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Abstract: This study focuses on personal identification using bidirectional long short-term memory
(LSTM) with efficient features from electromyogram (EMG) biomedical signals. Personal identifi-
cation is performed by comparing and analyzing features that can be stably identified and are not
significantly affected by noise. For this purpose, 13 efficient features, such as enhanced wavelength,
zero crossing, and mean absolute value, were obtained from EMG signals. These features were
extracted from segmented signals of a specific length. Then, the bidirectional LSTM was trained on
the selected features as sequential data. The features were ranked based on their classification perfor-
mance. Finally, the most effective features were selected, and the selected features were connected to
achieve an improved classification rate. Two public EMG datasets were used to evaluate the proposed
model. The first database was acquired from eight-channel Myo bands and was composed of EMG
signals from 10 varying motions of 50 individuals. The total numbers of segments for the training
and test sets were 30,000 and 20,000, respectively. The second dataset consisted of ten arm motions
acquired from 40 individuals. A performance comparison of the dataset revealed that the proposed
method exhibited good performance and efficiency compared to other well-known methods.

Keywords: biometrics; electromyogram; long short-term memory; optimization

1. Introduction

Electromyogram (EMG) signals, which have mainly been used in hospitals to deter-
mine the health status of patients, have become widely available with the widespread use of
personal smart devices, owing to the recent miniaturization of semiconductors. Their range
of use is expanding because EMG signals can be easily measured. EMG signals measure
and amplify minute electrical phenomena that occur when a person’s muscles move, and
they correspond to biosignals such as the electrocardiogram, iris, and face. EMG signals
have mainly been used for health examinations, and, currently, with the development of
pattern recognition technology, complex and irregular EMG signals can be analyzed, and
studies related to the control of assistive robots for amputees are being conducted. In addi-
tion, similar to the research on other biosignals, research is being conducted on personal
identification for the authorization of access to smart systems. Because EMG signals can be
measured only when a person contracts his/her muscles, they are more reliable for user
identification than passively measurable variables, such as the face [1] or fingerprints [2,3],
in authentication problems. Faces or fingerprints can be captured by others using noncon-
tact capture devices, whereas EMG signals can only be generated while individuals are
alive and are guided by their intentions. Moreover, unlike the face, EMG signals are not
visually apparent from the outside, and, thus, replicating them with a camera or a similar
device is difficult [4–10]. Consequently, they provide a useful authentication method.

Personal identification verifies the identity of a person by entering their personal
information. With the development of information technology, personal identification
has become automated and, based on it, banking services can be used quickly and easily
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without visiting a bank. Therefore, the security, accuracy, and stability of personal iden-
tification methods have become important. Using a biosignal for personal identification
can reduce additional laborious work because the input signal for authentication comes
from one’s body. Wearable devices have recently undergone significant advancements in
terms of sensor size, functionality, and performance. These developments have enabled
the effective collection of large amounts of environmental data, including biosignals. EMG
signals hold a strong position in terms of security compared with other biosignals, particu-
larly with regard to their physical characteristics. EMG signals can be generated while a
person is alive and their arms are mentally controlled. Other biosignals, such as the face,
iris, and fingerprints, can be captured by cameras without physical contact, which can
compromise personal information. However, the EMG signal changes in various ways
depending on the degree of force applied by the user, the location of the sensor, and motion
during measurement. To stably perform personal identification using EMG signals, the
user must acquire learning data by adjusting the force to be as similar as possible to the
acquisition situation. It follows that the EMG signals are susceptible to noise contamination.
Therefore, a personal identification model should be designed to exhibit robustness against
noise [11–16].

Several studies have been conducted on personal identification methods that use
EMG signals. Kim et al. [17] extracted features of the modified mean absolute value and
mean absolute value slope in the time domain and features using a filter in the frequency
domain and performed personal identification with EMG signals by training a K-nearest
neighbor model with these features. In [18], individual identification using the optimum-
patch forest method was performed after extracting features from electrocardiograms
(ECGs) and EMGs, respectively. Kim et al. [19] attached an EMG sensor to a subject’s
legs and achieved personal identification using data acquired while walking. Various
features were learned using a multilayer perceptron. These features included integrated
EMG, Willison amplitude, mean absolute value, variance, zero crossing, modified mean
absolute value, modified mean absolute value, slope sign change, mean absolute value
slope, root mean square, waveform length, and simple square integral. Subsequently, a
comparative analysis of several features was conducted. In [20], the authors acquired EMG
signals during several activities. After extracting the frequency-domain features [21] from
EMG signals, the individuals were identified using the Mahalanobis distance. Yamaba
et al. [22,23] performed personal identification by continuously analyzing EMG signals
from personal devices. A Fourier transform was performed on the input EMG signals,
and a support vector machine (SVM) was trained using the minimum and maximum
times and corresponding amplitude values as features. Raurale et al. [24] divided EMG
signals into several segments, extracted band power (BP) and root absolute sum square
(RSS) features, and performed personal identification on the extracted features using a
decision tree, multilayer perceptron, SVM, and radial basis function neural networks.
Furthermore, personal identification was performed by combining the majority voting
decisions and multilayer perceptrons and by combining decision-making and radial basis
function neural networks for RSS features with a lowered dimension via kernel LDA. In [25],
the researchers analyzed a personal identification model combining a discrete wavelet
transform and an extra tree classifier, and another personal identification model combining
a continuous wavelet transform and a convolutional neural network, and finally suggested
a personal identification model using a continuous wavelet transform, Siamese networks,
and convolutional neural networks.

Several studies have been conducted on motion classification methods using EMG
signals. Yoo et al. [26] conducted research on a system that allows humans to interact
with unmanned aerial vehicles (UAVs) using hand motions in real time. The study found
that image-based gesture systems can be challenging to use because they struggle to track
multidimensional hand motions, making the algorithms for detection and tracking complex.
To overcome this, a hybrid hand motion system that combines an inertial measurement unit
(IMU)-based motion capture and a vision-based gesture system has been proposed. This
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system uses information from the thumb to determine the movement direction command,
detects the hand, and recognizes the shape to determine basic commands. In [27], to
address privacy concerns associated with vision-based systems, the authors conducted
research on a hand gesture recognition system that utilizes a 60 GHz frequency-modulated
continuous-wave (FMCW) radar. The system receives radar signals from hand gestures
and converts them into range, velocity, and angular data. These data are then used to train
and classify the gestures using long-short term memory (LSTM). Shioji et al. [28] conducted
research on hand motion recognition using EMG signals obtained from the wrist. They
used a bandpass filter to remove noise and implemented a convolutional neural network
(CNN) to classify different hand motions. Similarly, Li et al. [29] studied the use of EMG
signals for motion classification, with a focus on increasing the robustness of the system
against variations in force. The proposed solution uses a common spatial pattern (CSP), a
feature extraction technique that aims to maximize the variance between different classes
of signals.

Because EMG signals are sensitive to noise, noise-robust features should be observed,
and the neural network should be optimized according to these features to stably perform
noise-robust personal identification. Hence, we comparatively analyzed the EMG-based
biometrics using LSTM with various efficient feature sets. First, the EMG signals were
divided into segments of a certain size and features were extracted for each segment. The
following 13 features of the EMG signals were considered: mean absolute value (MAV),
wave length (WL), zero crossing (ZC), slope sign change (SSC), average amplitude change
(AAC), log detector (LD), root mean square (RMS), difference absolute standard deviation
value (DASDV), variance (VAR), modified mean absolute value (MMAV), modified mean
absolute value 2 (MMAV2), enhanced mean absolute value (EMAV), and enhanced wave
length (EWL) [30]. The extracted features were connected in sequence and used as inputs to
the LSTM to proceed with learning. A performance comparison of the LSTMs for various
feature sets was conducted through multiple experiments to optimize the LSTM along
with the features. A public EMG dataset was used for the experiments. The experimen-
tal results revealed that the proposed method showed good performance compared to
previous methods.

Our motivations can be summarized as follows:

1. EMG signals are sensitive to noise. Therefore, robust features are important for
EMG-based classification problems.

2. Conventional EMG features for motion classification were applied to EMG-based
personal classification to identify robust features.

3. We compared the performance of EMG-based personal identification using LSTM
with selected feature sets among 13 features and found the best feature list in the
design of the LSTM.

Our contributions can be summarized as follows:

1. We demonstrate that conventional EMG features for motion classification can effec-
tively achieve competitive performance in EMG-based personal classification.

2. We demonstrate good performance in less time and fewer trials using our feature
selection approach for person identification based on EMG signals.

The remainder of this paper is organized as follows. Section 2 describes the 13 EMG
features, their definitions, and related equations and provides details on the structure of
the LSTM. Section 3 illustrates personal identification using EMG signals and explains the
details of the proposed personal identification method, including the diagrams. Section 4
describes the EMG database used in the experiments and presents the experimental results
from various aspects, including the performance based on features and ANOVA analysis.
Finally, Section 5 concludes the paper.
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2. Methods
2.1. Methods for Feature Extraction of Electromyogram Signals for Biometrics

Various conventional feature extraction methods exist for the analysis of EMG signals.
Thirteen of these are described here, and detailed explanations are available elsewhere [30].

MAV is a popular feature in EMG signal analysis. It is a measure of the average
magnitude of a signal over a specified period. It is defined as the average of the summation
of the absolute values of the signal and is often used as a simple and robust feature for
muscle activity analysis. In many cases, it correlates well with muscle force. MAV is defined
in Equation (1), where x represents the wavelet coefficient and L represents the length of
the coefficient [30].

fMAV =
1
L∑L

i=1 xi. (1)

WL is a feature commonly used in the analysis of EMG signals. It is a measure of the
length of the muscle action potential waveform and can be calculated by simplifying the
cumulative length of the waveform summation. WL is defined as in Equation (2) [30].

fWL =
2

∑
i=2
|xi − xi−1|, (2)

where x represents the wavelet coefficient and L represents the length of the coefficient.
ZC is a feature used in the analysis of EMG signals that measures frequency informa-

tion. It is the number of times that the signal crosses the zero level and is commonly used
as an indicator of muscle activity. ZC is defined as in Equation (3) [30].

fZC =
L−1
∑

i=1
f (xi)

f (xi) =

{
1, i f {(xi > 0 and xi+1 < 0) or (xi < 0 and xx+1 > 0)} and |xi − xi+1|≥ T
0, otherwise

,
(3)

where x is the wavelet coefficient, L is the length of the coefficient, and T is the threshold.
SSC is a traditional feature used in the analysis of EMG signals that determines the number
of times that the slope of the waveform changes sign. It is calculated by counting the
number of ZCs in the first derivative of the signal. SSC is defined in Equation (4) [30]:

fSSC =
L−1
∑

i=2
f (xi)

f (xi) =

1,
i f {(xi > xi−1 and xi > xi+1) or (xi < xi−1 and xi < xi+1)}

and {|xi − xi+1| ≥ T or |xi − xi−1| ≥ T} ,

0, otherwise

(4)

where L is the length of the coefficient, x is the wavelet coefficient, and T is the threshold.
AAC is a feature used in the analysis of EMG signals that measures the average change
in the amplitude of the signal over a given period of time. AAC is defined as in Equation
(5) [30].

fACC =
1
L∑L−1

i=1 |xi+1 − xi|, (5)

where x indicates the wavelet coefficient and L indicates the length of the coefficient.
LD is used in the analysis of EMG signals and is designed to estimate the exerted force.

It is based on the logarithmic compression of the signal amplitude, which allows for a more
sensitive and accurate measurement of low-amplitude signals. LD is defined as in Equation
(6) [30].

fLD = exp
(

1
L∑L

i=1 log(|xi|)
)

, (6)

where x represents the wavelet coefficient and L represents the length of the coefficient.
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RMS is a feature commonly used in the analysis of EMG signals to describe muscle
activity. RMS is defined in Equation (7), where x represents the wavelet coefficient, and L
indicates the length of the coefficient [30].

fRMS =

√
1
L∑L

i=1(xi)
2. (7)

DASDV is used in the analysis of EMG signals. This is a measure of the signal
variability. DASDV is defined in Equation (8) [30]:

fDASDV =

√
∑L−1

i=1 (xi+1 − xi)
2

L− 1
, (8)

where x is the wavelet coefficient, and L is the length of the coefficient.
VAR is a feature used in the analysis of EMG signals that provides information about

the power of muscle activity. VAR is defined as in Equation (9) [30].

fVAR =
1

L− 1∑L
i=1(xi)

2, (9)

where x represents the wavelet coefficient and L represents the length of the coefficient.
MMAV is an extension of the MAV feature used in EMG signal analysis. This is similar

to MAV in that it provides information about the amplitude of muscle activity; however, it
is calculated using a weight window function (wi). MMAV is defined in Equation (10) [30]:

fMMAV = 1
L ∑L

i=1 wi|xi|

wi =

{
1, i f 0.25L ≤ i ≤ 0.75L

0.5, otherwise
,

(10)

where x represents the wavelet coefficient and L represents the length of the coefficient.
MMAV2 is another extension of the MAV feature used in EMG signal analysis. It is

similar to MMAV in that it provides information on the amplitude of muscle activity and is
calculated using a weight window function; however, it uses a continuous weight function
(cwi). MMAV2 is defined in Equation (11), where x indicates the wavelet coefficient and L
is the length of the coefficient [30].

fMMAV2 = 1
L ∑L

i=1 cwi|xi|

cwi =


1, i f 0.25L ≤ i ≤ 0.75L

4i/L, i f i < 0.25L
4(i− L)/L, otherwise

.
(11)

EMAV is an extension of the MAV feature that uses not only the amplitude of the
muscle activity but also its temporal dynamics. EMAV is defined in Equation (12) [30].

fEMAV = 1
L ∑L

i=1
∣∣(xi)

p∣∣
p =

{
0.75, i f 0.2L ≤ i ≤ 0.8L
0.5, otherwise

,
(12)

where x represents the wavelet coefficient and L represents the length of the coefficient.
EWL is an extension of the WL feature that also considers the temporal dynamics of

muscle activity. EWL is defined by Equation (13) [30].

fEWL = ∑L
i=2
∣∣(xi − xi−1)

p∣∣
p =

{
0.75, i f 0.2L ≤ i ≤ 0.8L
0.5, otherwise

,
(13)
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where x represents the wavelet coefficient and L represents the length of the coefficient.
Table 1 summarizes the features of EMG-based biometric systems.

Table 1. Summary of the feature list for EMG-based biometrics systems.

Full Name of Feature Abbreviation of Feature Extended Origin Characteristic

Mean Absolute Value MAV - Amplitude

Wave Length WL - Amplitude

Zero Crossing ZC - Frequency

Slope Sign Change SSC - Frequency

Average Amplitude
Change AAC - Frequency

Log Detector LD - Amplitude

Root Mean Square RMS - Amplitude

Difference Absolute
Standard Deviation Value DASDV - Amplitude

Variance VAR - Amplitude

Modified Mean
Absolute Value MMAV MAV Amplitude

Modified Mean
Absolute Value2 MMAV2 MAV Amplitude

Enhanced Mean
Absolute Value EMAV MAV Amplitude

Enhanced Wave Length EWL WL Amplitude

2.2. Long Short-Term Memory (LSTM)

LSTM first obtains the output of the neural network for the input data and uses the
output again as a new input of the neural network to repeatedly obtain the outputs of the
neural network. Neural networks with this structure are known to be effective in finding
regularities in continuous data. LSTM, which is effective for sequence data analysis, has
been successfully applied to speech, language, and action recognition. LSTM consists of a
forget gate, input gate, output gate, and cell state [31,32].

The model was designed using an LSTM layer. The first layer is the sequence input,
the second layer is the bidirectional LSTM (Bi-LSTM) outputting the last time step of the
sequence input, the third layer is fully connected, the fourth layer is softmax, and the
last layer is the classification. In this study, the input size varied based on the number of
features, and the number of hidden units varied from 300 to 900. The number of classes
depends on the dataset; in this study, it was 50. Figure 1 shows the structure and flowchart
of the Bi-LSTM used for individual identification. In Figure 1, sequential segments are
input into the LSTM network. The Bi-LSTM calculates the output by repeatedly receiving
and processing the input data. After the LSTM output is calculated, it is fully connected
to a one-dimensional vector. This vector is multiplied by the weights to obtain the final
classification score, and softmax is then applied.
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Figure 1. Structure and flowchart of the bidirectional long short-term memory (LSTM) from the
sequence feature input obtained from electromyogram (EMG) signals for individual identification.

3. Biometrics Using Electromyogram Signals

This section describes the EMG-based biometric method using deep learning with
various feature sets. Because EMG signals react sensitively according to the body condition
of the measured person, robust features must be used. Conventional EMG feature extraction
methods for EMG-based motion classification are used to find robust features in EMG-
based person identification. Features that can be extracted from EMG signals include MAV,
WL, ZC, SSC, AAC, LD, RMS, DASDV, VAR, MMAV, MMAV2, EMAV, and EWL. Some
feature extraction methods use a threshold to ignore small noise in the signal. This value
should be determined based on the signal scale. A performance comparison of personal
identification based on various combinations of features and parameters of the neural
network was conducted. The LSTM was learned by extracting 13 features for each channel
of the EMG signal and combining them to create one sequence of data. LSTM has been
effectively employed to analyze sequential data featuring memory cells, forget gates, input
gates, and output gates. It also effectively addresses long-term dependency issues. EMG
signals are sequential signals obtained from the human body. When learning was repeated
for various LSTM parameters, a change in performance was observed. Each feature was
individually converted into sequence data for LSTM learning. The validity of the features
was determined by observing the changes in performance according to individual features.
The optimal feature combination was determined by configuring various feature sets for
valid features in an effectively limited feature list [33]. Subsequently, the variation in
performance with the parameters of various LSTMs was observed for the determination
of optimal feature combinations. Figure 2 shows a diagram of the biometric model using
LSTM from the raw signal through feature extraction and classification. The input signal
was segmented across all channels, and features were extracted for each segment. These
features were then concatenated within each segment and channel. The concatenated
features were input into the LSTM network for training. Figure 3 depicts multiple instances
of LSTM with diverse feature sets to discover an improved feature combination. Thirteen
features were considered for the feature set of individual identification, and these features
were grouped into various combinations to determine the most effective method to improve
the feature set. The accuracy of individual identification is defined as follows [34]:

Accuracy =
nCC

nCC + nWC
, (14)
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where nCC indicates the number of correct classifications, and nWC is the number of
wrong classifications.
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Figure 3. Process of obtaining the best feature set from various feature combinations for bidirectional
LSTM input.

Figure 4 shows the proposed model and the process of feature extraction from EMG
signals for personal classification. As shown in Figure 4, in Step 1, the input consists of
EMG signals with multiple channels. In Step 2, the input EMG signals are divided into
several segments with the same period. In Step 3, feature extraction is performed for each
segment. In Step 4, the features are rearranged into sequential data. In Step 5, the training
process is performed using the Bi-LSTM from the sequenced feature sets. This process is
repeated for each feature. In Step 6, the individual features are ranked according to their
classification accuracy. In Step 7, individual features are selected as the optimal feature
sets based on their classification accuracy. In Step 8, the optimal individual features are
combined into sequence data. In Step 9, the Bi-LSTM is trained with a set of the best optimal
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features, ultimately resulting in the highest classification accuracy. This Bi-LSTM is the
deep neural network shown in Figure 1.
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Certain features are combined and ranked based on their classification accuracy when
used individually, with priority given to those with higher rankings. When selecting
features, a classification rank based on individual features is primarily used. This can be
considered as a failure to consider a wider variety of feature combinations. Combining
features could potentially lead to valuable feature interactions, although further attempts
could be required to discover optimal combinations. However, when a feature typically
exhibits poor accuracy, it tends to negatively affect the overall performance. Therefore,
this approach can potentially yield improved performance more efficiently, especially in
challenging situations where numerous experiments are required. In scenarios where
training a deep neural network is time-consuming, both sequential feature selection (SFS)
and sequential floating feature selection methods often require a substantial number of
repetitive experiments.

4. Experimental Results

This section describes the experimental results of feature extraction from EMG signals,
feature learning using LSTM, personal identification, and performance comparison analysis
according to the parameters of the classification model based on the feature sets. To perform
the experiments, this study used a computer equipped with an Intel® Xeon(R) CPU E5-1650
v3 3.5 GHz, Windows 10 × 64-bit, 32 GB random access memory (RAM), an NVIDIA
GeForce GTX Titan X, and Matlab 2022b.

Figure 5 presents a summary of the dataset. A public EMG dataset was used [35].
These data were acquired using an eight-channel Myo band, and EMG data for 10 motions
of both arms were acquired from 50 individuals. Each motion was acquired five times
for 3 s at a sampling rate of 200 Hz. The 10 motions were as follows: (1) neutral wrist,
(2) pronation, (3) supination, (4) wrist extension, (5) wrist flexion, (6) ulnar deviation, (7)
radial deviation, (8) fine pinch, (9) power grip, and (10) hand opening. For each motion,
three of the five data points were used for learning and the remaining data were used
for verification.

The EMG data were divided into 85 lengths with 12 overlaps allowed, and no further
preprocessing was performed. Features were extracted for each divided segment, and the
extracted features were connected to sequence data and inputted to the LSTM. The LSTM
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was trained by extracting the MAV, WL, ZC, SSC, AAC, LD, RMS, DASDV, VAR, MMAV,
MMAV2, EMAV, and EWL features for each segment. A Bi-LSTM trained using Adam was
applied. Cross-entropy was applied to the loss function, and the initial weight values were
set randomly. The initial learning rate was 0.01, and a learning rate decay of 0.2 for every
momentum of 0.9 and five epochs was applied. Separate data augmentation was not used,
but the learning results were confirmed by varying the minibatch and node sizes. Table 2
presents the accuracy of the LSTM on the test data with 13 features. The LSTM used every
feature considered in this study. As can be observed in Table 2, having an excessive number
of randomly selected features is not beneficial. This table lists the requirements for efficient
feature selection. The LSTM was trained using sufficient features; however, overall good
performance could not be confirmed.
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Table 2. Accuracy of the LSTM on test data with 13 features.

Feature Set Minibatch Size Node Size Epoch Test Accuracy

MAV, WL, ZC, SSC,
AAC, LD, RMS,
DASDV, VAR,

MMAV, MMAV2,
EMAV, EWL

300

300

600

45.00

500 45.05

700 45.70

900 45.55

500

300 44.05

500 48.90

700 46.35

900 49.85

700

300 42.25

500 43.10

700 45.85

900 47.30

900

300 37.20

500 42.05

700 43.55

900 44.45

Similarly, the LSTM was trained while applying one feature at a time instead of
extracting all 13 features from the EMG data simultaneously. The learning options were
the same, the minibatch size was fixed at 500, the node size was 500, and the number of
epochs was 600. Table 3 presents the accuracy of the LSTM on the test data according to
a single feature. The performance of a single feature is critical for the proposed method
when selecting a feature set. Figure 6 shows a bar chart of the accuracy of the LSTM on the
test data according to a single feature. The x-axis of the chart indicates the features, and the
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y-axis indicates the classification accuracy for each feature. Table 4 presents the top eight
performance features ordered by LSTM accuracy. Among the 13 features, only those with
a recognition rate of 60% or more in the experiment of a single feature were considered
valid, and the features were presented according to the recognition rate. Table 5 presents
a comparison of the computation times for each feature. The times were measured while
calculating the features of an 85-length segmental signal. The feature values were computed
using a CPU, and computational time was allocated only to the feature calculation process.
The time required for the training process was not included in this calculation, as it was
considered a constant value given that only the features varied in the comparison. The
resulting times were averaged over several experiments. The training time for the Bi-
LSTM with a single feature was 245 s, which was computed using the GPU. The training
parameters were a minibatch size of 300, 900 hidden units, and 300 epochs.

Table 3. Accuracy of the LSTM on test data according to a single feature.

Feature Set Test Accuracy

MAV 73.00

WL 21.50

ZC 42.40

SSC 23.45

AAC 79.45

LD 62.20

RMS 79.10

DASDV 75.75

VAR 42.10

MMAV 71.70

MMAV2 69.70

EMAV 75.55

EWL 36.40
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Table 4. Eight best-performing features ordered by the LSTM accuracy.

Rank 1 2 3 4 5 6 7 8

Feature AAC RMS DASDV EMAV MAV MMAV MMAV2 LD

Accuracy 79.45 79.10 75.75 75.55 73.00 71.70 69.70 62.20

Table 5. Comparison of computing time of each feature.

Feature Computing Time (µs)

MAV 4.6223

WL 2.8940

ZC 3.4667

SSC 3.8094

AAC 2.8638

LD 4.6957

RMS 4.4195

DASDV 2.9657

VAR 5.1020

MMAV 2.7544

MMAV2 2.9031

EMAV 8.6654

EWL 8.2524

The performance was observed by training the LSTM by constructing various feature
sets among the eight valid features. The training options were the same, the minibatch size
was fixed at 500, the node size was 500, and the number of epochs was 600. For the feature
set, the number of features was reduced one by one in the order of the low recognition rate,
starting with the use of eight features. Table 6 presents the accuracy of the LSTM on the
test data according to the feature set based on the feature order, showing good accuracy.
The experimental results clearly indicate that the performance when using all eight valid
features and using two valid features was similar, or that the latter was slightly higher.

Table 6. Accuracy of LSTM on test data according to the feature set based on the feature order
showing good accuracy.

Feature Set Test Accuracy

AAC, RMS 83.70

AAC, RMS, DASDV, EMAV 83.55

MAV, AAC, RMS, DASDV, EMAV 83.55

MAV, AAC, RMS, DASDV, MMAV, MMAV2, EMAV 83.10

MAV, AAC, RMS, DASDV, MMAV, EMAV 82.65

MAV, AAC, LD, RMS, DASDV, MMAV, MMAV2, EMAV 82.50

AAC, RMS, DASDV 82.45

In the experiment using valid features, the performance when using all eight features
and the two features that showed the best performance for single features was similar,
or the latter was slightly higher. Because minimizing the number of features in terms of
computational load and memory is advantageous, the LSTM was trained using only the
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AAC and RMS features. The LSTM model was optimized while learning the minibatch size,
node size, and epoch in various ways using the same learning options. Table 7 presents
the accuracy of the LSTM on the test data according to the LSTM parameters. In the LSTM
using the AAC and RMS features, when the minibatch size was 300 and the node size was
900, the accuracy reached 85.25%, confirming that it was at least 5.75% higher than that of
the existing methods, as described in Table 8. Table 8 presents a comparison of the accuracy
of the LSTM on the test data with that of existing methods. SFS is a well-established method.
We also examined its performance in detail and compared it with our method, as presented
in Tables 9 and 10. Tables 9 and 10 display a comparison of the accuracy of sequential
forward feature selection with feature lengths of 2 and 3, respectively.

Assuming that the training time for a neural network with one feature is A, that with
two features is B, that with three features is C, and n is the total number of features, the
comparison of the processing times of the methods is described in Table 11. Assuming that
the training time for a neural network, regardless of the number of features, is D, and when
n is 13 with a targeted feature length of 3, in the case of SFS, it takes 36D (13D + 12D + 11D)
time, whereas, in the case of our approach, it takes 15D (13D + D + D) time, resulting in a
reduction of 21 (36–15) training trials. We recommend using the SFS in time-free situations
because it is effective in achieving a more accurate system.

Table 12 and Figure 7 present the ANOVA of AAC and RMS for the 50 identities. An
ANOVA was employed to assess whether there were differences in the means of a set of
response data based on the values (levels) of one or more factors. Small p-values indicated
that intergroup variation had a statistically significant effect on individual identification.
At the 95% confidence level, intergroup variation had a p-value < 0.05, indicating that
intergroup variation had a statistically significant effect on individual identification. The
ANOVA figure shows the data by group. The central mark represents the median and
the lower and upper edges of the box represent the 25th and 75th percentiles, respectively.
Outliers are displayed individually using the “+” marker symbol.

Table 7. Accuracy of LSTM on test data according to the parameters of LSTM.

Feature Set Minibatch Size Node Size Epoch Test Accuracy

AAC, RMS

300

300

300

80.00

500 83.55

700 85.00

900 85.25

500

300 77.15

500 80.80

700 83.85

900 84.85

700

300 69.60

500 73.85

700 76.85

900 79.10

900

300 61.40

500 70.50

700 72.85

900 75.35
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Table 8. Comparison of accuracy of the LSTM on test data with existing methods.

Method Accuracy (%)

Proposed method 85.25

BpRssLdaMlp [24] 79.50

Table 9. Comparison of accuracy for sequential forward feature selection (feature length = 2).

Feature-1 Feature-2 Accuracy (%)

AAC

RMS 85.25

MAV 85.10

MMAV 85.05

ZC 84.95

LD 83.50

EMAV 83.10

SSC 82.05

DASDV 81.95

MMAV2 81.55

VAR 53.30

EWL 44.30

WL 29.35

Table 10. Comparison of accuracy for sequential forward feature selection (feature length = 3).

Feature-1,2 Feature-3 Accuracy (%)

AAC, RMS

EMAV 86.10

ZC 85.95

MMAV 85.80

DASDV 85.70

MAV 85.55

LD 85.30

MMAV3 85.05

SSC 82.50

VAR 51.70

EWL 46.10

WL 30.50

Table 11. Comparison of processing time by method.

Method Time

SFS n×A + (n− 1)× B + (n− 2)×C + · · ·
Ours n×A + B + C + · · ·
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Table 12. ANOVA of AAC and RMS to 50 identities.

Source Sum of
Squares

Degrees of
Freedom

Mean
Squares F-Statistic p-Value

Intergroup
variation 3.35× 106 49 68,320.30 762.06 0

Intragroup
variation 3.49× 107 388,750 89.70 - -

Total 3.82× 107 388,799 - - -
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Figure 7. ANOVA of average amplitude change (AAC) and RMS to 50 identities.

In the comparison of the accuracy of the LSTM on the test data with existing methods,
the accuracy of the existing methods was poorer than that described in the original articles.
We used a dataset different from that described in the original paper, which reportedly
yielded higher performance. We used the same dataset and method to calculate the accuracy
to evaluate the performance of both our method and the existing methods described in
this paper. We input the data under the same conditions without preprocessing, except for
signal segmentation. We implemented existing methods as closely as possible to the original
approach. Feature extraction was performed by referencing the mathematical formulations
in the original paper, whereas other common components such as the multilayer perceptron
were implemented using open-source libraries.

Table 13 presents a comparison of the biometric accuracy of the LSTM based on
different motions. The LSTM was trained with minibatch sizes of 300, 300 epochs, and a
node size of 900. The RMS and AAC features were utilized. The motion that exhibited the
second highest accuracy was Motion3, which corresponded to pronation. However, the
first motion that exhibited the highest accuracy was Motion1, despite representing “wrist
in neutral,” which is similar to a line signal. It is assumed that when a single motion is
used for person identification, the available data are significantly limited. Consequently,
the reliability of the results was relatively low.
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Table 13. Comparison of the biometric accuracy of the LSTM based on different motions.

Training Verification Accuracy (%)

Motion1—Wrist in neutral Motion1—Wrist in neutral 92.50

Motion2—Pronation Motion2—Pronation 57.00

Motion3—Supination Motion3—Supination 58.00

Motion4—Wrist extension Motion4—Wrist extension 37.50

Motion5—Wrist flexion Motion5—Wrist flexion 43.50

Motion6—Ulnar deviation Motion6—Ulnar deviation 49.50

Motion7—Radial deviation Motion7—Radial deviation 43.00

Motion8—Fine pinch Motion8—Fine pinch 45.00

Motion9—Power grip Motion9—Power grip 39.00

Motion10—Hand open Motion10—Hand open 44.00

Table 14 presents a comparison of the biometric accuracy of the LSTM when the
training and verification motions differed. The LSTM was trained with minibatch sizes of
300, 300 epochs, and a node size of 900. The RMS and AAC features were utilized.

Table 14. Comparison of the biometric accuracy of the LSTM when training and verification mo-
tions differ.

Training Verification Accuracy (%)

Motion2—Pronation Motion3—Supination 30.00

Motion2—Pronation Motion4—Wrist extension 09.50

Motion2—Pronation Motion5—Wrist flexion 17.00

Motion2—Pronation Motion6—Ulnar deviation 12.00

Motion2—Pronation Motion7—Radial deviation 15.00

Motion2—Pronation Motion8—Fine pinch 14.00

Motion2—Pronation Motion9—Power grip 09.00

Motion2—Pronation Motion10—Hand open 11.00

To calculate additional metrics, such as precision, recall, F1-scores, false rejection rate
(FRR), and false acceptance rate (FAR), the LSTM model with AAC and RMS features was
retrained with a minibatch size of 300, 900 hidden units, and 600 epochs. Its accuracy was
measured to be 87.00%, and the metrics are listed in Tables 15–19.

Another dataset (sEMG) was utilized to evaluate the performance of the proposed
method [36]. These data were acquired using a four-channel Biopac MP36 device, and the
EMG data of 10 motions were acquired from 40 individuals. Each motion was acquired five
times for 6 s each at a sampling rate of 2000 Hz. The 10 motions were as follows: (1) rest,
(2) wrist extension, (3) wrist flexion, (4) wrist ulnar deviation, (5) wrist radial deviation,
(6) grip, (7) finger abduction, (8) finger adduction, (9) supination, and (10) pronation. We
used the filtered signals from the raw data. The training process from the sEMG dataset
was performed in the same manner as in the previous experiment. The Bi-LSTM was
trained while applying one feature at a time instead of extracting all 13 features from the
EMG data simultaneously. The learning options were the same as those used in the first
experiment. The minibatch, node, and epoch sizes were 300, 900, and 300, respectively.
The best classification performance was achieved by combining two features, WL and
EWL. The accuracy of this combination was 65.25%. We determined that the reason for the
lower accuracy compared with that in the previous experiment was the reduced amount of
channel data in the signal.
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Table 15. Precision by class.

Class Precision Class Precision Class Precision Class Precision

1 88.57 14 94.12 27 86.96 40 91.67

2 88.57 15 77.78 28 100.00 41 95.00

3 90.00 16 94.29 29 88.64 42 84.38

4 94.29 17 82.22 30 86.84 43 94.59

5 100.00 18 100.00 31 85.71 44 74.47

6 95.00 19 97.56 32 97.22 45 100.00

7 95.24 20 90.00 33 90.70 46 93.75

8 79.55 21 64.71 34 97.06 47 90.91

9 91.89 22 81.58 35 80.00 48 96.55

10 69.81 23 92.50 36 84.09 49 85.37

11 82.50 24 74.42 37 97.56 50 94.29

12 62.96 25 68.52 38 94.87

13 92.68 26 91.89 39 73.08

Table 16. Recall by class.

Class Recall Class Recall Class Recall Class Recall

1 77.50 14 80.00 27 100.00 40 82.50

2 77.50 15 87.50 28 87.50 41 95.00

3 90.00 16 82.50 29 97.50 42 67.50

4 82.50 17 92.50 30 82.50 43 87.50

5 77.50 18 82.50 31 90.00 44 87.50

6 95.00 19 100.00 32 87.50 45 87.50

7 100.00 20 90.00 33 97.50 46 75.00

8 87.50 21 82.50 34 82.50 47 100.00

9 85.00 22 77.50 35 70.00 48 70.00

10 92.50 23 92.50 36 92.50 49 87.50

11 82.50 24 80.00 37 100.00 50 82.50

12 85.00 25 92.50 38 92.50

13 95.00 26 85.00 39 95.00

Table 17. F1-scores by class.

Class F1-Score Class F1-Score Class F1-Score Class F1-Score

1 82.67 14 86.49 27 93.02 40 86.84

2 82.67 15 82.35 28 93.33 41 95.00

3 90.00 16 88.00 29 92.86 42 75.00

4 88.00 17 87.06 30 84.62 43 90.91

5 87.32 18 90.41 31 87.80 44 80.46

6 95.00 19 98.77 32 92.11 45 93.33
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Table 17. Cont.

Class F1-Score Class F1-Score Class F1-Score Class F1-Score

7 97.56 20 90.00 33 93.98 46 83.33

8 83.33 21 72.53 34 89.19 47 95.24

9 88.31 22 79.49 35 74.67 48 81.16

10 79.57 23 92.50 36 88.10 49 86.42

11 82.50 24 77.11 37 98.77 50 88.00

12 72.34 25 78.72 38 93.67

13 93.83 26 88.31 39 82.61

Table 18. False rejection rate (FRR) by class.

Class FRR Class FRR Class FRR Class FRR

1 0.23 14 0.12 27 0.35 40 0.18

2 0.23 15 0.58 28 0.00 41 0.12

3 0.23 16 0.12 29 0.29 42 0.29

4 0.12 17 0.47 30 0.29 43 0.12

5 0.00 18 0.00 31 0.35 44 0.70

6 0.12 19 0.06 32 0.06 45 0.00

7 0.12 20 0.23 33 0.23 46 0.12

8 0.53 21 1.04 34 0.06 47 0.23

9 0.18 22 0.41 35 0.41 48 0.06

10 0.93 23 0.18 36 0.41 49 0.35

11 0.41 24 0.64 37 0.06 50 0.12

12 1.16 25 0.99 38 0.12

13 0.18 26 0.18 39 0.82

Table 19. False acceptance rate (FAR) by class.

Class FAR Class FAR Class FAR Class FAR

1 22.50 14 20.00 27 0.00 40 17.50

2 22.50 15 12.50 28 12.50 41 5.00

3 10.00 16 17.50 29 2.50 42 32.50

4 17.50 17 7.50 30 17.50 43 12.50

5 22.50 18 17.50 31 10.00 44 12.50

6 5.00 19 0.00 32 12.50 45 12.50

7 0.00 20 10.00 33 2.50 46 25.00

8 12.50 21 17.50 34 17.50 47 0.00

9 15.00 22 22.50 35 30.00 48 30.00

10 7.50 23 7.50 36 7.50 49 12.50

11 17.50 24 20.00 37 0.00 50 17.50

12 15.00 25 7.50 38 7.50

13 5.00 26 15.00 39 5.00
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5. Conclusions

An EMG-based biometric system based on Bi-LSTM with an efficient EMG feature
set was proposed. The EMG signals were obtained by measuring and amplifying the
minute electric current flow generated by the movement of human muscles and showed
different shapes depending on the degree of activity of the muscles and of parts of these
muscles. Biometric recognition using EMG signals increases the reliability of recognition
situations. Because EMG signals are generated when a person contracts his/her own
muscles, surrogate authentication is impossible, and replicating them is difficult because
they are not visually revealed. However, EMG signals are sensitive to noise and exhibit poor
recognition performance. Therefore, features should be compared and analyzed to allow
the stable identification of each person while being less affected by noise. A public EMG
dataset was used for this purpose. The experimental results revealed that, compared with
conventional methods, the proposed method exhibited good classification performance. In
the future, we plan to study a feature extraction method that can stably identify individuals
with EMG signals, based on an analysis of the characteristics of the features that showed
good performance in this study.
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