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Abstract: Dual-Core Lockstep (DCLS) is one of the most commonly used techniques in applications
requiring functional safety. As the semiconductor process nodes keep shrinking, the DCLS technique
is also more and more frequently seen in industrial or even consumer electronics. The paper presents
the novel approach to the DCLS technique. While the typical approach is to set the slave core delay
as a fixed number of clock cycles, we allow the checker core to run freely behind the main core within
the constrained boundaries of clock cycles. This increases the temporal diversity needed for common
mode failure mitigation. The system integrity provided by DCLS may also be used in the area of
security applications. In this paper, we show that the proposed Variable Delayed Dual-Core Lockstep
technique can flatten the power consumption correlation between the running cores, essential for a
wide range of attacks. The proposed technique was implemented in the RISC-V processor core and
verified in the Xilinx VCU108 FPGA platform.

Keywords: dual-core lockstep; functional safety; security; fault tolerance; embedded processor;
RISC-V

1. Introduction

The continuous process of feature size shrinking follows the demand for more
functionalities embedded in the same chip. However, the negative effect and the conse-
quence of the growing complexity of modern Systems-on-Chip (SoCs) is the increasing
susceptibility to soft errors caused by radiation and interference [1]. The design and
implementation techniques once used solely to satisfy the reliability standards and
safety mechanisms, such as those specified in ECSS-E-ST-70C for space applications [2]
or ISO26262 for automotive domain [3], are more commonly used in the industrial
electronics or even consumer market.

One of the widely known techniques for error detection in microprocessor systems is
the checkpoint-oriented method that allows rollback recovery after detecting error [4,5]. It
is a purely software method that checks the program flow using calculated signatures. The
drawback of this method is that the signature is checked periodically, leaving the system
unprotected between two checkpoints. The dual-core lockstep [6] is an error detection
technique based on hardware redundancy. Two instances of processor cores (i.e., central
processing unit, CPU) execute exactly the same program allowing the error checker to
detect any differences in the primary outputs. Generally, double the resources are needed
for DCLS implementation in exchange for almost immediate error detection. On the
other hand, the recovery from error mode is not trivial. It can rely on the checkpointing
mentioned earlier, use additional recovery hardware or, as in most cases, require a complete
system reset for resynchronization. To overcome this disadvantage, the TCLS (Triple-
Core Lockstep) was introduced [7]. This approach adds a third redundant processor core;
therefore, the faulty device may be identified based on majority voter. As a result, the
correct architectural state can be immediately restored. Quick resynchronization is the
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major advantage of the TCLS technique, but the big resource overhead limits its use for
safety-critical application.

The DCLS technique presents a widely acknowledged balance between error de-
tection and recovery capabilities and resource utilization. This makes it one of the most
commonly adopted error detection techniques in the industry. The paper presents the
novel approach to the DCLS implementation. While the typical approach is to set the
slave core delay as a fixed number of clock cycles, we allow the checker core to run freely
behind the main core within the constrained boundaries of clock cycles. This increases
the temporal diversity needed for common mode failure (CMF) mitigation. In this paper,
we show that the proposed Variable Delayed Dual-Core Lockstep (VDCLS) technique can
also flatten the power consumption correlation between running cores. The introduced
power disruption caused by variable delay between processing cores makes it more
difficult for an attacker to infer about the executed code and inject precisely timed faults.
The proposed technique was implemented in the RISC-V [8] processor core and verified
in the Xilinx VCU108 FPGA platform.

The paper is organized as follows. Section 2 presents the related work and back-
ground for the conducted research. Section 3 describes the process of enhancing the
regular multicore processor core with the VDCLS technique. The simulation and FPGA
results are gathered in Section 4. Section 5 shows brief VDCLS failure analysis. The
paper ends with a conclusion.

2. Related Work

The lockstepping technique can be applied at different levels of the computer sys-
tem. The redundant logic, called the Sphere of Replication (SoR), may be located at
system level, sub-system level or CPU level [9]. The system level means replication of the
whole CPU system including main memories, while the sub-system level excludes main
memories as they are typically protected anyway with other EDAC (Error Detection
and Correction) means. These types of lockstepping systems are popular in servers and
mainframes [10,11]. The CPU-level lockstepping has been also widely adopted by the in-
dustry. The availability of Commercial Off-The-Shelf (COTS) DCLS products include, for
example, STMicroelectronics SPC574K72/SPC57EM80 [12] or NXP MPC5643L [13], both
based on the e200zx core [14]. Another example is Texas Instruments TMS570LC4357
HerculesTM [15], based on the ARM Cortex-R5 [16]. There is also a wide range of in-
tellectual property products (IP cores) immediately available on the market, such as
ARM Cortex-M33 [17] or the Synopsys ARC® Functional Safety Processor IP line [18].
More interestingly, UltraSoC released an IP that is claimed to be able to turn any regular
processor core into a lockstepping one [19].

Before any technique is adopted by the industry, it must undergo a research phase.
Indeed, the CPU-level dual core lockstep technique is still a subject of scientific research.
There are many papers describing the process of enhancing the already existing cores with
the DCLS technique. The authors of [20] exploit the well-established 16-bit openMSP430
architecture. In [21], the authors use the Xilinx MicroBlaze soft processor core. The ARM
Cortex-A9 processor embedded into Zynq-7000 Xilinx device is used in [22]. There is also
a growing number of papers concerning the rapidly emerging RISC-V architecture [23].
As stated before, the DCLS technique requires the resources of two CPUs, cancelling
the multicore performance gain and increasing power consumption. To mitigate this,
the authors of [24] proposed an on-demand core synchronization with additional post-
processing. Adaptive lockstep architecture using Cobham Gaisler’s LEON3 processor
is presented in [25]. Other research is devoted to the problem accompanying the DCLS
technique, that is error state recovery and rollback to the safe state [26,27]. A very interesting
concept is also described in [28]. This article proposes a heterogeneous architecture that
explores the DCLS technique using two different processing units: a hard-core Arm Cortex-
A9 and a soft-core RISC-V-based processor.
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The above brief description of the research on CPU-level dual-core lockstep archi-
tectures shows that, apart from the specific features, the most generic DCLS architecture
presented in Figure 1 is used. The master and slave cores are identical. Slave core (CPU1)
inputs are delayed by the constant number of clock cycles, whereas master core (CPU0)
outputs have to be delayed by the same number of clock cycles to feed the output checker
for comparison. One of the reasons behind the development of VDCLS technique is
the fact that the most of the modern DCLS processors offer the lock/split feature [16]
that allows user to decide if processor should work as a regular dual-core multicore
processor or in lockstep mode. In such a case, to work in the classic lockstep mode,
the slave core has to be disconnected from the system bus and cache memories and fed
with master core data to stay in synchronization. The novelty in the present work is
based on the fact that we decided to maintain all the master and slave connections to
most of system busses and keep cores synchronized by implementing additional logic.
The design process of the proposed solution along with its consequences and results is
presented in the following sections.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 18 
 

 

The above brief description of the research on CPU-level dual-core lockstep architec-
tures shows that, apart from the specific features, the most generic DCLS architecture pre-
sented in Figure 1 is used. The master and slave cores are identical. Slave core (CPU1) 
inputs are delayed by the constant number of clock cycles, whereas master core (CPU0) 
outputs have to be delayed by the same number of clock cycles to feed the output checker 
for comparison. One of the reasons behind the development of VDCLS technique is the 
fact that the most of the modern DCLS processors offer the lock/split feature [16] that al-
lows user to decide if processor should work as a regular dual-core multicore processor 
or in lockstep mode. In such a case, to work in the classic lockstep mode, the slave core 
has to be disconnected from the system bus and cache memories and fed with master core 
data to stay in synchronization. The novelty in the present work is based on the fact that 
we decided to maintain all the master and slave connections to most of system busses and 
keep cores synchronized by implementing additional logic. The design process of the pro-
posed solution along with its consequences and results is presented in the following sec-
tions. 

 
Figure 1. Block diagram of a typical dual-core lockstep processor. 

3. Design Architecture 
The proposed Variable Delayed Dual-Core Lockstep (VDCLS) technique is imple-

mented using the CCRV32ST processor core [29–31] utilizing the RISC-V standard “GC” 
instruction set. The CCRV32ST integer pipeline is depicted in Figure 2. Its main features 
are: 
• RV32GCX instruction set; 
• Six-stage integer pipeline; 
• Single-issue, in-order design; 
• Gshare branch prediction; 
• Single or multicore implementation; 
• Up to 1.38 DMIPS/MHz/Core; 
• Up to 2.10 CoreMark/MHz/Core; 
• Custom instruction set extension; 
• On-chip debug support. 

Figure 1. Block diagram of a typical dual-core lockstep processor.

3. Design Architecture

The proposed Variable Delayed Dual-Core Lockstep (VDCLS) technique is imple-
mented using the CCRV32ST processor core [29–31] utilizing the RISC-V standard “GC”
instruction set. The CCRV32ST integer pipeline is depicted in Figure 2. Its main features are:

• RV32GCX instruction set;
• Six-stage integer pipeline;
• Single-issue, in-order design;
• Gshare branch prediction;
• Single or multicore implementation;
• Up to 1.38 DMIPS/MHz/Core;
• Up to 2.10 CoreMark/MHz/Core;
• Custom instruction set extension;
• On-chip debug support.

The adopted processor is suitable for use in application-specific integrated circuits
(ASIC) and in the field-programmable gate array devices (FPGA). The latter is commonly
used as a design and verification framework due to its re-programmability feature. The
main idea of the implementation process was to use the already existing CCRV32ST multi-
core infrastructure including the instruction and data caches and bus interconnects. Con-
sequently, one of the design aims, i.e., to implement the lock/split feature mentioned
earlier, was easily achievable. The block diagram of the typical processor implementation is
presented in Figure 3. The following subsections briefly describe the VDCLS design phases.
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3.1. Checker Module

The first step during the VDCLS implementation was to develop the Checker
Module (Figure 4). The Checker Module receives the main outputs from the master and
slave cores, optionally calculates output signature and buffers the results. The main core
outputs consist of the current core program counter, executed instruction, instruction
result and stored data. In the classic approach, when the slave core is delayed, e.g., by
two clock cycles, the comparison is straightforward as it is made between the master
core results and the slave core results delayed by a constant number of clock cycles. In
the discussed case, the Checker Module constantly tracks the delay between the two
cores and selects the appropriate slave core results for the comparison.
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3.2. VDCLS Controller Module

The capacity of the Checker Module buffer is limited; moreover, the slave core
cannot overtake the master core in the program execution. As the result, the program
execution freedom by master and slave cores has to be constrained. The VDCLS Con-
troller Module analyzes the current delay between two cores and injects stall cycles to
the master core, when the slave core approaches the buffer limits, or to the slave core,
to keep to slave core behind the master core (Figure 5). The necessity of injecting stall
cycles is the main drawback of the proposed solution. However, the results shown in the
later sections indicate that the impact of these additional cycles is negligible. The size of
the Checker Module buffer constraints the stall injection thresholds. A bigger module
reduces the need for stall cycles that impacts the processor performance.
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3.3. Cache Synchronization

In the described approach we decided to leave both master and slave cores connected
independently to the main memory system busses. In comparison with classic DCLS
implementation, this step increased the SoR area with the instruction and data cache
memories. Each core fetches an instruction to its cache memories using separate requests
on the system bus. This introduces additional protection against single point of failures
(SPOF) resulting from the single data fetch that propagates to both cores. In general, in
such a system, caches are protected using parity or Error Correction Codes (ECC), but
this additional layer significantly hinders side channel manipulation. The attacker would
need to intervene in two bus transactions taking place in two hard-to-predict time points.
The same mechanism is used for data caches with one exception, that only the master
core is capable of issuing store transactions to the system bus to update main memory
or change peripherals state. Data caches are implemented as write-through with a write-
no-allocate policy. This means that a cache miss during write does not require line refill.
However, already allocated lines need updates in both master and slave cores. As the result,
data dependency hazards such as read-after-write (RAW) can occur between cores during
VDCLS execution. To resolve this issue, data caches were modified to mutually monitor
their read and write attempts and if necessary postpone their action to prevent fetching
incorrect data.

Figure 6 shows the exemplary situation when the master core performed write
operation (W(B)) before the slave core could read the older value (R(B)). The system
behavior in such a situation depends on whether the read value is in cache or has
to be loaded from the main memory. After a cache hit, the slave core will use the
value already existing in the cache memory. Otherwise, the bus transaction will occur
causing a load of the incorrect value. To prevent such a situation, the master core is
forced to wait for the slave core to finish the previous read operation. The importance
of the cache transaction monitoring and synchronization mechanisms is shown in the
Figure 7. It depicts the hypothetical situation when master and slave cores cause an entire
system deadlock. The improperly implemented synchronization between both cores
can lead to a situation when master and slave cores will indefinitely wait for each other
to complete the operation. The implemented hardware mechanisms were extensively
verified through PC simulation to ensure non-deadlock operation and maintain data
coherency between master and slave cores. As a result, no external assistance from user
software or compiler is needed. The VDCLS processor executes the same binary files as
the original CCRV32ST processor core.
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3.4. Interrupt Injection

Just like the Checker Module, the interrupt module had to be modified to monitor
the balance between the master and slave cores. Upon an incoming interrupt or exception
event, the dedicated logic calculates the place in the slave interrupt buffer where the
interrupt has to be injected (Figure 8). As the result, both cores see the interrupt in the
same architectural state.
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3.5. Peripheral Bus

In general, the peripheral address space is non-idempotent. It means that read and
write operations can have side effects. Moreover, a read operation can return a different
value without an explicit write operation before (e.g., timers, counters, etc.). As the result,
in contrast to the processor caches, only the master core is allowed to perform read and
write operations. The dedicated module queues master read results and ensures that the
slave core sees the correct read values.

4. Results

This section presents the results of the VDCLS technique implementation using the
CCRV32ST processor core. Figure 9 presents the sample trace logged during the PC
simulation of VDCLS execution. It can be seen that the delay between the master and
slave cores is not constant. In the presented case, the slave core stays three to seven clock
cycles behind the master core. As seen in Figure 9, the VDCLS technique is feasible and
the processor can execute firmware correctly using this technique. The next subsections
show more detailed results concerning performance and resource utilization, as well as the
impact that the VDCLS technique may have in safety and security applications.
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Figure 9. Trace of the delay between the master and slave cores in VDCLS execution.

4.1. FPGA Results

Table 1 presents the performance comparison between the regular CCRV32ST pro-
cessor core and the dual-core lockstep implementation using the VDCLS technique. The
results were obtained by implementing both processor versions in the Xilinx VCU108 board.
As previously noted, the bare fact that stall cycles have to be injected means that the VDCLS
performance will be impacted. The extent of this impact depends on the executed software
profile, bus utilization, etc. For example, the negative impact on CoreMark execution is
much lower than that on Dhrystone. The presented results show that the negative impact
is low and depends on the target application.
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Table 1. Performance comparison between regular and VDCLS implementation.

Dhrystone
[DMIPS/Hz]

CoreMark
[CoreMark/MHz]

Multicore (2 cores) 1.38 2.10
VDCLS 1.24 2.04

Table 2 presents the FPGA resource utilization comparison between the regular
CCRV32ST dual-core processor implementation and the VDCLS one. Every dual-core
lockstep implementation requires additional resources, such as error detection logic or
switches that reorganize cores and memories on the system busses. In the VDCLS imple-
mentation the interrupt and multicore logic is much bigger due to the implementation
of VCDLS Controller Module and Interrupt Injection Module. The price of additional
4% system resource utilization is compensated by the flexible split/core processing
mode, where lockstep mode ensures fast error detection and makes security attacks
more difficult. The processor system components used for comparison are presented in
Figure 3. AMBA APB interconnect and peripherals as well as DMA block were excluded
from the comparison.

Table 2. Resources utilization comparison between regular dual core and VDCLS implementation
using FPGA VCU108 platform.

Multicore (2 Cores) VDCLS

LUTs FFs LUTs FFs % LUTs % FFs

processor system 38842 27583 39460 28693 +1.59 +4.02
processor coreplex 28796 20932 29425 22042 +2.18 +5.30

core 0 3102 2165 3162 2169 +1.93 +0.18
core 1 3105 2165 3149 2169 +1.42 +0.18

d-cache 0 902 1275 975 1333 +8.09 +4.55
d-cache 1 963 1272 885 1296 −8.09 +1.87

i-cache 0/1 725 826 734 850 +1.24 +2.90
interrupt 1184 1636 1467 1842 +23.90 +12.59
multicore 119 352 356 786 +199.16 +123.30

4.2. Execution Correlation Results

The execution trace presented in Figure 9 shows that, indeed, the slave core delay does
not have to be constant and the VDCLS implementation can execute software correctly.
On the other hand, the presented figure shows only a very time-limited trace that is hard
to analyze. To overcome this problem, we implemented test logic in the processor core
that counts DFFs toggles in the execution stage. We choose the execute stage as the most
representative one in the processor pipeline. The execute stage is responsible for the
calculation of instruction results, address generation, interrupt and exception evaluation.
In the real ASIC design, the toggle count will transform into power consumption trace, the
tool that is most commonly used for power analysis attacks [32]. By having toggle count
traces, we could use formula (1) to calculate their correlation with different delays. The
first and second formula variables are the toggle count traces of the master and slave cores,
respectively. The number of samples represents the simulation time in clock cycles. The
function argument d is the offset in clock cycles between the master and slave core traces.
We can anticipate that in the classic DCLS approach the execution correlation between the
two cores will reach the maximum at the value equal to the number of clock cycles of slave
core to master core delay.

r(d) =
n(∑ xiyi+d)− (∑ xi)(∑ yi+d)√

(n ∑ x2
i − (∑ xi)

2)(n ∑ y2
i+d − (∑ yi+d)

2)
(1)
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where:

r(d): correlation coefficient;
xi: values of first variable;
yi: values of second variable;
n: number of samples;
d: the second variable offset.

The comparison of the execution correlation between master and slave cores in classic
DCLS and VDCLS implementation using PC simulation is shown in Figures 10–15. For
test purposes we choose several algorithms, such as AES (Advanced Encryption Standard),
SHA (Secure Hash Algorithm), ECDSA (Elliptic Curve Digital Signature Algorithm) and
GF (Galois Field) used in security and cryptographic applications. As predicted, the classic
DCLS shows a single strong peak with the maximum value at the delay of two clock cycles.
It is caused by the fact that the slave core performs, cycle-by-cycle, exact the same toggles
as the master core shifted by two clock cycles. On the other hand, in the VDCLS, even
though the slave core executes the same software, the microarchitectural states are changing
with more freedom. We can see more or less visible correlation peaks that never reach the
maximum value and are located at different delays.
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Figure 10. Comparison of the execution correlation between master and slave CPUs using VDCLS
and legacy DCLS technique while executing the SHA algorithm.
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Figure 11. Comparison of the execution correlation between master and slave CPUs using VDCLS
and legacy DCLS technique while executing the HMAC-SHA algorithm.
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Figure 12. Comparison of the execution correlation between master and slave CPUs using VDCLS
and legacy DCLS technique while executing the CMAC-AES algorithm.
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Figure 13. Comparison of the execution correlation between master and slave CPUs using VDCLS
and legacy DCLS technique while executing the EDCSA verification algorithm.
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Figure 14. Comparison of the execution correlation between master and slave CPUs using VDCLS
and legacy DCLS technique while executing the EDCSA key compression algorithm.
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Figure 15. Comparison of the execution correlation between master and slave CPUs using VDCLS
and legacy DCLS technique while executing the Galois field GF (28) functions.

4.3. Dummy Cycles Injection Results

The received results encouraged us to conduct further research on the possibility of
flattening the execution correlation between the cores. One of the common techniques
for power signature masking is dummy cycle injection [33]. In the classic DCLS imple-
mentation, dummy cycle injection needs to be processed in the same way in both master
and slave cores, maintaining the common delay. In the proposed technique, we have a
VDCLS Controller Module that already is responsible for stall cycle injection. We improved
that module to be able to inject additional dummy cycles using an external LFSR/TRNG
generator. The dummy cycle injection is capable of inserting wait states to both master and
slave cores independently, and its threshold level is controlled by software.

Figures 16–19 show the comparison of execution correlation between master and slave
cores with additional dummy cycle injection in the VDCLS implementation. The results
were obtained using PC simulation. Dummy cycle injection was enabled using software
and set at the approximate level of 6% and 18% of each instruction commit by both cores.
We can see a significant decrease in the correlation peak level. In some cases, the peak itself
can be also shifted towards different delays.
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Figure 16. Comparison of the execution correlation between master and slave CPUs using VDCLS
with dummy cycles insertion and legacy DCLS technique while executing the CMAC-AES algorithm.
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Figure 17. Comparison of the execution correlation between master and slave CPUs using VD-
CLS with dummy cycles insertion and legacy DCLS technique while executing the Galois field
GF (28) functions.
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Figure 18. Comparison of the execution correlation between master and slave CPUs using VDCLS
with dummy cycles insertion and legacy DCLS technique while executing the SHA algorithm.

The low correlation of core execution means that it is hard to distinguish which soft-
ware instruction is processed at the exact moment by each core. On the other hand, we
know that in the longer term, both cores execute exactly the same code and obtain the same
results. That means that we will still be able to observe particular power trace patterns
introduced by the executed software running on the processor with given microarchitecture.
The VDCLS technique was developed for error detection where the introduced variable tem-
poral diversity can enhance the CMF mitigation. However, the use of the proposed method
can be extended to security applications, where safety is one of the main requirements. We
showed that the VDCLS technique can be easily extended and modified, for example, with
random dummy cycle injection. The introduced technique may also be used in conjunction
with other power attack countermeasure methods, either software/algorithm based [34] or
technology based, such as WDDL (Wave Dynamic Differential Logic) or MDPL (Masked
Dual-rail with Precharge Logic) [35].
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Figure 19. Comparison of the execution correlation between master and slave CPUs using
VDCLS with dummy cycles insertion and legacy DCLS technique while executing the ECDSA
verification algorithm.

5. Failure Analysis

One of the major groups of harmful effects causing malfunction of electronic devices
is called Single-Event Effect (SEE) [27]. While the DCLS technique (and VDCLS as well)
introduces redundancy by design, which helps mitigate SEE, the single point and common
mode failures require much more attention [23]. In this section, we briefly describe these
failure groups, discuss their mitigation and show simulated results of fault coverage.

5.1. Single Event Effects

By definition, the group of single event effects concerns situations where, at a given
time, one functional node (wire, logic gate, memory cell, DFF, etc.) manifests malfunction.
The lockstepping technique mitigates such events by design using redundancy. During
SEE, only one node in one processor core fails. As a result, the checker module can easily
detect mismatches between processor cores and take appropriate actions to prevent
further misoperation.

5.2. Common Mode Failures

Common mode failure (CMF) is the result of an event or events located close in time
that cause a failure in both redundant blocks [36]. If both redundant cores experience
the same malfunction at the same time, the checker module will not be able to detect
such a condition, as the outputs from both cores will match. The most effective way to
mitigate CMF is to introduce diversity in both redundant cores. In the classic DCLS and
the derivative VDCLS technique, the delay between master and slave cores adds temporal
diversity to mitigate CMF. With the delay between the cores, errors are serialized and reach
the checker module one after another manifesting themselves as two SEEs that can be
easily detected. On the other hand, the CMF can occur naturally, but can also be injected
intentionally by the attacker. If the attacker is aware of the underlying hardware and
constant delay in DCLS processor, he or she may potentially conduct a set of events located
in time in such a way that will cause same malfunction in both delayed cores and prevent
the checker module from detecting it. As shown previously in the execution correlation
results, with VDCLS, the attacker does not know the current delay between the cores, which
makes the fault injection process much more difficult.
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5.3. Single Point of Failure

In contrast to CMFs that originate in the protected logic, SPOFs are caused by the
logic outside the SoR. One of the most common ways to deal with SPOF is to introduce
an additional protection layer consisting of ECC, hardware or software protocol checkers,
watchdogs, etc. In contrast to the classic DCLS approach, VDCLS reduces the risk of SPOF
by including instruction and data cache controllers to the SoR. More modules inside the
SoR leave less unprotected logic that is the source of SPOF.

5.4. Fault Coverage

The aim of the lockstepping technique is to maximize the fault coverage, one of the
most important factors that determine reliability. Altogether, 98% mitigation of bit-flips
injected into the register file has been reported in [27], while the experimental results
presented in [37] indicate 99.63% error coverage. Moreover, the authors of the system
demonstrated in [38] claim coverage up to 99.3%. All these results were obtained using
a combination of hardware/software approach exploiting checkpointing without full
synchronization. On the other hand, [23] exploits two processor pipelines executing two
virtual cores. The comparison between both pipeline stages occurs every clock cycle
resulting in 100% fault coverage. This is the value expected from the classic delayed
dual-core lockstep processor, as well as from the presented VDCLS technique.

To evaluate and confirm fault coverage of VDCLS, we adopted the fault injection
technique used in [37]. We prepared a matrix multiplication benchmark that uses random
generated 16 × 16 matrices of 32-bit integer elements. During PC simulation, after matrices
initialization, an error is injected to a random position of randomly selected register file
entry or PC register in the master core. We run the processor design under test (DUT) PC
simulation in parallel with golden reference model for covering errors undetected by the
Checker Module. We injected 14,068 faults resulting in 7233 (51.41%) errors. Figure 20
shows the percentage of errors caused by the particular registers. Some registers never
caused error. This is due to the fact that the compiler does not use all registers, and in some
cases, registers are overwritten by the software before a fault activates. Table 3 shows that
as expected VDCLS achieves 100% fault coverage.
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6. Conclusions

In this paper, we showed a novel Variable Delayed Dual-Core Lockstep (VDCLS)
technique for error detection. In contrast to the classic DCLS approach, where slave core
delay is fixed, we allow the checker core to run freely behind the main core within the
constrained boundaries of clock cycles. This increases the temporal diversity needed for
CMF mitigation. One of the consequences of the proposed method was to increase the SoR
area with the instruction and data cache memories, which reduces SPOF risk. Each core
fetches instructions and data to their cache memories using separate requests on the system
bus. This additional layer over typical ECC codes significantly hinders side channel manip-
ulation as the attacker would need to intervene in two bus transactions taking place in two
hard-to-predict time points. The VDCLS technique was implemented using the CCRV32ST
processor core utilizing RISC-V standard “GC” instruction set. The results show a low
4% overhead in system level FPGA resources of VDCLS implementation versus similar
dual-core processor. The additional hardware results in a flexible split/lock system where
the split mode features high dual-core performance, whereas the lockstep mode ensures
fast error detection and makes security attacks more difficult. The performance drawback
of the proposed technique comes from the necessity to inject stall cycles to maintain core
synchronization. We showed that this negative impact is low and depends on the executing
software. In return we are able to flatten the power consumption correlation between
the running cores, essential for a wide range of attacks. The design of VDCLS Controller
Modules allows random dummy cycles to be injected into each core independently. The
presented results show that this step further decreases the correlation peak. The introduced
power disruption caused by the variable delay between the processing cores and randomly
injected dummy cycles make it more difficult for an attacker to infer about executed code
and inject precisely timed faults. Despite the fact that VDCLS is mainly an error detection
technique, it can be further enhanced and used jointly with other techniques in order to
create safe and secure microprocessor systems.
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