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Abstract: Development of deep learning has led to progress in computer vision, including metric
learning tasks such as image retrieval, through convolutional neural networks. In image retrieval, the
metric distance (i.e., the similarity) between the images needs to be computed and then compared
to return similar images. Global descriptors are good at extracting holistic features of an image,
such as the overall shape of the main object and the silhouette. On the other hand, the local features
extract the detailed features which the model uses to help classify similar images together. This paper
proposes a descriptor mixer which takes advantage of both local and global descriptors (group of
features combined into one) as well as different types of global descriptors for an effect of a lighter
version of an ensemble of models (i.e., fewer parameters and smaller model size than those of actual
ensemble of networks). As a result, the model’s performance improved about 1.36% (recall @ 32)
when the combination of the descriptors were used. We empirically found out that the combination
of GeM and MAC achieved the highest performance.

Keywords: image retrieval; deep metric learning; computer vision

1. Introduction

Introduction of deep learning has immensely enhanced the capacity for capturing
non-linear data and to be robust against changes in objects [1]. Deep learning in general
allows researchers to automatically extract discriminative features through neural networks,
making it easier to create a similarity function that could recognize objects in images the
model has not seen before, while the introduction of convolutional neural networks [2–5]
has significantly improved performances in computer vision tasks. The performance of
metric learning did not improve as much when classification techniques were implemented
directly to metric learning. It is mainly because while metric learning requires the network
to identify features to help match similar images with the query image, which can be a
similar task to image classification, the essence of metric learning is different from image
classification [1]. In most cases, image classification classifies images by classes or categories
while image retrieval does not necessarily classify images by classes but rather clusters and
categorizes images by their similarities, which may not be as obvious as features exploited
in classifications, compared to the query image. For example, in the case of image retrieval,
the model needs to find other images which possibly match the object detected in the query
image and not just simply identify what the object is.

To counter the issue, many models with CNN backbone networks have been developed
by researchers. Having a backbone network enhances the performances of the models
with some “pre-knowledge” on the exact, if not similar, datasets used to train and test the
performance. Some of the networks exploit the use of different global descriptors (a group
of features combined into one vector) while other models found ways to explore both local
and global features through descriptors. However, there are not many models which have
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different global descriptors and use local and global features in one model. In this paper, we
present a descriptor mixer that utilizes both local and global descriptors as well as different
types of descriptors for an effect similar to implementing an ensemble of models with a
smaller size and fewer parameters. The paper achieves the goals by proposing a model
which consists of various parts: a global module, a local module, an auxiliary module.

The contributions can be summarized as the following:

• Using both types of descriptors allow the features to complement each other while
using only one type of descriptor has some drawbacks due to the limited information
the features provide.

• The combination of descriptors does not add large numbers of parameters, allowing
the model to stay relatively light.

• The use of an auxiliary module provides the model a complementary criterion to
judge what images to retrieve.

• The paper also tests the good stage to concatenate the descriptors together to make it
easier for the model to extract significant features.

2. Related Works

In the past, metric learning was performed in a classic (non-deep) learning way such
as calculating the Mahalanobis Distance and the Large Margin Nearest Neighbor [6]. While
those methods were able to help compute the distance and the similarities, classic metric
learning did not have a high capacity to capture non-linear data and be robust against
changes in objects [1]. The images are very likely to be in a different poses, illuminations,
and expressions from the trained images the model experienced.

After deep metric learning was introduced, several models and methods were im-
plemented. Some of the most popular backbone networks used for feature extraction
are AlexNet [3], VGG [4], and ResNet [5]. However, it was not enough just to directly
implement those classic convolutional neural networks to metric learning. Therefore, fine
tuning methods were introduced. One example is fine tuning using Siamese networks [7],
a pair of neural networks which share parameters. Similarly, triple networks were also
implemented by having the network to obtain triplet results after forward propagating a
mini batch [8]. Furthermore, there are researchers that use vision transformers as backbone
networks. Ouyang et al. use the Swin transformer to build a Siamese network and then
fine-tunes the model [9]. Patel et al. also utilizes a group of aggregated global features to
provide global information exchange between the windows in a local transformer [10].

Deep feature enhancement was also implemented to embed features to improve the
discrimination of deep features. Attention mechanisms underscore the most influential part
of the feature map, bolstering the network to avoid observing irrelevant parts of the image.
Li et al. [11] and Noh et al. [12] used either fully connected layers or convolutional layers
to highlight important features. Wang et al. proposes the ’visual-test joint-embedding
learning’ which uses position attention to learn the relationship between the visual image
and the textual sentence [13].

Ensemble is a technique that aims to improve performance of a model through a com-
bination of several trained networks [14]. Ensemble models in deep metric learning [15,16]
proposed by researchers include attention based ensemble, proposed by Kim et al., and
random bagging method implemented by Xuan et al. In this paper, an ensemble of global
descriptors are used to exploit the diversities the descriptors provide without heavily
increasing the model size.

Some use methods other than descriptors to compute the metric distance and retrieve
images. One method is hashing embedding, which allows the the features to be more
compact and result in producing more efficient models and algorithms. Zhai et al. use
hashing to transfer knowledge to a student network from a teacher network for speedier
image retrieval [17]. Jin et al. use a similar approach using hashing [18] to find targeted
people in person re-identification systems from non-overalpping cameras.
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The concepts of local and global features were widely used in previous works in
metric learning. In metric deep learning, different papers [19–21] have proposed how to
extract local features in many ways. One example is DELF [21], proposed by Noh et al. It
implements an attentive local feature descriptor using a single scale feature map. In case
of global features, hardwired methods, such as SIFT [22], were used before deep learning
was introduced. Currently, methods such as RMAC [23], SPoC [24], and GeM [25] are used
with deep neural networks to extract features. There are also joint local and global feature
extractors such as DELG [26] were previously proposed. Ko et al. recently proposed the
group generalized mean pooling (GGeM) to retrieve images using a vision transformer.

There are also models which use both global and local descriptors. DOLG [27] com-
bines a global descriptor and a local descriptor to take advantage of both holistic and
delicate features of an image. DALG, presented by Y.Song et al, uses a cross-attention
module to hierarchically (instead of heuristically) fuse the features [28]. Furthermore,
Alappat et al. present a model that uses an Inception V3 backbone network and extracts the
MS-RMAC feature matrix to retrieve images [29]. Global–local attention module (GLAM),
proposed by C.Song, combines both local and global attention as well as spatial and channel
attention and then computes a new feature tensor [30].

3. Methods

The overall model is illustrated in Figure 1. The model consists of a backbone network,
a global module, a local module, and then an orthogonal fusion module [27] to combine
the global and the local descriptors. Then, it is followed by a fully connected layer which
reduces the dimension of the descriptor. Finally, all the outputs are then concatenated and
fed into a L2 normalization layer to calculate the metric loss. A descriptor in this paper
refers to a group of features combined into one vector [31]. Therefore, a local descriptor is a
group of features extracted from distinctive parts of the image and a global descriptor is
similarly a group of features that contain information on the holistic image.

Figure 1. The full architecture of the model.

Our model is inspired by CGD [32] and DOLG [27]. CGD introduces a series of
different global descriptors while DOLG proposes a way to effectively fuse local and global
descriptors into a single stage solution. To upgrade the model even further, we combined
and merged both local and global descriptors as well as several kinds of global descriptors.

3.1. Backbone Network

This model uses a pretrained ResNet-50 [5] as our backbone network. ResNet, in-
troduced by He et al. in 2016, is a commonly used CNN renowned for its robustness
against vanishing gradients and relatively low training errors when training deeper net-
works. ResNet is known for its deep layers and batch normalization. When ResNet was
presented, it had a significantly large number of layers compared to other CNNs such
as VGG [4], thanks to the structure of residual blocks; batch normalization [33]; and He
initialization [34].
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3.2. Global Module

The global descriptor extracts the overall shape and the silhouette of the image and
enhances the model to learn the holistic features of an image. In image retrieval, it is not as
important to classify the dataset into given classes but instead it is more important to retrieve
similar images regardless of classes. In this model, the global branch consists of a total of
three global descriptors: SPoC [24], MAC [35], and GeM [25]. Those global descriptors,
which can be used separately or in a combination of two or three, output embedding vectors.
A combination of several global descriptors allows the model to have an effect similar
to having an ensemble model with fewer parameters and smaller resources compared to
actually creating one with several neural networks [32]. Having various descriptors provides
the model with large diversity [14], enlarging the model’s point of view.

3.3. Local Module

While the global module provides comprehensive information on the input image
to the model, a generalized group of features is not enough to search and retrieve similar
images from the dataset. To complement the model, a local module is used to extract
the local descriptor. The local module looks for similar parts in the images and then
helps the model compare and match precise parts of the image with the input image. For
example, the local module would look for parts which help the model in classification
tasks. Although it is not used in this paper, class activation maps (CAM) [36] and gradient-
weighted CAM (Grad-CAM) [37] visualize where the model is looking at to know what
the object in the image is. The local module consists of atrous convolution layers [38],
which help the network to obtain a larger field of view with the same computational cost
as regular convolutional layers, and an attention map [39] to enhance the network to focus
on the important features. The multi-atrous convolutional layers allow the model to take
into consideration the scale variations among the images, enhancing the neural network to
observe the data in different scales and perspectives. After processing the data with the
attention map, both outputs from the attention map and the convolutional layer are then
put together in what we call a fusion module.

3.4. Fusion Module

This model uses two types of fusion modules. One is the orthogonal fusion module
(OFM) [27] which combines the local and the global descriptor. In this model, because there
are a maximum of three global descriptors, each of the global descriptors is fused with the
local descriptor and produces a total of three different outputs if all the global descriptors
were implemented. To merge the final descriptors into one vector, we implemented another
type of fusion module which consists of a fully connected layer to reduce the dimension
of the final descriptors. Then the module concatenates the output and creates an L2
normalized single descriptor to compute the metric loss. For results related to concatenation,
please refer to Table 3.

3.5. Auxiliary Module

This model also has an auxiliary module [32]. The auxiliary module is a part of
the global module which computes the auxiliary classification loss. The auxiliary loss
complements the model further by not only providing information on the class of the
model (the images from the same class are more likely to be similar), but also preventing
the model overfitting to the dataset by utilizing cross entropy loss, temperature scaling [40],
and label smoothing [41]. Temperature scaling and label smoothing help generalize the
model by restraining the model from trusting the classes too much. Cross entropy loss is
commonly used in image classification. Temperature scaling modifies the model if it is
overconfident and enhances the model to adapt better to more examples. Label smoothing
was also used to calibrate the model and for domain generalization through considering
the fact that labels on the training data might be wrong and in overall cause errors when
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the model is too confident in real life applications. Those two calibration methods enhance
the model to avoid overfitting.

3.5.1. Loss Function

Our loss function consists of the following: metric loss, auxiliary loss, and the hyper-
parameter lambda. The loss function is:

Loss = LM + λLA (1)

LM denotes the metric loss computed by the main module which consists of both
local and global descriptors. LA is the auxiliary loss computed by the auxiliary module.
λ modifies the weight the auxiliary loss has on the total loss. For results related to the
auxiliary module and the loss function, please refer to Table 2.

3.5.2. Hyperparameters

The auxiliary module is enabled for the first two epochs of training. The results
(Table 2) show that it is better to include the module in recalls recalls at 1, 2, and 4 when
λ equals 3, and 8 when λ equals 3. Tables 1 and 3 display results we obtained when λ
equals 1. When λ is 1, there is not much benefit to include an auxiliary module. The tables
manifest that we were able to achieve the best performance when λ is three (see Table 2).

Table 1. This table shows the performance of the model depending on the layer it received the feature
map from. The row ‘Layer 4’ indicates the global module received the feature map from Layer 4 and
it is the same for the row ‘Layer 3’. The bold values are the best performances in each recall @ K.

Backbone Layer for GD
Recall @ K (%)

1 2 4 8

Layer 4 63.03 74.29 82.48 89.18

Layer 3 71.67 81.14 88.62 93.40

Table 2. The table shows whether the existence of the auxiliary module is beneficial to the overall
performance. The row ‘2 Epochs’ indicates that the auxiliary module was implemented for only first
two epochs. The bold values are the best performances in each recall @ K.

λ Auxiliary Classification Loss
Recall @ K (%)

1 2 4 8

0 Not used 71.67 81.14 88.58 93.40

1
All epochs 68.67 78.92 87.51 93.06

2 epochs 71.37 80.82 88.54 93.42

3
All epochs 69.36 79.03 87.36 92.57

2 epochs 71.83 81.68 88.62 93.40

5
All epochs 69.87 79.01 87.12 91.78

2 epochs 71.75 81.64 88.40 92.16
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Table 3. This table shows the stage in which the concatenation starts. The row ‘Before OFM’ shows
the performance of the model when the concatenation begins before the descriptors are processed
by the OFM. In contrast, the row ‘After OFM’ indicates the performance after the descriptors are
processed by the OFM. The bold values are the best performances in each recall @ K.

Stage for Concatenating
Recall @ K (%)

1 2 4 8

Before OFM 69.36 79.03 87.36 92.57

After OFM 71.67 81.14 88.62 93.40

3.5.3. Implementation

The experiment was implemented using Pytorch on an NVIDIA RTX 3090 and trained
with the CUB-200-2011 Dataset [42]. We used proxy-anchor loss [43] to compute the metric
loss and CE loss with label smoothing and temperature scaling to compute the auxiliary
classification loss. Some of the results were obtained when we were writing and submitting
a paper to a conference [31].

4. Results
4.1. Backbone Network and Layers

The feature maps from Layer 2 are fed to the local module while the feature maps from
Layer 3 are fed to the global module. Using Layers 3 and 4 resulted in lower performance
(see Table 1). We assume it is because Layer 4 has a lower resolution than Layer 3, which
could have made it more difficult for the model to extract accurate features.

Due to limited resources, we were not able to use a larger model as our backbone
network. Although it would depend on the size of the dataset and the network, we predict
that a larger backbone network might ameliorate the overall performance.

4.2. Use of λ

Table 2 indicates that it is better to include the module in recalls at 1, 2, and 8 when λ
equals 3. When λ is 1, there is not much benefit to include an auxiliary module. It can be
inferred that the information implied in the auxiliary loss (i.e., the overall classification loss
and the confidence inhibitor) is somewhat crucial to the model’s decision making process.
However, if the auxiliary loss overshadows the main metric loss, the model’s decision
making process can be exacerbated, especially when the model has to retrieve more than
two images.

4.3. Concatenation Stage

There are two ways to concatenate the descriptors. One way is to concatenate the
global descriptors and then are processed by the OFM once. The other way is to process
the descriptors through the OFM to combine the local and global descriptors and produce
several final descriptors. Those final descriptors are then concatenated. In other words,
concatenation occurs after the OFM stage. The results (see Table 3) demonstrate that the
latter acquires better performance.

4.4. Effect of Descriptors

Table 4 displays the performance difference between models without certain types of
descriptors. While the differences are not big, the results show that the recall values are
the highest when both types of descriptors are used. Table 5 manifests the performances
of the model depending on what kind of global descriptors were used. At the top of the
table we included the performances of CGD, which is a model that did not implement a
local descriptor. As displayed in Table 5, our model, which employed both local and global
descriptors, achieves a better performance.
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Table 4. Ablation study—the effect of descriptors. The bold values are the best performances in each
recall @ K.

Ablation Study—Descriptors
Recall @ K (%)

1 2 4 8

Backbone only 69.72 79.66 86.90 92.03

Only LD 70.91 80.32 87.01 92.18

Only GD 70.53 80.96 87.91 92.82

Using both 71.67 81.14 88.62 93.40

As a result, the highest performing model consisted of MAC and GeM functions on
the global branch with an auxiliary module with the parameter λ = 3. We empirically found
out that λ of 3 achieves better performance. The overall results were computed and then
organized after applying the best empirical hyperparameters we found.

Table 5. Full results with the best hyperparameters regarding the combination of global descriptors.
The bold values are the best performances in each recall @ K.

Model
Recall @ K (%)

R@1 2 4 8 16 32

Baseline 69.72 79.66 86.90 92.03 95.58 97.42

CGD [32] G+M 67.60 78.10 86.30 91.90 - -

Transformer [44] GeM 78.60 80.70 82.40 83.40 - -

Our
Method

S 62.20 74.43 84.45 90.85 94.99 97.60
M 70.49 80.13 87.83 92.52 95.97 97.99
G 70.63 81.04 88.05 93.11 96.20 98.06
G+S 70.31 80.57 87.85 93.48 96.29 98.03
M+S 70.48 80.37 88.42 93.06 96.27 98.00
G+M+S 71.66 81.20 88.44 93.25 96.03 97.81
G+M 71.83 81.14 88.62 93.40 96.39 98.30

5. Discussion
5.1. Combinations of Global Descriptors

Combining different descriptors produces a similar effect of having an ensemble of
descriptors. In general, it is encouraged to choose functions (whether they are models,
descriptors, vectors, etc.) with a large variance to create an ensemble. For this model, the
ensemble can be depicted as a collection of experiences and methods of feature extraction.
Different functions have factors which can affect the performance (such as the dataset
used to train and test the model) and efficiency depending on the situation. The variance
between those functions allow the model to adapt to those said situations.

When we trained and tested the model, the combination of GeM and MAC empirically
worked the best. When the model only used one descriptor at a time, the performances,
even though they had relatively small difference, were lower. The results show that using
more than one descriptor is very likely to result in higher performance. However, the
combination of all three did not achieve the highest results, which may seem to contradict
the explanation above. This phenomenon can be interpreted as either the combination of too
many descriptors or the effects of those three specific choices of global descriptor functions
did not synergize as well as we expected to. In the former case, too many descriptors used
at once can be overall become confusing. This case may occur due to conflicting results
by the each individual descriptor. In the latter case, the dataset and the choices of those
descriptors may not be the most ideal choices to use together.
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As mentioned above, using a combination of global descriptors has a similar effect of
using an ensemble of whole models with one global descriptor each. This as a result creates
a lighter model overall which can provide some advantages. First, having a lighter model
can contribute to a more eco-friendly development of algorithms and models. Strubell
et al. states the carbon emission caused by training a deep neural network is about 7 times
compared to that caused by a human life in a year and training a transformer emits about
five times the amount of CO2 a car produces in its lifetime [45]. To reduce the carbon
footprint caused by developing deep learning models, Wu et al. introduces possible ways
to reduce the carbon footprints and presents the empirical results [46].

5.2. The Significance of the Auxiliary Module

Initially, the results that did not use the auxiliary module were better. However, as
more experiments were conducted, we realized that it is important to control the hyper-
parameter λ. As displayed in Table 2, when the model utilized the auxiliary module for
two epochs with the value of λ increased into 3 or 5, R@1 increased from 71.67 (without the
auxiliary module) to 71.83 and 71.75%. It can be explained that calculating R@1 is similar
to image classification and therefore increasing the impact of the auxiliary loss is likely to
augment the recall values at small numbers. On the other hand, the auxiliary loss does
not positively influence recall values at large numbers like R@8 because as the number
K (from R@K) increases, the classification loss (used to calculate the auxiliary loss) is not
as useful. As a result, when K = 1, 2 or 4, the model performance was generally better
when λ = 3. In the case of R@8, the model worked best when GeM and SPoC were used.
However, when λ = 5 (i.e., when the auxiliary loss was more significant than it should be),
the performance degraded instead. The auxiliary loss accelerates the convergence rate but
does not help increase the overall performance when used throughout the whole session.
Thus, we tried to utilize the module only for the first two epochs for pragmatic purposes.
Figure 2 displays that the implementation of two epochs bolstered the model’s learning
and resulted in faster convergence.

Figure 2. Graphs that show losses depending on the partial use of the module. Because the auxiliary
module is disabled after two epochs, the classification loss is zero after the second epoch.

5.3. Miscellaneous Points to Cover

• The model performed better when the descriptors were fused after the descriptors
were made into projections. It can be inferred that the process of concatenating the
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descriptors and then computing projections resulted in lower performance because
the descriptors are all mixed.

• One could argue that using several small patches of local features can allow for
detailed comparison between images. However, doing so will take up vast amount of
memory and computational time. If there are copious memory, power, and time, the
performance definitely would be promising. In this case, the resources were limited
by the time this thesis was written. Therefore, implementing several types of modules
(not just the local ones) and partly exploiting local descriptors from the local module
is the most realistic choice to make.

• The feature maps from Layer 2 are fed to the local module while the feature maps
from Layer 3 are fed to the global module. Initially, the target model went a layer
deeper and used Layers 3 and 4. Using Layers 3 and 4, which is how CGD [32] was
implemented, resulted in lower performance (see Table 1). We assume it is because
Layer 4 has a lower resolution than Layer 3, which could have made it more difficult
for the model to extract accurate features. However, if the input had a larger image size
and if we could have provided images with higher resolution so that the feature maps
had better resolutions in deeper layers, it might have resulted in higher performances.

6. Conclusions

Ultimately, we propose a descriptor mixer model that incorporates both local and
global descriptors as well as different types and combinations of descriptors. The combina-
tion of global descriptors have an effect similar to implementing an ensemble of models
with a smaller size and fewer parameters for image retrieval. The overall model retrieves
the images using the auxiliary module using the hyperparameter λ, the concatenation of
descriptors, and the combination of several types of global descriptors. Empirically, the
results show that when two global descriptors are used with a local descriptor with λ of 3,
the performance of the model was generally the best. Modifying factors such as controlling
the hyperparameter λ and changing the backbone model may further improve the perfor-
mance depending on the dataset and other hyperparameters such as the optimizer and the
loss function. This paper will hopefully provide some input on the effects of a descriptor
mixer in image retrieval.

This paper does have some areas that need to be improved. One would be the lack of
diversity in the dataset in the results section. While we have only used CUB-200-2011 [42]
for our evaluation, it could have been better if we have obtained results using other datasets
such as MS COCO [47] and CARS196 [48]. However, due to limited resources, we were not
able to do so. Moreover, this paper explores the combinations of three global descriptors
and uses one local branch that extracts one type of local descriptor. The descriptors we
have used in this paper may not be the most ideal combinations and utilizing different
kinds of descriptors outside the ones we have used could yield better performance.
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