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Abstract: Modern processors have improved performance but still face challenges such as power
consumption, storage limitations, and the need for faster processing. The 16-bit Digital Signal
Processors (DSPs) accelerate DSP applications by significantly enhancing speed and performance
for tasks including audio processing, telecommunications, image and video processing, wireless
communication, and consumer electronics. This paper presents a novel technique for accelerating
DSP applications on a 16-bit processor by combining two methods: Block Random Access Memory
(BRAM) and Distributed Arithmetic (DA). Integrating BRAM as a replacement for conventional
RAM minimizes timing and critical route delays, improving processor efficiency and performance.
Furthermore, the Distributed Arithmetic approach enhances performance and efficiency by utilizing
precomputed lookup tables to expedite multiplication operations within the Arithmetic and Logic
Unit (ALU). We use the Xilinx Vivado tool, a robust development environment for FPGA-based
systems, for the design process and execute the hardware implementation using the Genesys2 Kintex
board. The proposed work produces improved efficiency with a cycle per instruction of 2, where the
delay is 2.009 ns, the critical path delay is 8.182 ns, and the power consumption is 4 mW.

Keywords: 16-bit processor; distributed arithmetic (DA); Block RAM (BRAM); Xilinx Vivado;
Genesys2 Kintex

1. Introduction

The increased demand for specialized real-time digital signal processing applications
has recently driven the development of efficient hardware solutions such as Digital Signal
Processors (DSPs) [1]. These processors play a crucial role in various applications and in-
dustries, including telecommunications [2], music processing [3], and image processing [4],
by efficiently processing data and executing complex algorithms for real-time tasks. How-
ever, conventional DSPs have their limitations. One notable limitation is their dependence
on traditional Random Access Memory (RAM) for data storage and retrieval, which can
introduce timing delays and critical path issues, negatively affecting overall performance
and efficiency. To address these limitations, we explore the integration of Block RAM
(BRAM), an alternative to traditional RAM, with Distributed Arithmetic (DA) to minimize
timing and critical route delays. Incorporating the DA approach into the design of DSPs
addresses the limitations of conventional processors. It eliminates timing delays, increases
computational efficiency, and improves overall performance. DA significantly accelerates
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multiplication operations using precomputed lookup tables, enhancing the processor’s
effectiveness. Thus, DSPs can handle multiplication tasks swiftly and efficiently, improving
their real-time processing capabilities [5]. Consequently, DSPs are better equipped to meet
the growing demands of real-time digital signal processing applications across diverse
industries. This article [6] describes a novel circuit design that applies the concepts of
classical conditioning to neural networks built with memristors, and this innovation finds
application in DSP applications. DSP systems can perform tasks such as pattern recog-
nition, noise reduction, and adaptive filtering across various domains, including audio,
image, and communications processing. This circuit design enhances DSP systems’ ability
to handle complex interactions, adapt to changing conditions, and incorporate memory
and inhibition mechanisms. Considering the advantage of integrating BRAM with DA
to accelerate DSPs, this paper proposes a design employing the BRAM-DA integration
technique, rendering it well-suited for DSP applications such as audio and image pro-
cessing, where efficient multiplication and accumulation operations are performed every
day. Filters are employed in audio processing to perform tasks such as equalization, noise
reduction, and effects processing. In audio processing, the DA is used for filtering and
convolution and speeds up convolution procedures by utilizing precomputed coefficients
and distributed storage of intermediate results. This acceleration is crucial for real-time
audio applications.

2. Existing Works

This section explores previous methods and advancements associated with improv-
ing performance in DSP applications using a 16-bit DSP. Our investigation encompasses
architecture, memory hierarchies, instruction sets, energy-saving techniques, and hardware
and software integration. The focus is on how the 16-bit DSP demonstrates its potential to
enhance performance across various applications.

DSPs specialize in signal processing applications [7], featuring tailored architectures
with dedicated Arithmetic Logic Units (ALUs), parallel processing capabilities, and efficient
data pathways. These processors use specific Instruction Set Architectures (ISAs) designed
for signal processing, allowing for the streamlined execution of complex algorithms. They
also contain optimized memory systems, including on-chip cache and scratchpad memory,
to reduce latency and increase data throughput. SIMD (Single Instruction, Multiple Data)
operations and parallel processing are crucial in accelerating computations in data-intensive
applications. Effective collaboration between hardware and software teams during the
design process ensures efficient software–hardware co-design.

Given the growing significance of DSPs in modern technology, researchers have
proposed various solutions to address their challenges and demands. These solutions aim
to enhance the capabilities and efficiency of DSPs for a broad range of applications.

Recently, in [1], the work was focused on improving DSP techniques and applica-
tions and highlighted the implementation of advanced methodologies, signal processing
methods, and the potential benefits of DSP. Yang et al. presented an affordable, high-
performance embedded platform for real-time image acquisition and processing using
FPGA and DSP technology [5]. In [6], a novel circuit design is presented that applies the
concepts of classical conditioning to neural networks built with memristors; this inno-
vation may find application in DSP applications. Han et al. [8] explored deep learning
and scientific computing with DSP architecture, proposing the FT-Matrix2 architecture to
enhance arithmetic performance and computational precision. Kapoor et al. emphasized
the wide range of applications for DSP [9], particularly in wireless communications and
radar signal processing. They also highlighted the versatility of the suggested DSP de-
sign, making it suitable for automotive applications. To improve system performance and
data efficiency, C.H. Gebotys’ 2002 introduces a network flow-based strategy to optimize
memory bandwidth utilization in embedded DSP core processors [10].

Donghoon et al. [11] designed a robust 16-bit DSP with advanced features, including a
40-bit ALU, a six-level pipeline, and a 17 × 17 parallel multiplier. The paper [12] focuses
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on enhancing the efficiency of paraunitary filter banks, with potential applications in
signal processing and communications. Alqasemi et al. [13], and colleagues designed a
flexible FPGA-based processor for real-time imaging, excelling in quick reconfiguration
and efficient resource management. In addition, 5G technology brings transformative
improvements, benefiting areas such as autonomous vehicles and remote surgery. Mobile
applications use DSPs for enhanced processing and multimedia functions. DA [14] is a
promising method for efficiency and real-time processing across various domains. These
studies aim to develop real-time solutions using DSP technology to advance their respective
fields. They also underscore the importance of algorithm adjustments and performance
factors to achieve high-speed processing.

3. Proposed Methods

The CPU sequentially fetches program instructions from program memory using
memory addresses. Faster memory improves instruction access, and BRAM speeds up
execution through parallel processing. Efficient data processing in DSP relies on data
memory. Advancements in memory will enhance DSP performance in response to the
increasing memory requirements of applications. Integrating BRAM into DSP design
and utilizing DA in ALU design [15] significantly enhances real-time signal processing.
For instance, real-time audio signal processing involves converting analog audio to digital
and applying effects such as reverb, equalization, and noise reduction using the DSP’s
ALU. DA-based ALU design [16] optimizes tasks such as convolution by replacing complex
multiplications with precomputed partial products, reducing computational complexity
and enabling quick processing for functions such as filtering and adaptive filtering [17].
The synergy of BRAM and a DA-driven ALU enhances performance, achieving high-quality
audio effects and improvements across applications with demanding latency requirements.
Incorporating BRAM into the DSP architecture [18] addresses concerns about storage space,
power consumption, and efficient data access. This integration considers the following
characteristics and factors: 1. Enhanced Data Storage: BRAM enables the storage of more
significant amounts of data than distributed RAM, resulting in faster data access and
reduced response times. It also maximizes memory utilization. 2. Read and Write Ports:
The DSP [19] architecture typically includes two read ports and two write ports for each
BRAM, facilitating concurrent memory access and providing flexibility in configuration.
3. Reading and Writing Functionality: BRAM outputs can read or write data based on the
status of the write enable pin (wep), enhancing flexibility for data access and modification.
4. Clock Edge Timing: Synchronized read and write operations within BRAM require a
clock edge to ensure precise sequencing and efficient data handling.

The proposed DSP, depicted in Figure 1, enhances performance by integrating BRAM
into the architecture. This utilization offers benefits such as the ability to read during
write operations, multiple read and write ports, and increased data storage capacity, all
contributing to the enhanced performance of the DSPs. This paper employs an instruction
set to create program instructions customized for a particular processor. These instructions
undergo decoding within an instruction decoder, generating the necessary control signals
for executing the operations specified in those instructions. For DSP applications, it is
essential to note that the instruction set architecture (ISA) differs remarkably from that
of conventional processors. Efficiently transferring information between registers and
memory is paramount in DSP, specifically when dealing with streaming data. DSP tasks
often involve complex mathematical and logical operations.

To meet these requirements, we design instructions that optimize data transfers,
particularly for streaming data, and integrate a distributed arithmetic-based technique
into the ALU. This ALU is tailored explicitly for DSP calculations. We have also included
DSP-specific instructions in the instruction set. These instructions efficiently perform
functions such as complex number arithmetic, vector manipulations, and filtering, thereby
simplifying data streaming and parallel processing—vital aspects in DSP applications.
Figure 2 illustrates the Instruction Register (IR) within BRAM, where the opcode determines
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the nomenclature of the IR, representing the specific operation performed. In Figure 2,
“dst” refers to the register that stores the value after completing the operations; the “src1”
register acts as the source of the first input, and the “src2” register serves as the source of
the second input. In reg mode (0), the immediate select pin imm_sel determines whether
the information comes from two registers or directly from values provided by the user.
When imm_sel is set to 0, this mode corresponds to using a register, while setting it to 1
denotes the immediate way as imm mode (1).

Figure 1. Proposed processor’s architecture.

Figure 2. A 32-bit Instruction Register.

The IR indicates the opcode using the first five bits, representing the operation per-
formed on the given inputs. This format generates and loads COE files into the program
memory. When saving the produced outputs, you need to specify the destination register.
Registers store the values to be modified, which you can obtain either from registers or by
providing immediate data within the 0–15 bits range. The Instruction Register contains
the imm_sel at bit 16, serving this purpose. imm_sel set to 1 uses primary data, while an
imm_sel of 0 indicates the usage of values from the source registers. The specified General
Purpose Registers (GPRs) store the results of this manipulation. Processors [20] execute
software programs by retrieving, decoding, and executing stored instructions from sets.
Memory, like BRAM, holds accessible data, and instructions modify and store data with
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controlled sequencing. DA Lookup tables assist in specific tasks by boosting arithmetic
operations through address-based access. DA processors require fewer gates, employing
precomputed tables for efficient computation. Bit-serial DA calculates the inner product in
a step, excelling in precise computing. DA eliminates the need for multiplication, focusing
on arithmetic. Its efficiency benefits processors by enhancing circuits and ALUs [21], re-
ducing hardware resources for speed and efficiency. In this study, the DA-based approach
depicted in Figure 3 increases processor speed by minimizing delays, accelerating DSP
performance. Compared to traditional methods, it excels, especially in real-time applica-
tions, due to pre-processed data that reduce computational complexity and delays. DA
operates bit-serially, reordering multiply and accumulating operations. When used in the
ALU of DSP, it simplifies operations and enhances the retrieval of outputs, making the
ALU highly effective in signal processing. The DA-based ALU’s instruction set comprises
32 instructions: the first 16 are logarithmic, and the latter 16 are arithmetic. It executes
operations on filtered bits [22,23] based on user-provided addresses for specific functions.

Figure 3. DA Look-Up Table.

4. Results

The proposed processor’s functioning becomes apparent through the following out-
lined steps. These steps offer insights into how the processor operates and executes tasks
based on the provided test bench code. The BRAM program memory has the test bench
code, which aligns with the IR structure. Operation initialization: The processor’s operation
commences when the enable pin of the program memory is 1. Instruction fetching: When
enrom = 1, the processor retrieves the next instruction’s value from the address [15:0] and
loads it into doutn [31:0] within the program memory. Instruction decoding: The test bench
code provides instructions and their execution sequence. The IR can access data from
general-purpose registers or immediate data based on the instruction’s rapid selection.
Controller and status register: The controller interprets information from the IR based on
the provided opcode. Register data storage: For instructions related to data storage or
movement, the controller directly accesses GPRs to carry out the operation.
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ALU operations: The controller triggered by instructions requires input procedures
to fetch values from GPRs and send them to the ALU. The ALU executes operations on
the inputs and temporarily stores results in the data memory, acting as temporary storage.
ALU functionality: The ALU accesses data from GPRs, executes instructed operations,
and temporarily stores the output in BRAM data memory before permanently updating
GPRs. Output observation: You can view the output from the RAM by activating the read
enable pin; after using the write, allow the pin to store the work in the RAM. Permanent
storage: To permanently store the output in registers, the controller sends data from
RAM’s doutp to GPRs, storing the result in the specified destination register. Continuous
execution: While ALU operations are taking place, the system simultaneously retrieves
the following input from the testbench code (COE file), enabling continued instruction
execution. Jump and branch handling: When the processor encounters jump or branch
instructions, the program counter manages the execution flow, ensuring smooth transitions.
Usage of lr and blr registers: The processor employs lr and blr registers for branching
and jump operations, allowing it to execute specific instructions. Jump execution: The
values in lr and blr registers determine the destination of jumps, temporarily altering the
PC to execute instructions accordingly. Controller and status register usage: The controller
actively utilizes the status register to determine the operational state, contributing to
delay management.

Handling delays: The processor’s operation includes a default delay, and to pre-
vent further delay amplification, it introduces a two-cycle delay after each procedure.
Synchronizing with the clock: The processor synchronizes its execution using a clock,
with operations occurring at the positive edge of each clock cycle. Fetching and execut-
ing instructions: After every two-cycle delay, the processor loads the following input
into the IR and proceeds with execution based on the opcode, and the program counter
increments after each operation. Enhancing speed and reducing delay: The implemen-
tation of this processor effectively tackles issues related to speed and delay in execution.
The proposed processor efficiently executes tasks according to the test bench code, man-
aging delays, branching, and control flow while utilizing various registers and memory
components. This implementation results in improved speed and reduced delay, enhancing
overall performance.

To illustrate, we achieved the results using the Xilinx Vivado tool, following the
instructions above, demonstrating a simple process of repeatedly subtracting a number
using a loop. This process concludes when the value reaches zero. We presented the
test bench and algorithmic program code related to this in Figure 4 (top) for reference.
In Figure 4 (bottom), we depict the operation where we copy the instruction in doutn [31:0]
into IR during the enabling of the program memory (enrom = 1). For the zeroth instruction,
each time we update the Instruction Register, the ALU and GPRs execute the instruction
and store the resulting data in destination registers through data memory, requiring three
delay cycles to activate the subsequent instruction, as illustrated in Figure 5 (top). Lastly,
Figure 5 (bottom) shows the sixth instruction—a new instruction process begins each time
enrom = 1. Figure 6 illustrates logarithmic and arithmetic values within a DSP based on DA.

Each instruction takes two clock cycles to complete in a fundamental process dur-
ing simulation operation. The next instruction is fetched and loaded into the instruction
register during this cycle. The CPU then decodes the opcode, determining what specific
action needs to be carried out. Depending on this opcode, the processor performs various
activities, including arithmetic and logical computations, data manipulation, and orches-
trating control flow actions. The basis of a processor’s functionality is the integration of
sequential tasks, which guarantees the timely execution of commands. In this work, we
performed simulations for several operations, focusing on the zeroth, first, fourth, and sixth
instructions and a halt operation. We consider the total number of operations carried out
across all instructions as part of calculating total execution time, even though the article
only shows findings for the zeroth and sixth instructions. Our proposed architecture out-
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performs conventional DSP by significantly reducing execution time and demonstrating its
suitability for accelerated DSP applications.

Figure 4. Test bench code with DA (top); Enabling ROM (bottom).

Ttotal for the conventional processor’s overall execution and DA-Based DSP Pro-
cessor are calculated as follows: for conventional processor’s overall execution time,
Ttotal = (OverallCycles × CycleDuration). For the clock frequency of 5 MHz, Ttotal =
Texec−0 + Texec−1st + Texec−4 + Texec−6 + THalt. i.e., Ttotal = (3 + 4 + 1 + 4 + 120)/5,000,000) =
26.4 microseconds. For DA-Based DSP Processor with a clock frequency of 5 MHz, Ttotal =
Texec−0 + Texec−1st + Texec−4 + Texec−6 + THalt. i.e., Ttotal = (2 + 3 + 1 + 4 + 100)/5,000,000) =
22 microseconds.

We can comprehend the modifications and improvements achieved by integrating
this DA-based approach into the DSP. We measure the timing delay at 2.009 ns, the critical
path delay at 8.182 ns, and the power consumption at 4 mW. The utilization of the DA
technique has notably enhanced the overall performance in speed and delay, leading to
substantial reductions. We provide a comparative table showcasing the disparities between
a conventional DSP and a DA-based DSP in Table 1. Our implementation results indicate a
significant enhancement in the DA-based DSP compared to the conventional processor. We
carried out the simulation results using Xilinx Vivado, and we observed crucial metrics,
including delay (logic delay and net delay) and power (static and dynamic), which were
also presented in Table 1. The proposed processor results in increased performance and
efficiency compared to existing approaches.
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Figure 5. Execution of 0th instruction (top); Execution of 6th instruction (bottom).

Figure 6. Logarithmic and arithmetic values in DA-based DSP.

Table 1. Comparison table between 16-bit existing DSP vs. proposed DSP. Power is in W (SP—Static
power, DP—Dynamic power, and TP—Total power) and delay is in ns (LD—Logic delay, ND—Net
delay, and TD—Total delay).

Type On-Chip
Power (W) SP DP TP Critical

Path (ns) LD ND TD

Existing [24] 0.431 0.163 0.268 0.431 8.818 2.745 1.022 3.767
Proposed 0.301 0.162 0.139 0.301 8.182 0.423 1.586 2.009

In Table 2, the proposed method is compared to existing 16-bit DSP based on cycles
per instruction, instruction word length, vectorization support, and distributed arithmetic.
Ref. [25] stands out as a reliable option due to its vectorization capability and 32-bit
instruction length, which make it ideal only for Convolutional Neural Networks (CNNs)
and real-time processing requirements. In contrast, ref. [26] uses a 32-bit instruction length
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but lacks vectorization, focuses on complicated Fast Fourier Transform (FFT) design, and
primarily serves high-performance computing applications. With 16-bit instruction length
and capabilities for vectorization, ref. [27] aims to be a loop accelerator for real-time
applications with high computational time. These three well-known references provide
insightful information about processor design, but depending on their intended usage, they
also have certain advantages and disadvantages. While focusing on a distributed arithmetic-
based DSP that meets both real-time and high-performance computing needs, the suggested
method takes a novel approach with a 32-bit instruction length and vectorization support.
Our proposed method also offers a flexible processor architecture that has the ability to
unite real-time and high-performance computing tasks.

Table 2. The comparison of various implementations for the 16-bit Processor (CPI—Cycles per In-
struction; IWL—Instruction Word Length; VS—Vectorization Support; DA—Distributed Arithmetic).

Design IWL VS Suitability of a Processor Requirements CPI

[25] 32 yes Convolutional Neural Networks Real-time -
[26] 32 No Complex FFT Design High performance computing 3
[27] 16 yes Loop Accelerator Real-time -

Proposed 32 yes DA-based DSP Processor Real-time + High performance computing 2

5. Discussion and Conclusions

The proposed architecture improves the efficiency of DSPs, enabling them to effec-
tively address the demands of contemporary real-time signal processing tasks. When we
apply this approach to the Harvard design using BRAM, it notably enhances memory
capacity. Using Xilinx Vivado, we demonstrate substantial enhancements in the DSP’s
implementation, reducing timing delay to 2.009 ns and improving the critical path delay
to 8.182 ns. Notably, the primary processor has the drawback of higher on-chip power
consumption of 0.431 watts. Nevertheless, this work achieves reduced delay, heightened
speed, and enhanced processor performance compared to standard DSPs. The processor’s
structure suits real-time signal processing, effectively handling single input signals using a
DA-based ALU, utilizing precomputed values from lookup tables. Our study focuses on
DSPs architecture and highlights its potential for further exploration, which remains signif-
icant, particularly for DSPs with larger read-only memory widths that address potential
time-consuming operations on 64-bit or 32-bit processors.

To ensure smooth and efficient operation, modern processors employ several com-
plex mechanisms. Among these, status registers are crucial in maintaining control over
operations and addressing processing delays. This article delves into the significance
of status registers, their impact on performance optimization, and the synchronization
mechanism that balances everything. Status registers are integral components of a pro-
cessor as they reflect the operational state at any given moment. They play a vital role in
managing processing delays, employing an efficient method to prevent additional delays
from impeding effective execution. This method involves imposing a two-cycle delay and
adjusting it after each operation. This approach effectively avoids potential bottlenecks,
ensuring that the processor controls its functions. Critical strategies for improving proces-
sor performance encompass the utilization of status registers, synchronized clock signals,
and the implementation of two-cycle delays. Together, these procedures maintain control,
address unforeseen delays, and ensure the execution of instructions in the correct sequence.
By comprehending and using these components, processor designers can construct efficient
and responsive computing systems that meet the demands of today’s technology-driven
world. From Table 1, the current processor has a logic delay of 2.745 ns, while the proposed
processor achieves a much lower delay of 0.423 ns, indicating a significant speed improve-
ment. The proposed processor has a slightly higher net delay at 1.586 ns than the existing
processor’s 1.022 ns. However, the proposed processor still has a lower overall delay at
2.009 ns compared to the current processor’s 3.767 ns, enhancing the overall processing
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time for real-time applications. Regarding power consumption, the static power remains
similar between the two processors (0.163 W for the existing and 0.162 W for the proposed).
Notably, the proposed processor significantly reduces dynamic power consumption to
0.139 W from the current processor’s 0.268 W during active operation, signifying improved
power efficiency. The proposed processor also exhibits a lower total on-chip power of
0.301 W compared to the existing processor’s higher 0.431 W, highlighting its potential for
energy savings and better power efficiency.

Digital signal processing tasks can be efficiently executed using languages and tools
such as MATLAB, Python, LabVIEW, C, Verilog, and GNU Octave, each catering to various
DSP application domains and hardware requirements. Our proposed DSP architecture
is adaptable to these programming languages and tools, allowing seamless integration
and optimization for various signal processing applications. Developing software for a
completely new DSP architecture is more challenging than modifying an existing one.
However, building a DSP architecture from the ground up and customizing it with a
technique called Distributed Arithmetic allows developers to tailor it precisely to the specific
needs of different applications. Like other works [28–30] involving software working
with DSP architecture, our proposed method is also adaptable to various programming
languages and platforms. For instance, customizing a DSP architecture with Distributed
Arithmetic can significantly improve data rates and efficiency in wireless communication.
Similarly, it can enhance the quality of audio processing tasks such as noise reduction
and sound improvement. Additionally, custom DSP architectures can accelerate image
and video compression methods such as JPEG and H.264, leading to faster encoding and
decoding while conserving power.

In conclusion, the proposed 16-bit DSP showcases notable improvements in delay
and power parameters compared to the current processor. The reduction in logic delay
and total delay in the proposed processor signifies a considerable boost in processing
speed and efficiency, making it an excellent fit for real-time applications. Furthermore,
the decrease in dynamic power consumption and total on-chip power highlights enhanced
power efficiency, potentially leading to energy conservation. These outcomes emphasize
the advantages of adopting the proposed processor for real-time signal processing tasks.
Future research should focus on extending the evaluation of the proposed DSP architecture
in a wider range of real-time signal processing applications, optimizing power efficiency,
and exploring scalability to support higher memory widths.
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