
Citation: Marcinek, K.; Pleskacz,

W.A. Variable Delayed Dual-Core

Lockstep (VDCLS) Processor for

Safety and Security Applications.

Electronics 2023, 12, 464. https://

doi.org/10.3390/electronics12020464

Academic Editors: Andrzej Jan Kos

and Marcin Janicki

Received: 7 December 2022

Revised: 6 January 2023

Accepted: 13 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Variable Delayed Dual-Core Lockstep (VDCLS) Processor for
Safety and Security Applications
Krzysztof Marcinek 1,* and Witold A. Pleskacz 2

1 ChipCraft Sp. z o.o., 20-262 Lublin, Poland
2 Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75,

00-662 Warsaw, Poland
* Correspondence: k.marcinek@chipcraft-ic.com

Abstract: Dual-Core Lockstep (DCLS) is one of the most commonly used techniques in applications
requiring functional safety. As the semiconductor process nodes keep shrinking, the DCLS technique
is also more and more frequently seen in industrial or even consumer electronics. The paper presents
the novel approach to the DCLS technique. While the typical approach is to set the slave core delay
as a fixed number of clock cycles, we allow the checker core to run freely behind the main core within
the constrained boundaries of clock cycles. This increases the temporal diversity needed for common
mode failure mitigation. The system integrity provided by DCLS may also be used in the area of
security applications. In this paper, we show that the proposed Variable Delayed Dual-Core Lockstep
technique can flatten the power consumption correlation between the running cores, essential for a
wide range of attacks. The proposed technique was implemented in the RISC-V processor core and
verified in the Xilinx VCU108 FPGA platform.

Keywords: dual-core lockstep; functional safety; security; fault tolerance; embedded processor;
RISC-V

1. Introduction

The continuous process of feature size shrinking follows the demand for more
functionalities embedded in the same chip. However, the negative effect and the conse-
quence of the growing complexity of modern Systems-on-Chip (SoCs) is the increasing
susceptibility to soft errors caused by radiation and interference [1]. The design and
implementation techniques once used solely to satisfy the reliability standards and
safety mechanisms, such as those specified in ECSS-E-ST-70C for space applications [2]
or ISO26262 for automotive domain [3], are more commonly used in the industrial
electronics or even consumer market.

One of the widely known techniques for error detection in microprocessor systems is
the checkpoint-oriented method that allows rollback recovery after detecting error [4,5]. It
is a purely software method that checks the program flow using calculated signatures. The
drawback of this method is that the signature is checked periodically, leaving the system
unprotected between two checkpoints. The dual-core lockstep [6] is an error detection
technique based on hardware redundancy. Two instances of processor cores (i.e., central
processing unit, CPU) execute exactly the same program allowing the error checker to
detect any differences in the primary outputs. Generally, double the resources are needed
for DCLS implementation in exchange for almost immediate error detection. On the
other hand, the recovery from error mode is not trivial. It can rely on the checkpointing
mentioned earlier, use additional recovery hardware or, as in most cases, require a complete
system reset for resynchronization. To overcome this disadvantage, the TCLS (Triple-
Core Lockstep) was introduced [7]. This approach adds a third redundant processor core;
therefore, the faulty device may be identified based on majority voter. As a result, the
correct architectural state can be immediately restored. Quick resynchronization is the

Electronics 2023, 12, 464. https://doi.org/10.3390/electronics12020464 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12020464
https://doi.org/10.3390/electronics12020464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7952-5093
https://doi.org/10.3390/electronics12020464
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12020464?type=check_update&version=1


Electronics 2023, 12, 464 2 of 18

major advantage of the TCLS technique, but the big resource overhead limits its use for
safety-critical application.

The DCLS technique presents a widely acknowledged balance between error de-
tection and recovery capabilities and resource utilization. This makes it one of the most
commonly adopted error detection techniques in the industry. The paper presents the
novel approach to the DCLS implementation. While the typical approach is to set the
slave core delay as a fixed number of clock cycles, we allow the checker core to run freely
behind the main core within the constrained boundaries of clock cycles. This increases
the temporal diversity needed for common mode failure (CMF) mitigation. In this paper,
we show that the proposed Variable Delayed Dual-Core Lockstep (VDCLS) technique can
also flatten the power consumption correlation between running cores. The introduced
power disruption caused by variable delay between processing cores makes it more
difficult for an attacker to infer about the executed code and inject precisely timed faults.
The proposed technique was implemented in the RISC-V [8] processor core and verified
in the Xilinx VCU108 FPGA platform.

The paper is organized as follows. Section 2 presents the related work and back-
ground for the conducted research. Section 3 describes the process of enhancing the
regular multicore processor core with the VDCLS technique. The simulation and FPGA
results are gathered in Section 4. Section 5 shows brief VDCLS failure analysis. The
paper ends with a conclusion.

2. Related Work

The lockstepping technique can be applied at different levels of the computer sys-
tem. The redundant logic, called the Sphere of Replication (SoR), may be located at
system level, sub-system level or CPU level [9]. The system level means replication of the
whole CPU system including main memories, while the sub-system level excludes main
memories as they are typically protected anyway with other EDAC (Error Detection
and Correction) means. These types of lockstepping systems are popular in servers and
mainframes [10,11]. The CPU-level lockstepping has been also widely adopted by the in-
dustry. The availability of Commercial Off-The-Shelf (COTS) DCLS products include, for
example, STMicroelectronics SPC574K72/SPC57EM80 [12] or NXP MPC5643L [13], both
based on the e200zx core [14]. Another example is Texas Instruments TMS570LC4357
HerculesTM [15], based on the ARM Cortex-R5 [16]. There is also a wide range of in-
tellectual property products (IP cores) immediately available on the market, such as
ARM Cortex-M33 [17] or the Synopsys ARC® Functional Safety Processor IP line [18].
More interestingly, UltraSoC released an IP that is claimed to be able to turn any regular
processor core into a lockstepping one [19].

Before any technique is adopted by the industry, it must undergo a research phase.
Indeed, the CPU-level dual core lockstep technique is still a subject of scientific research.
There are many papers describing the process of enhancing the already existing cores with
the DCLS technique. The authors of [20] exploit the well-established 16-bit openMSP430
architecture. In [21], the authors use the Xilinx MicroBlaze soft processor core. The ARM
Cortex-A9 processor embedded into Zynq-7000 Xilinx device is used in [22]. There is also
a growing number of papers concerning the rapidly emerging RISC-V architecture [23].
As stated before, the DCLS technique requires the resources of two CPUs, cancelling
the multicore performance gain and increasing power consumption. To mitigate this,
the authors of [24] proposed an on-demand core synchronization with additional post-
processing. Adaptive lockstep architecture using Cobham Gaisler’s LEON3 processor
is presented in [25]. Other research is devoted to the problem accompanying the DCLS
technique, that is error state recovery and rollback to the safe state [26,27]. A very interesting
concept is also described in [28]. This article proposes a heterogeneous architecture that
explores the DCLS technique using two different processing units: a hard-core Arm Cortex-
A9 and a soft-core RISC-V-based processor.



Electronics 2023, 12, 464 3 of 18

The above brief description of the research on CPU-level dual-core lockstep archi-
tectures shows that, apart from the specific features, the most generic DCLS architecture
presented in Figure 1 is used. The master and slave cores are identical. Slave core (CPU1)
inputs are delayed by the constant number of clock cycles, whereas master core (CPU0)
outputs have to be delayed by the same number of clock cycles to feed the output checker
for comparison. One of the reasons behind the development of VDCLS technique is
the fact that the most of the modern DCLS processors offer the lock/split feature [16]
that allows user to decide if processor should work as a regular dual-core multicore
processor or in lockstep mode. In such a case, to work in the classic lockstep mode,
the slave core has to be disconnected from the system bus and cache memories and fed
with master core data to stay in synchronization. The novelty in the present work is
based on the fact that we decided to maintain all the master and slave connections to
most of system busses and keep cores synchronized by implementing additional logic.
The design process of the proposed solution along with its consequences and results is
presented in the following sections.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 18 
 

 

The above brief description of the research on CPU-level dual-core lockstep architec-
tures shows that, apart from the specific features, the most generic DCLS architecture pre-
sented in Figure 1 is used. The master and slave cores are identical. Slave core (CPU1) 
inputs are delayed by the constant number of clock cycles, whereas master core (CPU0) 
outputs have to be delayed by the same number of clock cycles to feed the output checker 
for comparison. One of the reasons behind the development of VDCLS technique is the 
fact that the most of the modern DCLS processors offer the lock/split feature [16] that al-
lows user to decide if processor should work as a regular dual-core multicore processor 
or in lockstep mode. In such a case, to work in the classic lockstep mode, the slave core 
has to be disconnected from the system bus and cache memories and fed with master core 
data to stay in synchronization. The novelty in the present work is based on the fact that 
we decided to maintain all the master and slave connections to most of system busses and 
keep cores synchronized by implementing additional logic. The design process of the pro-
posed solution along with its consequences and results is presented in the following sec-
tions. 

 
Figure 1. Block diagram of a typical dual-core lockstep processor. 

3. Design Architecture 
The proposed Variable Delayed Dual-Core Lockstep (VDCLS) technique is imple-

mented using the CCRV32ST processor core [29–31] utilizing the RISC-V standard “GC” 
instruction set. The CCRV32ST integer pipeline is depicted in Figure 2. Its main features 
are: 
• RV32GCX instruction set; 
• Six-stage integer pipeline; 
• Single-issue, in-order design; 
• Gshare branch prediction; 
• Single or multicore implementation; 
• Up to 1.38 DMIPS/MHz/Core; 
• Up to 2.10 CoreMark/MHz/Core; 
• Custom instruction set extension; 
• On-chip debug support. 

Figure 1. Block diagram of a typical dual-core lockstep processor.

3. Design Architecture

The proposed Variable Delayed Dual-Core Lockstep (VDCLS) technique is imple-
mented using the CCRV32ST processor core [29–31] utilizing the RISC-V standard “GC”
instruction set. The CCRV32ST integer pipeline is depicted in Figure 2. Its main features are:

• RV32GCX instruction set;
• Six-stage integer pipeline;
• Single-issue, in-order design;
• Gshare branch prediction;
• Single or multicore implementation;
• Up to 1.38 DMIPS/MHz/Core;
• Up to 2.10 CoreMark/MHz/Core;
• Custom instruction set extension;
• On-chip debug support.

The adopted processor is suitable for use in application-specific integrated circuits
(ASIC) and in the field-programmable gate array devices (FPGA). The latter is commonly
used as a design and verification framework due to its re-programmability feature. The
main idea of the implementation process was to use the already existing CCRV32ST multi-
core infrastructure including the instruction and data caches and bus interconnects. Con-
sequently, one of the design aims, i.e., to implement the lock/split feature mentioned
earlier, was easily achievable. The block diagram of the typical processor implementation is
presented in Figure 3. The following subsections briefly describe the VDCLS design phases.



Electronics 2023, 12, 464 4 of 18Electronics 2023, 12, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 2. Integer unit datapath of the CCRV32ST processor core. 

The adopted processor is suitable for use in application-specific integrated circuits 
(ASIC) and in the field-programmable gate array devices (FPGA). The latter is commonly 
used as a design and verification framework due to its re-programmability feature. The 
main idea of the implementation process was to use the already existing CCRV32ST mul-
ticore infrastructure including the instruction and data caches and bus interconnects. Con-
sequently, one of the design aims, i.e., to implement the lock/split feature mentioned ear-
lier, was easily achievable. The block diagram of the typical processor implementation is 
presented in Figure 3. The following subsections briefly describe the VDCLS design 
phases. 

Figure 2. Integer unit datapath of the CCRV32ST processor core.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 3. Block diagram of a typical CCRV32ST processor system-on-chip. 

3.1. Checker Module 
The first step during the VDCLS implementation was to develop the Checker Module 

(Figure 4). The Checker Module receives the main outputs from the master and slave 
cores, optionally calculates output signature and buffers the results. The main core out-
puts consist of the current core program counter, executed instruction, instruction result 
and stored data. In the classic approach, when the slave core is delayed, e.g., by two clock 
cycles, the comparison is straightforward as it is made between the master core results 
and the slave core results delayed by a constant number of clock cycles. In the discussed 
case, the Checker Module constantly tracks the delay between the two cores and selects 
the appropriate slave core results for the comparison. 

  

Figure 3. Block diagram of a typical CCRV32ST processor system-on-chip.



Electronics 2023, 12, 464 5 of 18

3.1. Checker Module

The first step during the VDCLS implementation was to develop the Checker
Module (Figure 4). The Checker Module receives the main outputs from the master and
slave cores, optionally calculates output signature and buffers the results. The main core
outputs consist of the current core program counter, executed instruction, instruction
result and stored data. In the classic approach, when the slave core is delayed, e.g., by
two clock cycles, the comparison is straightforward as it is made between the master
core results and the slave core results delayed by a constant number of clock cycles. In
the discussed case, the Checker Module constantly tracks the delay between the two
cores and selects the appropriate slave core results for the comparison.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 4. Block diagram of the VDCLS Checker Module. 

3.2. VDCLS Controller Module 
The capacity of the Checker Module buffer is limited; moreover, the slave core cannot 

overtake the master core in the program execution. As the result, the program execution 
freedom by master and slave cores has to be constrained. The VDCLS Controller Module 
analyzes the current delay between two cores and injects stall cycles to the master core, 
when the slave core approaches the buffer limits, or to the slave core, to keep to slave core 
behind the master core (Figure 5). The necessity of injecting stall cycles is the main draw-
back of the proposed solution. However, the results shown in the later sections indicate 
that the impact of these additional cycles is negligible. The size of the Checker Module 
buffer constraints the stall injection thresholds. A bigger module reduces the need for stall 
cycles that impacts the processor performance. 

 
Figure 5. VDCLS Controller Module simplified block diagram. 

3.3. Cache Synchronization 
In the described approach we decided to leave both master and slave cores connected 

independently to the main memory system busses. In comparison with classic DCLS im-
plementation, this step increased the SoR area with the instruction and data cache mem-
ories. Each core fetches an instruction to its cache memories using separate requests on 
the system bus. This introduces additional protection against single point of failures 
(SPOF) resulting from the single data fetch that propagates to both cores. In general, in 
such a system, caches are protected using parity or Error Correction Codes (ECC), but this 
additional layer significantly hinders side channel manipulation. The attacker would need 
to intervene in two bus transactions taking place in two hard-to-predict time points. The 
same mechanism is used for data caches with one exception, that only the master core is 
capable of issuing store transactions to the system bus to update main memory or change 
peripherals state. Data caches are implemented as write-through with a write-no-allocate 
policy. This means that a cache miss during write does not require line refill. However, 

Figure 4. Block diagram of the VDCLS Checker Module.

3.2. VDCLS Controller Module

The capacity of the Checker Module buffer is limited; moreover, the slave core
cannot overtake the master core in the program execution. As the result, the program
execution freedom by master and slave cores has to be constrained. The VDCLS Con-
troller Module analyzes the current delay between two cores and injects stall cycles to
the master core, when the slave core approaches the buffer limits, or to the slave core,
to keep to slave core behind the master core (Figure 5). The necessity of injecting stall
cycles is the main drawback of the proposed solution. However, the results shown in the
later sections indicate that the impact of these additional cycles is negligible. The size of
the Checker Module buffer constraints the stall injection thresholds. A bigger module
reduces the need for stall cycles that impacts the processor performance.



Electronics 2023, 12, 464 6 of 18

Electronics 2023, 12, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 4. Block diagram of the VDCLS Checker Module. 

3.2. VDCLS Controller Module 
The capacity of the Checker Module buffer is limited; moreover, the slave core cannot 

overtake the master core in the program execution. As the result, the program execution 
freedom by master and slave cores has to be constrained. The VDCLS Controller Module 
analyzes the current delay between two cores and injects stall cycles to the master core, 
when the slave core approaches the buffer limits, or to the slave core, to keep to slave core 
behind the master core (Figure 5). The necessity of injecting stall cycles is the main draw-
back of the proposed solution. However, the results shown in the later sections indicate 
that the impact of these additional cycles is negligible. The size of the Checker Module 
buffer constraints the stall injection thresholds. A bigger module reduces the need for stall 
cycles that impacts the processor performance. 

 
Figure 5. VDCLS Controller Module simplified block diagram. 

3.3. Cache Synchronization 
In the described approach we decided to leave both master and slave cores connected 

independently to the main memory system busses. In comparison with classic DCLS im-
plementation, this step increased the SoR area with the instruction and data cache mem-
ories. Each core fetches an instruction to its cache memories using separate requests on 
the system bus. This introduces additional protection against single point of failures 
(SPOF) resulting from the single data fetch that propagates to both cores. In general, in 
such a system, caches are protected using parity or Error Correction Codes (ECC), but this 
additional layer significantly hinders side channel manipulation. The attacker would need 
to intervene in two bus transactions taking place in two hard-to-predict time points. The 
same mechanism is used for data caches with one exception, that only the master core is 
capable of issuing store transactions to the system bus to update main memory or change 
peripherals state. Data caches are implemented as write-through with a write-no-allocate 
policy. This means that a cache miss during write does not require line refill. However, 

Figure 5. VDCLS Controller Module simplified block diagram.

3.3. Cache Synchronization

In the described approach we decided to leave both master and slave cores connected
independently to the main memory system busses. In comparison with classic DCLS
implementation, this step increased the SoR area with the instruction and data cache
memories. Each core fetches an instruction to its cache memories using separate requests
on the system bus. This introduces additional protection against single point of failures
(SPOF) resulting from the single data fetch that propagates to both cores. In general, in
such a system, caches are protected using parity or Error Correction Codes (ECC), but
this additional layer significantly hinders side channel manipulation. The attacker would
need to intervene in two bus transactions taking place in two hard-to-predict time points.
The same mechanism is used for data caches with one exception, that only the master
core is capable of issuing store transactions to the system bus to update main memory
or change peripherals state. Data caches are implemented as write-through with a write-
no-allocate policy. This means that a cache miss during write does not require line refill.
However, already allocated lines need updates in both master and slave cores. As the result,
data dependency hazards such as read-after-write (RAW) can occur between cores during
VDCLS execution. To resolve this issue, data caches were modified to mutually monitor
their read and write attempts and if necessary postpone their action to prevent fetching
incorrect data.

Figure 6 shows the exemplary situation when the master core performed write
operation (W(B)) before the slave core could read the older value (R(B)). The system
behavior in such a situation depends on whether the read value is in cache or has
to be loaded from the main memory. After a cache hit, the slave core will use the
value already existing in the cache memory. Otherwise, the bus transaction will occur
causing a load of the incorrect value. To prevent such a situation, the master core is
forced to wait for the slave core to finish the previous read operation. The importance
of the cache transaction monitoring and synchronization mechanisms is shown in the
Figure 7. It depicts the hypothetical situation when master and slave cores cause an entire
system deadlock. The improperly implemented synchronization between both cores
can lead to a situation when master and slave cores will indefinitely wait for each other
to complete the operation. The implemented hardware mechanisms were extensively
verified through PC simulation to ensure non-deadlock operation and maintain data
coherency between master and slave cores. As a result, no external assistance from user
software or compiler is needed. The VDCLS processor executes the same binary files as
the original CCRV32ST processor core.



Electronics 2023, 12, 464 7 of 18

Electronics 2023, 12, x FOR PEER REVIEW 7 of 18 
 

 

already allocated lines need updates in both master and slave cores. As the result, data 
dependency hazards such as read-after-write (RAW) can occur between cores during 
VDCLS execution. To resolve this issue, data caches were modified to mutually monitor 
their read and write attempts and if necessary postpone their action to prevent fetching 
incorrect data. 

Figure 6 shows the exemplary situation when the master core performed write oper-
ation (W(B)) before the slave core could read the older value (R(B)). The system behavior 
in such a situation depends on whether the read value is in cache or has to be loaded from 
the main memory. After a cache hit, the slave core will use the value already existing in 
the cache memory. Otherwise, the bus transaction will occur causing a load of the incor-
rect value. To prevent such a situation, the master core is forced to wait for the slave core 
to finish the previous read operation. The importance of the cache transaction monitoring 
and synchronization mechanisms is shown in the Figure 7. It depicts the hypothetical sit-
uation when master and slave cores cause an entire system deadlock. The improperly im-
plemented synchronization between both cores can lead to a situation when master and 
slave cores will indefinitely wait for each other to complete the operation. The imple-
mented hardware mechanisms were extensively verified through PC simulation to ensure 
non-deadlock operation and maintain data coherency between master and slave cores. As 
a result, no external assistance from user software or compiler is needed. The VDCLS pro-
cessor executes the same binary files as the original CCRV32ST processor core. 

 
Figure 6. Slave attempt to read data after master updated main memory. 

 
Figure 7. Potential source of deadlock between master and slave cores. 

3.4. Interrupt Injection 
Just like the Checker Module, the interrupt module had to be modified to monitor 

the balance between the master and slave cores. Upon an incoming interrupt or exception 
event, the dedicated logic calculates the place in the slave interrupt buffer where the in-
terrupt has to be injected (Figure 8). As the result, both cores see the interrupt in the same 
architectural state. 

R(A) W(B)

R(A) R(B)

R(A) W(B)

R(A) R(B) W(B)

R(B)

W(B)

R(B)MASTER

SLAVE

R(B) R(C)

R(B) W(C)

W(C)W(A)

W(A)

MASTER

SLAVE

Figure 6. Slave attempt to read data after master updated main memory.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 18 
 

 

already allocated lines need updates in both master and slave cores. As the result, data 
dependency hazards such as read-after-write (RAW) can occur between cores during 
VDCLS execution. To resolve this issue, data caches were modified to mutually monitor 
their read and write attempts and if necessary postpone their action to prevent fetching 
incorrect data. 

Figure 6 shows the exemplary situation when the master core performed write oper-
ation (W(B)) before the slave core could read the older value (R(B)). The system behavior 
in such a situation depends on whether the read value is in cache or has to be loaded from 
the main memory. After a cache hit, the slave core will use the value already existing in 
the cache memory. Otherwise, the bus transaction will occur causing a load of the incor-
rect value. To prevent such a situation, the master core is forced to wait for the slave core 
to finish the previous read operation. The importance of the cache transaction monitoring 
and synchronization mechanisms is shown in the Figure 7. It depicts the hypothetical sit-
uation when master and slave cores cause an entire system deadlock. The improperly im-
plemented synchronization between both cores can lead to a situation when master and 
slave cores will indefinitely wait for each other to complete the operation. The imple-
mented hardware mechanisms were extensively verified through PC simulation to ensure 
non-deadlock operation and maintain data coherency between master and slave cores. As 
a result, no external assistance from user software or compiler is needed. The VDCLS pro-
cessor executes the same binary files as the original CCRV32ST processor core. 

 
Figure 6. Slave attempt to read data after master updated main memory. 

 
Figure 7. Potential source of deadlock between master and slave cores. 

3.4. Interrupt Injection 
Just like the Checker Module, the interrupt module had to be modified to monitor 

the balance between the master and slave cores. Upon an incoming interrupt or exception 
event, the dedicated logic calculates the place in the slave interrupt buffer where the in-
terrupt has to be injected (Figure 8). As the result, both cores see the interrupt in the same 
architectural state. 

R(A) W(B)

R(A) R(B)

R(A) W(B)

R(A) R(B) W(B)

R(B)

W(B)

R(B)MASTER

SLAVE

R(B) R(C)

R(B) W(C)

W(C)W(A)

W(A)

MASTER

SLAVE

Figure 7. Potential source of deadlock between master and slave cores.

3.4. Interrupt Injection

Just like the Checker Module, the interrupt module had to be modified to monitor
the balance between the master and slave cores. Upon an incoming interrupt or exception
event, the dedicated logic calculates the place in the slave interrupt buffer where the
interrupt has to be injected (Figure 8). As the result, both cores see the interrupt in the
same architectural state.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 8. Block diagram of the VDCLS Interrupt Injection Module. 

3.5. Peripheral Bus 
In general, the peripheral address space is non-idempotent. It means that read and 

write operations can have side effects. Moreover, a read operation can return a different 
value without an explicit write operation before (e.g., timers, counters, etc.). As the result, 
in contrast to the processor caches, only the master core is allowed to perform read and 
write operations. The dedicated module queues master read results and ensures that the 
slave core sees the correct read values. 

4. Results 
This section presents the results of the VDCLS technique implementation using the 

CCRV32ST processor core. Figure 9 presents the sample trace logged during the PC sim-
ulation of VDCLS execution. It can be seen that the delay between the master and slave 
cores is not constant. In the presented case, the slave core stays three to seven clock cycles 
behind the master core. As seen in Figure 9, the VDCLS technique is feasible and the pro-
cessor can execute firmware correctly using this technique. The next subsections show 
more detailed results concerning performance and resource utilization, as well as the im-
pact that the VDCLS technique may have in safety and security applications. 

 
Figure 9. Trace of the delay between the master and slave cores in VDCLS execution. 

  

0

1

2

3

4

5

6

7

8

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

30
7

32
4

34
1

35
8

37
5

39
2

40
9

42
6

44
3

Sl
av

e 
CP

U 
de

la
y 

[c
lo

ck
 cy

cle
s]

Time [clock cycles]

Figure 8. Block diagram of the VDCLS Interrupt Injection Module.



Electronics 2023, 12, 464 8 of 18

3.5. Peripheral Bus

In general, the peripheral address space is non-idempotent. It means that read and
write operations can have side effects. Moreover, a read operation can return a different
value without an explicit write operation before (e.g., timers, counters, etc.). As the result,
in contrast to the processor caches, only the master core is allowed to perform read and
write operations. The dedicated module queues master read results and ensures that the
slave core sees the correct read values.

4. Results

This section presents the results of the VDCLS technique implementation using the
CCRV32ST processor core. Figure 9 presents the sample trace logged during the PC
simulation of VDCLS execution. It can be seen that the delay between the master and
slave cores is not constant. In the presented case, the slave core stays three to seven clock
cycles behind the master core. As seen in Figure 9, the VDCLS technique is feasible and
the processor can execute firmware correctly using this technique. The next subsections
show more detailed results concerning performance and resource utilization, as well as the
impact that the VDCLS technique may have in safety and security applications.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 8. Block diagram of the VDCLS Interrupt Injection Module. 

3.5. Peripheral Bus 
In general, the peripheral address space is non-idempotent. It means that read and 

write operations can have side effects. Moreover, a read operation can return a different 
value without an explicit write operation before (e.g., timers, counters, etc.). As the result, 
in contrast to the processor caches, only the master core is allowed to perform read and 
write operations. The dedicated module queues master read results and ensures that the 
slave core sees the correct read values. 

4. Results 
This section presents the results of the VDCLS technique implementation using the 

CCRV32ST processor core. Figure 9 presents the sample trace logged during the PC sim-
ulation of VDCLS execution. It can be seen that the delay between the master and slave 
cores is not constant. In the presented case, the slave core stays three to seven clock cycles 
behind the master core. As seen in Figure 9, the VDCLS technique is feasible and the pro-
cessor can execute firmware correctly using this technique. The next subsections show 
more detailed results concerning performance and resource utilization, as well as the im-
pact that the VDCLS technique may have in safety and security applications. 

 
Figure 9. Trace of the delay between the master and slave cores in VDCLS execution. 

  

0

1

2

3

4

5

6

7

8

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

30
7

32
4

34
1

35
8

37
5

39
2

40
9

42
6

44
3

Sl
av

e 
CP

U 
de

la
y 

[c
lo

ck
 cy

cle
s]

Time [clock cycles]

Figure 9. Trace of the delay between the master and slave cores in VDCLS execution.

4.1. FPGA Results

Table 1 presents the performance comparison between the regular CCRV32ST pro-
cessor core and the dual-core lockstep implementation using the VDCLS technique. The
results were obtained by implementing both processor versions in the Xilinx VCU108 board.
As previously noted, the bare fact that stall cycles have to be injected means that the VDCLS
performance will be impacted. The extent of this impact depends on the executed software
profile, bus utilization, etc. For example, the negative impact on CoreMark execution is
much lower than that on Dhrystone. The presented results show that the negative impact
is low and depends on the target application.



Electronics 2023, 12, 464 9 of 18

Table 1. Performance comparison between regular and VDCLS implementation.

Dhrystone
[DMIPS/Hz]

CoreMark
[CoreMark/MHz]

Multicore (2 cores) 1.38 2.10
VDCLS 1.24 2.04

Table 2 presents the FPGA resource utilization comparison between the regular
CCRV32ST dual-core processor implementation and the VDCLS one. Every dual-core
lockstep implementation requires additional resources, such as error detection logic or
switches that reorganize cores and memories on the system busses. In the VDCLS imple-
mentation the interrupt and multicore logic is much bigger due to the implementation
of VCDLS Controller Module and Interrupt Injection Module. The price of additional
4% system resource utilization is compensated by the flexible split/core processing
mode, where lockstep mode ensures fast error detection and makes security attacks
more difficult. The processor system components used for comparison are presented in
Figure 3. AMBA APB interconnect and peripherals as well as DMA block were excluded
from the comparison.

Table 2. Resources utilization comparison between regular dual core and VDCLS implementation
using FPGA VCU108 platform.

Multicore (2 Cores) VDCLS

LUTs FFs LUTs FFs % LUTs % FFs

processor system 38842 27583 39460 28693 +1.59 +4.02
processor coreplex 28796 20932 29425 22042 +2.18 +5.30

core 0 3102 2165 3162 2169 +1.93 +0.18
core 1 3105 2165 3149 2169 +1.42 +0.18

d-cache 0 902 1275 975 1333 +8.09 +4.55
d-cache 1 963 1272 885 1296 −8.09 +1.87

i-cache 0/1 725 826 734 850 +1.24 +2.90
interrupt 1184 1636 1467 1842 +23.90 +12.59
multicore 119 352 356 786 +199.16 +123.30

4.2. Execution Correlation Results

The execution trace presented in Figure 9 shows that, indeed, the slave core delay does
not have to be constant and the VDCLS implementation can execute software correctly.
On the other hand, the presented figure shows only a very time-limited trace that is hard
to analyze. To overcome this problem, we implemented test logic in the processor core
that counts DFFs toggles in the execution stage. We choose the execute stage as the most
representative one in the processor pipeline. The execute stage is responsible for the
calculation of instruction results, address generation, interrupt and exception evaluation.
In the real ASIC design, the toggle count will transform into power consumption trace, the
tool that is most commonly used for power analysis attacks [32]. By having toggle count
traces, we could use formula (1) to calculate their correlation with different delays. The
first and second formula variables are the toggle count traces of the master and slave cores,
respectively. The number of samples represents the simulation time in clock cycles. The
function argument d is the offset in clock cycles between the master and slave core traces.
We can anticipate that in the classic DCLS approach the execution correlation between the
two cores will reach the maximum at the value equal to the number of clock cycles of slave
core to master core delay.

r(d) =
n(∑ xiyi+d)− (∑ xi)(∑ yi+d)√

(n ∑ x2
i − (∑ xi)

2)(n ∑ y2
i+d − (∑ yi+d)

2)
(1)



Electronics 2023, 12, 464 10 of 18

where:

r(d): correlation coefficient;
xi: values of first variable;
yi: values of second variable;
n: number of samples;
d: the second variable offset.

The comparison of the execution correlation between master and slave cores in classic
DCLS and VDCLS implementation using PC simulation is shown in Figures 10–15. For
test purposes we choose several algorithms, such as AES (Advanced Encryption Standard),
SHA (Secure Hash Algorithm), ECDSA (Elliptic Curve Digital Signature Algorithm) and
GF (Galois Field) used in security and cryptographic applications. As predicted, the classic
DCLS shows a single strong peak with the maximum value at the delay of two clock cycles.
It is caused by the fact that the slave core performs, cycle-by-cycle, exact the same toggles
as the master core shifted by two clock cycles. On the other hand, in the VDCLS, even
though the slave core executes the same software, the microarchitectural states are changing
with more freedom. We can see more or less visible correlation peaks that never reach the
maximum value and are located at different delays.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 18 
 

 

count traces, we could use formula (1) to calculate their correlation with different delays. 
The first and second formula variables are the toggle count traces of the master and slave 
cores, respectively. The number of samples represents the simulation time in clock cycles. 
The function argument d is the offset in clock cycles between the master and slave core 
traces. We can anticipate that in the classic DCLS approach the execution correlation be-
tween the two cores will reach the maximum at the value equal to the number of clock 
cycles of slave core to master core delay. 𝑟(𝑑) = 𝑛(∑𝑥 𝑦 ) − (∑𝑥 )(∑𝑦 )(𝑛∑𝑥 − (∑𝑥 ) )(𝑛∑𝑦 − (∑𝑦 ) ) (1) 

where: 
r(d) : correlation coefficient; 
xi : values of first variable; 
yi : values of second variable; 
n : number of samples; 
d : the second variable offset. 

The comparison of the execution correlation between master and slave cores in classic 
DCLS and VDCLS implementation using PC simulation is shown in Figures 10–15. For 
test purposes we choose several algorithms, such as AES (Advanced Encryption Stand-
ard), SHA (Secure Hash Algorithm), ECDSA (Elliptic Curve Digital Signature Algorithm) 
and GF (Galois Field) used in security and cryptographic applications. As predicted, the 
classic DCLS shows a single strong peak with the maximum value at the delay of two 
clock cycles. It is caused by the fact that the slave core performs, cycle-by-cycle, exact the 
same toggles as the master core shifted by two clock cycles. On the other hand, in the 
VDCLS, even though the slave core executes the same software, the microarchitectural 
states are changing with more freedom. We can see more or less visible correlation peaks 
that never reach the maximum value and are located at different delays. 

 
Figure 10. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the SHA algorithm. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

Figure 10. Comparison of the execution correlation between master and slave CPUs using VDCLS
and legacy DCLS technique while executing the SHA algorithm.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 11. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the HMAC-SHA algorithm. 

 
Figure 12. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the CMAC-AES algorithm. 

 
Figure 13. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the EDCSA verification algorithm. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

Figure 11. Comparison of the execution correlation between master and slave CPUs using VDCLS
and legacy DCLS technique while executing the HMAC-SHA algorithm.



Electronics 2023, 12, 464 11 of 18

Electronics 2023, 12, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 11. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the HMAC-SHA algorithm. 

 
Figure 12. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the CMAC-AES algorithm. 

 
Figure 13. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the EDCSA verification algorithm. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

Figure 12. Comparison of the execution correlation between master and slave CPUs using VDCLS
and legacy DCLS technique while executing the CMAC-AES algorithm.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 11. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the HMAC-SHA algorithm. 

 
Figure 12. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the CMAC-AES algorithm. 

 
Figure 13. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the EDCSA verification algorithm. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

Figure 13. Comparison of the execution correlation between master and slave CPUs using VDCLS
and legacy DCLS technique while executing the EDCSA verification algorithm.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 14. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the EDCSA key compression algorithm. 

 
Figure 15. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the Galois field GF (28) functions. 

4.3. Dummy Cycles Injection Results 
The received results encouraged us to conduct further research on the possibility of 

flattening the execution correlation between the cores. One of the common techniques for 
power signature masking is dummy cycle injection [33]. In the classic DCLS implementa-
tion, dummy cycle injection needs to be processed in the same way in both master and 
slave cores, maintaining the common delay. In the proposed technique, we have a VDCLS 
Controller Module that already is responsible for stall cycle injection. We improved that 
module to be able to inject additional dummy cycles using an external LFSR/TRNG gen-
erator. The dummy cycle injection is capable of inserting wait states to both master and 
slave cores independently, and its threshold level is controlled by software. 

Figures 16–19 show the comparison of execution correlation between master and 
slave cores with additional dummy cycle injection in the VDCLS implementation. The 
results were obtained using PC simulation. Dummy cycle injection was enabled using 
software and set at the approximate level of 6% and 18% of each instruction commit by 
both cores. We can see a significant decrease in the correlation peak level. In some cases, 
the peak itself can be also shifted towards different delays. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

Figure 14. Comparison of the execution correlation between master and slave CPUs using VDCLS
and legacy DCLS technique while executing the EDCSA key compression algorithm.



Electronics 2023, 12, 464 12 of 18

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 14. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the EDCSA key compression algorithm. 

 
Figure 15. Comparison of the execution correlation between master and slave CPUs using VDCLS 
and legacy DCLS technique while executing the Galois field GF (28) functions. 

4.3. Dummy Cycles Injection Results 
The received results encouraged us to conduct further research on the possibility of 

flattening the execution correlation between the cores. One of the common techniques for 
power signature masking is dummy cycle injection [33]. In the classic DCLS implementa-
tion, dummy cycle injection needs to be processed in the same way in both master and 
slave cores, maintaining the common delay. In the proposed technique, we have a VDCLS 
Controller Module that already is responsible for stall cycle injection. We improved that 
module to be able to inject additional dummy cycles using an external LFSR/TRNG gen-
erator. The dummy cycle injection is capable of inserting wait states to both master and 
slave cores independently, and its threshold level is controlled by software. 

Figures 16–19 show the comparison of execution correlation between master and 
slave cores with additional dummy cycle injection in the VDCLS implementation. The 
results were obtained using PC simulation. Dummy cycle injection was enabled using 
software and set at the approximate level of 6% and 18% of each instruction commit by 
both cores. We can see a significant decrease in the correlation peak level. In some cases, 
the peak itself can be also shifted towards different delays. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS

Figure 15. Comparison of the execution correlation between master and slave CPUs using VDCLS
and legacy DCLS technique while executing the Galois field GF (28) functions.

4.3. Dummy Cycles Injection Results

The received results encouraged us to conduct further research on the possibility of
flattening the execution correlation between the cores. One of the common techniques
for power signature masking is dummy cycle injection [33]. In the classic DCLS imple-
mentation, dummy cycle injection needs to be processed in the same way in both master
and slave cores, maintaining the common delay. In the proposed technique, we have a
VDCLS Controller Module that already is responsible for stall cycle injection. We improved
that module to be able to inject additional dummy cycles using an external LFSR/TRNG
generator. The dummy cycle injection is capable of inserting wait states to both master and
slave cores independently, and its threshold level is controlled by software.

Figures 16–19 show the comparison of execution correlation between master and slave
cores with additional dummy cycle injection in the VDCLS implementation. The results
were obtained using PC simulation. Dummy cycle injection was enabled using software
and set at the approximate level of 6% and 18% of each instruction commit by both cores.
We can see a significant decrease in the correlation peak level. In some cases, the peak itself
can be also shifted towards different delays.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 16. Comparison of the execution correlation between master and slave CPUs using VDCLS 
with dummy cycles insertion and legacy DCLS technique while executing the CMAC-AES algo-
rithm. 

 
Figure 17. Comparison of the execution correlation between master and slave CPUs using VDCLS 
with dummy cycles insertion and legacy DCLS technique while executing the Galois field GF (28) 
functions. 

 
Figure 18. Comparison of the execution correlation between master and slave CPUs using VDCLS 
with dummy cycles insertion and legacy DCLS technique while executing the SHA algorithm. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS VDCLS (6%) VDCLS (18%)

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS VDCLS (6%) VDCLS (18%)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS VDCLS (6%) VDCLS (18%)

Figure 16. Comparison of the execution correlation between master and slave CPUs using VDCLS
with dummy cycles insertion and legacy DCLS technique while executing the CMAC-AES algorithm.



Electronics 2023, 12, 464 13 of 18

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 16. Comparison of the execution correlation between master and slave CPUs using VDCLS 
with dummy cycles insertion and legacy DCLS technique while executing the CMAC-AES algo-
rithm. 

 
Figure 17. Comparison of the execution correlation between master and slave CPUs using VDCLS 
with dummy cycles insertion and legacy DCLS technique while executing the Galois field GF (28) 
functions. 

 
Figure 18. Comparison of the execution correlation between master and slave CPUs using VDCLS 
with dummy cycles insertion and legacy DCLS technique while executing the SHA algorithm. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS VDCLS (6%) VDCLS (18%)

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS VDCLS (6%) VDCLS (18%)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS VDCLS (6%) VDCLS (18%)

Figure 17. Comparison of the execution correlation between master and slave CPUs using VD-
CLS with dummy cycles insertion and legacy DCLS technique while executing the Galois field
GF (28) functions.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 16. Comparison of the execution correlation between master and slave CPUs using VDCLS 
with dummy cycles insertion and legacy DCLS technique while executing the CMAC-AES algo-
rithm. 

 
Figure 17. Comparison of the execution correlation between master and slave CPUs using VDCLS 
with dummy cycles insertion and legacy DCLS technique while executing the Galois field GF (28) 
functions. 

 
Figure 18. Comparison of the execution correlation between master and slave CPUs using VDCLS 
with dummy cycles insertion and legacy DCLS technique while executing the SHA algorithm. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS VDCLS (6%) VDCLS (18%)

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS VDCLS (6%) VDCLS (18%)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS VDCLS (6%) VDCLS (18%)

Figure 18. Comparison of the execution correlation between master and slave CPUs using VDCLS
with dummy cycles insertion and legacy DCLS technique while executing the SHA algorithm.

The low correlation of core execution means that it is hard to distinguish which soft-
ware instruction is processed at the exact moment by each core. On the other hand, we
know that in the longer term, both cores execute exactly the same code and obtain the same
results. That means that we will still be able to observe particular power trace patterns
introduced by the executed software running on the processor with given microarchitecture.
The VDCLS technique was developed for error detection where the introduced variable tem-
poral diversity can enhance the CMF mitigation. However, the use of the proposed method
can be extended to security applications, where safety is one of the main requirements. We
showed that the VDCLS technique can be easily extended and modified, for example, with
random dummy cycle injection. The introduced technique may also be used in conjunction
with other power attack countermeasure methods, either software/algorithm based [34] or
technology based, such as WDDL (Wave Dynamic Differential Logic) or MDPL (Masked
Dual-rail with Precharge Logic) [35].



Electronics 2023, 12, 464 14 of 18Electronics 2023, 12, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 19. Comparison of the execution correlation between master and slave CPUs using VDCLS 
with dummy cycles insertion and legacy DCLS technique while executing the ECDSA verification 
algorithm. 

The low correlation of core execution means that it is hard to distinguish which soft-
ware instruction is processed at the exact moment by each core. On the other hand, we 
know that in the longer term, both cores execute exactly the same code and obtain the 
same results. That means that we will still be able to observe particular power trace pat-
terns introduced by the executed software running on the processor with given microar-
chitecture. The VDCLS technique was developed for error detection where the introduced 
variable temporal diversity can enhance the CMF mitigation. However, the use of the pro-
posed method can be extended to security applications, where safety is one of the main 
requirements. We showed that the VDCLS technique can be easily extended and modi-
fied, for example, with random dummy cycle injection. The introduced technique may 
also be used in conjunction with other power attack countermeasure methods, either soft-
ware/algorithm based [34] or technology based, such as WDDL (Wave Dynamic Differen-
tial Logic) or MDPL (Masked Dual-rail with Precharge Logic) [35]. 

5. Failure Analysis 
One of the major groups of harmful effects causing malfunction of electronic devices 

is called Single-Event Effect (SEE) [27]. While the DCLS technique (and VDCLS as well) 
introduces redundancy by design, which helps mitigate SEE, the single point and com-
mon mode failures require much more attention [23]. In this section, we briefly describe 
these failure groups, discuss their mitigation and show simulated results of fault coverage. 

5.1. Single Event Effects 
By definition, the group of single event effects concerns situations where, at a given 

time, one functional node (wire, logic gate, memory cell, DFF, etc.) manifests malfunction. 
The lockstepping technique mitigates such events by design using redundancy. During 
SEE, only one node in one processor core fails. As a result, the checker module can easily 
detect mismatches between processor cores and take appropriate actions to prevent fur-
ther misoperation. 

5.2. Common Mode Failures 
Common mode failure (CMF) is the result of an event or events located close in time 

that cause a failure in both redundant blocks [36]. If both redundant cores experience the 
same malfunction at the same time, the checker module will not be able to detect such a 
condition, as the outputs from both cores will match. The most effective way to mitigate 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
rr

el
at

io
n

Slave CPU delay [clock cycles]

DCLS VDCLS VDCLS (6%) VDCLS (18%)

Figure 19. Comparison of the execution correlation between master and slave CPUs using
VDCLS with dummy cycles insertion and legacy DCLS technique while executing the ECDSA
verification algorithm.

5. Failure Analysis

One of the major groups of harmful effects causing malfunction of electronic devices
is called Single-Event Effect (SEE) [27]. While the DCLS technique (and VDCLS as well)
introduces redundancy by design, which helps mitigate SEE, the single point and common
mode failures require much more attention [23]. In this section, we briefly describe these
failure groups, discuss their mitigation and show simulated results of fault coverage.

5.1. Single Event Effects

By definition, the group of single event effects concerns situations where, at a given
time, one functional node (wire, logic gate, memory cell, DFF, etc.) manifests malfunction.
The lockstepping technique mitigates such events by design using redundancy. During
SEE, only one node in one processor core fails. As a result, the checker module can easily
detect mismatches between processor cores and take appropriate actions to prevent
further misoperation.

5.2. Common Mode Failures

Common mode failure (CMF) is the result of an event or events located close in time
that cause a failure in both redundant blocks [36]. If both redundant cores experience
the same malfunction at the same time, the checker module will not be able to detect
such a condition, as the outputs from both cores will match. The most effective way to
mitigate CMF is to introduce diversity in both redundant cores. In the classic DCLS and
the derivative VDCLS technique, the delay between master and slave cores adds temporal
diversity to mitigate CMF. With the delay between the cores, errors are serialized and reach
the checker module one after another manifesting themselves as two SEEs that can be
easily detected. On the other hand, the CMF can occur naturally, but can also be injected
intentionally by the attacker. If the attacker is aware of the underlying hardware and
constant delay in DCLS processor, he or she may potentially conduct a set of events located
in time in such a way that will cause same malfunction in both delayed cores and prevent
the checker module from detecting it. As shown previously in the execution correlation
results, with VDCLS, the attacker does not know the current delay between the cores, which
makes the fault injection process much more difficult.



Electronics 2023, 12, 464 15 of 18

5.3. Single Point of Failure

In contrast to CMFs that originate in the protected logic, SPOFs are caused by the
logic outside the SoR. One of the most common ways to deal with SPOF is to introduce
an additional protection layer consisting of ECC, hardware or software protocol checkers,
watchdogs, etc. In contrast to the classic DCLS approach, VDCLS reduces the risk of SPOF
by including instruction and data cache controllers to the SoR. More modules inside the
SoR leave less unprotected logic that is the source of SPOF.

5.4. Fault Coverage

The aim of the lockstepping technique is to maximize the fault coverage, one of the
most important factors that determine reliability. Altogether, 98% mitigation of bit-flips
injected into the register file has been reported in [27], while the experimental results
presented in [37] indicate 99.63% error coverage. Moreover, the authors of the system
demonstrated in [38] claim coverage up to 99.3%. All these results were obtained using
a combination of hardware/software approach exploiting checkpointing without full
synchronization. On the other hand, [23] exploits two processor pipelines executing two
virtual cores. The comparison between both pipeline stages occurs every clock cycle
resulting in 100% fault coverage. This is the value expected from the classic delayed
dual-core lockstep processor, as well as from the presented VDCLS technique.

To evaluate and confirm fault coverage of VDCLS, we adopted the fault injection
technique used in [37]. We prepared a matrix multiplication benchmark that uses random
generated 16 × 16 matrices of 32-bit integer elements. During PC simulation, after matrices
initialization, an error is injected to a random position of randomly selected register file
entry or PC register in the master core. We run the processor design under test (DUT) PC
simulation in parallel with golden reference model for covering errors undetected by the
Checker Module. We injected 14,068 faults resulting in 7233 (51.41%) errors. Figure 20
shows the percentage of errors caused by the particular registers. Some registers never
caused error. This is due to the fact that the compiler does not use all registers, and in some
cases, registers are overwritten by the software before a fault activates. Table 3 shows that
as expected VDCLS achieves 100% fault coverage.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 18 
 

 

 
Figure 20. Percentage of errors caused by register file entries and PC register. 

Table 3. Simulation results of fault injection. 

 # Errors % Errors 
Activated errors 7233 100% 
Detected errors 7233 100% 

Undetected errors 0 0% 

6. Conclusions 
In this paper, we showed a novel Variable Delayed Dual-Core Lockstep (VDCLS) 

technique for error detection. In contrast to the classic DCLS approach, where slave core 
delay is fixed, we allow the checker core to run freely behind the main core within the 
constrained boundaries of clock cycles. This increases the temporal diversity needed for 
CMF mitigation. One of the consequences of the proposed method was to increase the SoR 
area with the instruction and data cache memories, which reduces SPOF risk. Each core 
fetches instructions and data to their cache memories using separate requests on the sys-
tem bus. This additional layer over typical ECC codes significantly hinders side channel 
manipulation as the attacker would need to intervene in two bus transactions taking place 
in two hard-to-predict time points. The VDCLS technique was implemented using the 
CCRV32ST processor core utilizing RISC-V standard “GC” instruction set. The results 
show a low 4% overhead in system level FPGA resources of VDCLS implementation ver-
sus similar dual-core processor. The additional hardware results in a flexible split/lock 
system where the split mode features high dual-core performance, whereas the lockstep 
mode ensures fast error detection and makes security attacks more difficult. The perfor-
mance drawback of the proposed technique comes from the necessity to inject stall cycles 
to maintain core synchronization. We showed that this negative impact is low and de-
pends on the executing software. In return we are able to flatten the power consumption 
correlation between the running cores, essential for a wide range of attacks. The design of 
VDCLS Controller Modules allows random dummy cycles to be injected into each core 
independently. The presented results show that this step further decreases the correlation 
peak. The introduced power disruption caused by the variable delay between the pro-
cessing cores and randomly injected dummy cycles make it more difficult for an attacker 
to infer about executed code and inject precisely timed faults. Despite the fact that VDCLS 
is mainly an error detection technique, it can be further enhanced and used jointly with 
other techniques in order to create safe and secure microprocessor systems. 

Author Contributions: Methodology, investigation, validation, visualization, writing—original 
draft preparation, K.M.; writing—review and editing, funding acquisition, W.A.P. All authors have 
read and agreed to the published version of the manuscript. 

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

pc ra sp gp tp t0 t1 t2 s0 s1 a0 a1 a2 a3 a4 a5 a6 a7 s2 s3 s4 s5 s6 s7 s8 s9 s1
0

s1
1 t3 t4 t5 t6

Pe
rc

en
ta

ge
 o

f e
rr

or

Register name

Figure 20. Percentage of errors caused by register file entries and PC register.

Table 3. Simulation results of fault injection.

# Errors % Errors

Activated errors 7233 100%
Detected errors 7233 100%

Undetected errors 0 0%



Electronics 2023, 12, 464 16 of 18

6. Conclusions

In this paper, we showed a novel Variable Delayed Dual-Core Lockstep (VDCLS)
technique for error detection. In contrast to the classic DCLS approach, where slave core
delay is fixed, we allow the checker core to run freely behind the main core within the
constrained boundaries of clock cycles. This increases the temporal diversity needed for
CMF mitigation. One of the consequences of the proposed method was to increase the SoR
area with the instruction and data cache memories, which reduces SPOF risk. Each core
fetches instructions and data to their cache memories using separate requests on the system
bus. This additional layer over typical ECC codes significantly hinders side channel manip-
ulation as the attacker would need to intervene in two bus transactions taking place in two
hard-to-predict time points. The VDCLS technique was implemented using the CCRV32ST
processor core utilizing RISC-V standard “GC” instruction set. The results show a low
4% overhead in system level FPGA resources of VDCLS implementation versus similar
dual-core processor. The additional hardware results in a flexible split/lock system where
the split mode features high dual-core performance, whereas the lockstep mode ensures
fast error detection and makes security attacks more difficult. The performance drawback
of the proposed technique comes from the necessity to inject stall cycles to maintain core
synchronization. We showed that this negative impact is low and depends on the executing
software. In return we are able to flatten the power consumption correlation between
the running cores, essential for a wide range of attacks. The design of VDCLS Controller
Modules allows random dummy cycles to be injected into each core independently. The
presented results show that this step further decreases the correlation peak. The introduced
power disruption caused by the variable delay between the processing cores and randomly
injected dummy cycles make it more difficult for an attacker to infer about executed code
and inject precisely timed faults. Despite the fact that VDCLS is mainly an error detection
technique, it can be further enhanced and used jointly with other techniques in order to
create safe and secure microprocessor systems.

Author Contributions: Methodology, investigation, validation, visualization, writing—original draft
preparation, K.M.; writing—review and editing, funding acquisition, W.A.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sierawski, B.D.; Reed, R.A.; Mendenhall, M.; Weller, R.A.; Schrimpf, R.D.; Wen, S.-J.; Wong, R.; Tam, N.; Baumann, R.C. Effects of

scaling on muon-induced soft errors. In Proceedings of the 2011 International Reliability Physics Symposium, Monterey, CA,
USA, 10–14 April 2011; pp. 3C.3.1–3C.3.6.

2. ECSS-E-ST-70-11C; Space Engineering—Space Segment Operability. ESA-ESTEC: Noordwijk, The Netherlands, 2008.
3. ISO 26262:2018 Road Vehicles—Functional Safety. 2018. Available online: https://www.iso.org/standard/68383.html (accessed

on 24 November 2022).
4. Oh, N.; Shirvani, P.P.; McCluskey, E.J. Control-flow checking by software signatures. IEEE Trans. Reliab. 2002, 51, 111–122.

[CrossRef]
5. Bashiri, M.; Miremadi, S.G.; Fazeli, M. A Checkpointing Technique for Rollback Error Recovery in Embedded Systems. In

Proceedings of the 2006 International Conference on Microelectronics, Dhahran, Saudi Arabia, 16–19 December 2006; pp. 174–177.
6. Mukherjee, S. Architecture Design for Soft Errors; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2008.
7. Iturbe, X.; Venu, B.; Ozer, E.; Das, S. A Triple Core Lock-Step (TCLS) ARM® Cortex®-R5 Processor for Safety-Critical and

Ultra-Reliable Applications. In Proceedings of the 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshop (DSN-W), Toulouse, France, 28 June 2016–01 July 2016; pp. 246–249.

8. RISC-V International. Available online: https://riscv.org/ (accessed on 20 November 2022).
9. Ozer, E.; Venu, B.; Iturbe, X.; Das, S.; Lyberis, S.; Biggs, J.; Harrod, P.; Penton, J. Error Correlation Prediction in Lockstep Processors

for Safety-Critical Systems. In Proceedings of the 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Fukuoka, Japan, 20–24 October 2018; pp. 737–748.

https://www.iso.org/standard/68383.html
http://doi.org/10.1109/24.994926
https://riscv.org/


Electronics 2023, 12, 464 17 of 18

10. NEC Corporation. Fault Tolerant Server. White Paper, 2017. Available online: https://www.nec.com/en/global/prod/express/
collateral/whitepaper/ft_WhitePaper_E.pdf (accessed on 24 November 2022).

11. Stratus. FtServer Architecture. Available online: https://www.stratus.com/solutions/platforms/ftserver/ftserver-architecture/
(accessed on 19 November 2022).

12. STMicroelectronics. SPC574K72/SPC57EM80 Getting Started. Revision 2. Application Note. 2014. Available online: https:
//www.st.com/resource/en/application_note/an4389-spc574k72spc57em80-getting-started-stmicroelectronics.pdf (accessed on
23 November 2022).

13. NXP Semiconductors. MPC5643L Microcontroller Reference Manual. Rev. 10. 2012. Available online: https://www.nxp.com/
files-static/32bit/doc/ref_manual/MPC5643LRM.pdf (accessed on 23 November 2022).

14. NXP Semiconductors. e200z4 Power Architecture™ Core Reference Manual. Rev. 0. 2009. Available online: https://www.nxp.
com/files-static/32bit/doc/ref_manual/e200z4RM.pdf (accessed on 23 November 2022).

15. Texas Instruments. TMS570LC4357 Hercules™ Microcontroller Based on the ARM®Cortex®-R Core. 2017. Available online:
https://www.ti.com/lit/ds/spns195c/spns195c.pdf (accessed on 23 November 2022).

16. ARM Ltd. Cortex™-R5 Revision: r1p2. Technical Reference Manual. 2011. Available online: https://developer.arm.com/
documentation/ddi0460/d/ (accessed on 23 November 2022).

17. ARM Ltd. Cortex-M33 Dual Core Lockstep. Version 1.0. Application Note. 2017. Available online: https://developer.arm.com/
documentation/ecm0690721/latest (accessed on 23 November 2022).

18. Synopsys, Inc. DesignWare ARC Functional Safety Processor IP. Available online: https://www.synopsys.com/designware-ip/
processor-solutions/arc-functional-safety-processors.html (accessed on 24 November 2022).

19. UltraSoC Technologies Ltd. Cybersecurity and functional safety: The case for embedded analytics. White paper. Available online:
https://hc32.hotchips.org/assets/sponsors/UltraSoC/UltraSoC_Safety%20and%20Security%20white%20paper.pdf (accessed on
24 November 2022).

20. Sondon, S.; Mandolesi, P.; Masson, F.; Julián, P.; Palumbo, F. A dual core low power microcontroller with openMSP430 architecture
for high reliability lockstep applications using a 180 nm high voltage technology node. In Proceedings of the 2013 IEEE 4th Latin
American Symposium on Circuits and Systems (LASCAS), Cusco, Peru, 27 February–1 March 2013; pp. 1–4.

21. Hanafi, A.; Karim, M.; Hammami, A.E. Dual-lockstep microblaze-based embedded system for error detection and recovery
with reconfiguration technique. In Proceedings of the 2015 Third World Conference on Complex Systems (WCCS), Marrakech,
Morocco, 23–25 November 2015; pp. 1–6.

22. de Oliveira, Á.B.; Rodrigues, G.S.; Kastensmidt, F.L.; Added, N.; Macchione, E.L.A.; Aguiar, V.A.P.; Medina, N.H.; Silveira,
M.A.G. Lockstep Dual-Core ARM A9: Implementation and Resilience Analysis Under Heavy Ion-Induced Soft Errors. IEEE
Trans. Nucl. Sci. 2018, 65, 1783–1790. [CrossRef]

23. Sim, M.T.; Zhuang, Y. A Dual Lockstep Processor System-on-a-Chip for Fast Error Recovery in Safety-Critical Applications. In
Proceeding of the 46th Annual Conference of the IEEE Industrial Electronics Society (IECON), Singapore, 18–21 October 2020;
pp. 2231–2238.

24. Doran, H.D.; Lang, T. Dynamic Lockstep Processors for Applications with Functional Safety Relevance. In Proceedings of the 26th
IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Västerås, Sweden, 7–10 September
2021; pp. 1–4.

25. Kempf, F.; Hartmann, T.; Baehr, S.; Becker, J. An Adaptive Lockstep Architecture for Mixed-Criticality Systems. In Proceedings of
the 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA, 7–9 July 2021; pp. 7–12.

26. Abate, F.; Sterpone, L.; Lisboa, C.A.; Carro, L.; Violante, M. New Techniques for Improving the Performance of the Lockstep
Architecture for SEEs Mitigation in FPGA Embedded Processors. IEEE Trans. Nucl. Sci. 2009, 56, 1992–2000. [CrossRef]

27. Kasap, S.; Wächter, E.W.; Zhai, X.; Ehsan, S.; McDonald-Maier, K.D. Novel lockstep-based fault mitigation approach for SoCs
with roll-back and roll-forward recovery. Microelectron. Reliab. 2021, 124, 114297. [CrossRef]

28. Rodrigues, C.; Marques, I.; Pinto, S.; Gomes, T.; Tavares, A. Towards a Heterogeneous Fault-Tolerance Architecture based on Arm
and RISC-V Processors. In Proceedings of the 45th Annual Conference of the IEEE Industrial Electronics Society (IECON), Lisbon,
Portugal, 14–17 October 2019; pp. 3112–3117.

29. Oleksiak, A.; Cieślak, S.; Marcinek, K.; Pleskacz, W.A. Design and Verification Environment for RISC-V Processor Cores. In
Proceedings of the 26th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), Rzeszow, Poland,
27–29 June 2019; pp. 206–209.

30. Cieślak, S.; Oleksiak, A.; Marcinek, K.; Pleskacz, W.A. Retargeting the MIPS-II CPU Core to the RISC-V Architecture. In
Proceedings of the 26th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), Rzeszow, Poland,
27–29 June 2019; pp. 261–264.

31. ChipCraft Sp z o.o. CCRV32ST-C Processor Core Template. Datasheet. 2019. Available online: http://chipcraft-ic.com/
download/CCRV32ST-C_template.pdf (accessed on 24 November 2022).

32. Randolph, M.; Diehl, W. Power Side-Channel Attack Analysis: A Review of 20 Years of Study for the Layman. Cryptography 2020,
4, 15. [CrossRef]

33. Clavier, C.; Coron, J.-S.; Dabbous, N. Differential Power Analysis in the Presence of Hardware Countermeasures. In Proceedings
of the Second International Workshop, Worcester, MA, USA, 17–18 August 2000; pp. 252–263.

https://www.nec.com/en/global/prod/express/collateral/whitepaper/ft_WhitePaper_E.pdf
https://www.nec.com/en/global/prod/express/collateral/whitepaper/ft_WhitePaper_E.pdf
https://www.stratus.com/solutions/platforms/ftserver/ftserver-architecture/
https://www.st.com/resource/en/application_note/an4389-spc574k72spc57em80-getting-started-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4389-spc574k72spc57em80-getting-started-stmicroelectronics.pdf
https://www.nxp.com/files-static/32bit/doc/ref_manual/MPC5643LRM.pdf
https://www.nxp.com/files-static/32bit/doc/ref_manual/MPC5643LRM.pdf
https://www.nxp.com/files-static/32bit/doc/ref_manual/e200z4RM.pdf
https://www.nxp.com/files-static/32bit/doc/ref_manual/e200z4RM.pdf
https://www.ti.com/lit/ds/spns195c/spns195c.pdf
https://developer.arm.com/documentation/ddi0460/d/
https://developer.arm.com/documentation/ddi0460/d/
https://developer.arm.com/documentation/ecm0690721/latest
https://developer.arm.com/documentation/ecm0690721/latest
https://www.synopsys.com/designware-ip/processor-solutions/arc-functional-safety-processors.html
https://www.synopsys.com/designware-ip/processor-solutions/arc-functional-safety-processors.html
https://hc32.hotchips.org/assets/sponsors/UltraSoC/UltraSoC_Safety%20and%20Security%20white%20paper.pdf
http://doi.org/10.1109/TNS.2018.2852606
http://doi.org/10.1109/TNS.2009.2013237
http://doi.org/10.1016/j.microrel.2021.114297
http://chipcraft-ic.com/download/CCRV32ST-C_template.pdf
http://chipcraft-ic.com/download/CCRV32ST-C_template.pdf
http://doi.org/10.3390/cryptography4020015


Electronics 2023, 12, 464 18 of 18

34. Ostrowski, Ł.; Marcinek, K.; Pleskacz, W.A. Implementation and Comparison of SPA and DPA Countermeasures for Elliptic
Curve Point Multiplication. In Proceedings of the 26th International Conference Mixed Design of Integrated Circuits and Systems
(MIXDES), Rzeszow, Poland, 27–29 June 2019; pp. 227–230.

35. Danger, J.-L.; Guilley, S.; Bhasin, S.; Nassar, M. Overview of Dual rail with Precharge logic styles to thwart implementation-level
attacks on hardware cryptoprocessors. In Proceedings of the 3rd International Conference on Signals, Circuits and Systems (SCS),
Medenine, Tunisia, 6–8 November 2009; pp. 1–8.

36. Mitra, S.; Saxena, N.R.; McCluskey, E.J. Common-mode failures in redundant VLSI systems: A survey. IEEE Trans. Reliab. 2000,
49, 285–295. [CrossRef]

37. Peña-Fernández, M.; Serrano-Cases, A.; Lindoso, A.; García-Valderas, M.; Entrena, L.; Martínez-Álvarez, A.; Cuenca-Asensi, S.
Dual-Core Lockstep enhanced with redundant multithread support and control-flow error detection. Microelectron. Reliab. 2019,
100–101, 113447. [CrossRef]

38. Aviles, P.M.; Lindoso, A.; Belloch, J.A.; Garcia-Valderas, M.; Morilla, Y.; Entrena, L. Radiation Testing of a Multiprocessor
Macrosynchronized Lockstep Architecture With FreeRTOS. IEEE Trans. Nucl. Sci. 2022, 69, 462–469. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/24.914545
http://doi.org/10.1016/j.microrel.2019.113447
http://doi.org/10.1109/TNS.2021.3129164

	Introduction 
	Related Work 
	Design Architecture 
	Checker Module 
	VDCLS Controller Module 
	Cache Synchronization 
	Interrupt Injection 
	Peripheral Bus 

	Results 
	FPGA Results 
	Execution Correlation Results 
	Dummy Cycles Injection Results 

	Failure Analysis 
	Single Event Effects 
	Common Mode Failures 
	Single Point of Failure 
	Fault Coverage 

	Conclusions 
	References

