure 10, reveals a critical aspect of resilience planning. In cases where the technical
criterion alone is considered, there is a potential risk of suboptimal MER sizing, leading
to higher total costs. The techno-economic criterion consistently results in either lower or
equal total costs, emphasizing its effectiveness in achieving cost-effective solutions.

In the case of the 33-node system, the techno-economic criterion identified an optimal
total MER size of 1300 kW, resulting in a total cost of USD 95,607. This finding contrasts
with the technical criterion, which suggested a total MER size of 1200 kW and a total cost
of USD 101,200. This discrepancy underscores the importance of considering economic
factors when determining optimal MER sizes, as it accounts for the cost effectiveness of
larger MER capacities in reducing outage costs.

In contrast, the IEEE 123-node system yielded consistent results between the technical
and techno-economic criteria, with both suggesting a total MER size of 700 kW and a total
cost of USD 45,554. This congruence highlights the robustness of the techno-economic
criterion in providing cost-effective resilience solutions for diverse distribution systems.

This observation underscores the necessity of integrating economic considerations
into resilience planning. While technical criteria are essential for ensuring the desired level
of resilience, they must be complemented by techno-economic assessments to strike an
optimal balance between MER size, investment costs, and outage costs. The bar chart serves
as a compelling visual representation of the tangible benefits of adopting a techno-economic
perspective in distribution system resilience planning.
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5.4. Sensitivity Analysis

The sensitivity analyses conducted for outage duration and VoLL provide deeper
insights into the dynamic nature of MER sizing and cost implications. The observed con-
stancy in the total MER size with varying outage durations, as shown in Figures 11 and 12,
highlights a critical assumption that VoLL remains constant across different outage du-
rations. However, empirical evidence suggests that VoLL can vary with the duration of
power outages. This finding emphasizes the importance of revisiting the assumption of
constant VoLL and conducting further research to capture the dynamics of VoLL with
varying outage durations.

The VoLL sensitivity analysis, depicted in Figures 13 and 14, demonstrates the direct
relationship between VoLL and total cost. Higher VoLL values result in increased total
costs, which aligns with economic principles. However, the behavior of the total MER size
in response to VoLL variations is more intricate. The discontinuous pattern suggests that
there may be specific VoLL thresholds where further increases do not significantly impact
the optimal MER size.

The sensitivity analyses highlight the necessity of more advanced approach for re-
silience planning in relation to VoLL and outage duration considerations. Distribution
system planners can develop more accurate and cost-effective strategies for improving
power supply resilience by taking into account changes in VoLL and recognizing that opti-
mal MER sizing may not necessarily increase linearly with outage duration. It is necessary
to conduct more research to better understand the relationships between these variables
and to improve the proposed approach.

6. Conclusions and Future Work

This article presented a comprehensive approach to enhance the resilience of distri-
bution systems through the optimal deployment of Movable Energy Resources (MERs).
We introduced a techno-economic analysis that considers both power outage costs and
the investment costs associated with MERs. Recognizing that this is a relatively long-term
planning problem, a diverse set of line outage scenarios was generated to adequately
account for uncertainties associated with extreme events. The fuzzy k-means algorithm
was later employed for scenario reduction to maintain computational tractability. Due to
the outage of distribution lines, the distribution network was divided into a number of
microgrids and isolates. The microgrids were energized by MERs, whereas the isolates
were devoid of power supply. The amount of curtailed critical loads was determined for
each outage scenario.

Through extensive analysis, the expected load curtailment (ELC) was determined
for various locational combinations of MERs and different MER total sizes. Our techno-
economic evaluations led to the identification of optimal MER sizes. Specifically, we found
that, for the 33-node and IEEE 123-node systems, optimal total sizes of 1300 kW and 700 kW,
respectively, are the most cost-effective total sizes. These results demonstrate the potential
of the proposed approach to enhance distribution system resilience while considering the
economic feasibility of MER deployment. The total cost associated with the optimal MER
size of 1300 kW in the 33-node system is USD 95,607, and for the optimal MER size of
700 kW in the IEEE 123-node system, it is USD 45,554.

Our research underscored the critical role of MERs in fortifying distribution systems
against a growing frequency of extreme events, whether natural disasters or man-made
disruptions. By incorporating a techno-economic perspective, we bridged the gap between
technical resilience goals and cost-effective solutions. This approach allowed us the making
of informed decisions regarding MER deployment, ensuring investments align with both
system resilience objectives and economic feasibility.

As a future work, this research can be extended to include stability assessment. This
assessment would consider the integration of MERs and explore the potential role of
advanced power electronics in maintaining system stability while enhancing resilience. Ad-
ditionally, further research into advanced control strategies and coordination mechanisms
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for MERs in distribution systems could be pursued to enhance their effectiveness during
extreme events.
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Nomenclature

G distribution network graph
N set of distribution network nodes
E set of distribution network edges
Pl probability of line failure
Pl failure probability under standard weather conditions
Pl_hw line failure probability when faced with high winds
wcrl critical wind speed
wcpse collapse speed
µj centroid of jth cluster
SL Silhouette index
CH Calinski–Harabasz index
DB Davies–Bouldin index
BK inter-cluster covariance
WK intra-cluster covariance
LCi(j) critical load curtailment of the jth reduced scenario for locational combination i
ELCi expected load curtailment (ELC) for the ith locational combination
Pr(j) probability of the jth reduced scenario
ωx critical load factor at node x
PMER−tot total MER capacity
ELCmin minimum ELC for a particular total MER size PMER−tot
toutage duration of power outage
VoLL value of lost load
Cinvestment investment cost of MERs
LCOEMER levelized cost of electricity (LCOE) of MER
tbackup backup duration requirement

Abbreviations

The following abbreviations are used in this manuscript:

MER Movable Energy Resource
ELC Expected Load Curtailment
LCOE Levelized Cost of Electricity
KSFSA Kruskal’s Spanning Forest Search Algorithm
NREL National Renewable Energy Laboratory
IEEE Institue of Electrical and Electronics Engineers
PSDR Power Distribution System Restoration
FEMA Federal Energy Management Agency
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Appendix A

Table A1. Locations of Critical Loads for the 33-node System.

Nodes Critical Loads (kW) Nodes Critical Loads (kW)
4 60 20 45

5 30 21 45

6 60 22 45

7 200 23 45

8 200 26 60

9 60 27 60

10 30 28 60

11 25 29 60

18 45 30 60

19 45 33 30

Table A2. Locations of Critical Loads for the 123-node System.

Nodes Critical Loads (kW) Nodes Critical Loads (kW)
1 40 66 75

6 40 75 40

11 40 79 40

17 20 85 40

24 40 87 40

30 40 94 40

37 40 98 40

43 40 100 40

50 40 109 40

52 40 113 40
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