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Abstract: One of the promises of AI in the military domain that seems to guarantee its adoption is its
broad applicability. In a military context, the potential for AI is present in all operational domains (i.e.,
land, sea, air, space, and cyber-space) and all levels of warfare (i.e., political, strategic, operational,
and tactical). However, despite the potential, the convergence between needs and AI technological
advances is still not optimal, especially in supervised machine learning for military applications.
Training supervised machine learning models requires a large amount of up-to-date data, often
unavailable or difficult to produce by one organization. An excellent way to tackle this challenge
is federated learning by designing a data pipeline collaboratively. This mechanism is based on
implementing a single universal model for all users, trained using decentralized data. Furthermore,
this federated model ensures the privacy and protection of sensitive information managed by each
entity. However, this process raises severe objections to the effectiveness and generalizability of the
universal federated model. Usually, each machine learning algorithm shows sensitivity in managing
the available data and revealing the complex relationships that characterize them, so the forecast
has some severe biases. This paper proposes a holistic federated learning approach to address the
above problem. It is a Federated Auto-Meta-Ensemble Learning (FAMEL) framework. FAMEL, for
each user of the federation, automatically creates the most appropriate algorithm with the optimal
hyperparameters that apply to the available data in its possession. The optimal model of each federal
user is used to create an ensemble learning model. Hence, each user has an up-to-date, highly
accurate model without exposing personal data in the federation. As it turns out experimentally, this
ensemble model offers better predictability and stability. Its overall behavior smoothens noise while
reducing the risk of a wrong choice resulting from under-sampling.

Keywords: federated learning; model-agnostic; meta-learning; ensemble learning; military operations;
cyber defense

1. Introduction

With an increasing pace, artificial intelligence (AI) is becoming a significant and
integral part of modern warfare because it offers new opportunities for the complete
automation of large-scale infrastructure and the optimization of numerous defence or
cyber-defence systems [1]. One of the promises of AI in the military domain [2] that seems
to guarantee its adoption is its broad applicability. In a military context, the potential for
AI is present in all operational domains (i.e., land, sea, air, space, and cyber-space) and all
levels of warfare (i.e., political, strategic, operational, and tactical) [3]. Still, at the same
time, the complexity is growing exponentially as the number of interconnected systems
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involved in continuous interconnection and uninterrupted information exchange services
expands in real-time [4]. From a generalized point of view, it can be said that AI will have a
significant impact on the following missions:

1. Too fast missions with reaction times of seconds or less to be executed in high com-
plexity (data, context, type of mission).

2. Missions with operation duration beyond human endurance or implying high opera-
tional (personnel) costs over a long period.

3. Missions involving an overwhelming complexity which requires agility and adapta-
tion to evolutions in context and objectives.

4. Missions challenging operational contexts implying severe risks to war fighters.

Applications supporting the missions above that monitor events in real-time are
receiving a constant, unlimited stream of observations of interlinked approaches. These
data exhibit high variability because their features vary substantially and unexpectedly
over time, altering their typical, expected behaviour. The latest data are the most important
in the typical case, as ageing is based on their timing.

Military AI-enabled intelligent systems that utilize data can transform military com-
manders’ and operators’ knowledge and experience into optimal valid and timely deci-
sions [3,4]. However, the lack of detailed knowledge and expertise associated with using
complex machine learning architectures can affect the performance of the intelligent model,
prevent the periodic adjustment of some critical hyperparameters and ultimately reduce the
algorithm’s reliability and the generalization that should characterize these systems. These
disadvantages are preventing stakeholders of defence, at all echelons of the command
chain, from trusting and making effective and systematic use of machine learning systems.
In this context and given the inability of traditional decision-making systems to adapt to
the changing environment, the adoption of intelligent solutions is imperative.

Furthermore, a general difficulty that reinforces distrust of machine learning systems
in defence is the prospect of adopting a single data warehouse for the overall training of
intelligent models [1], which could create severe technical challenges and severe issues of
privacy [5], logic, and physical security due to the need of establishing a potential single
point of failure and a potential strategic/primary target for the adversaries [6]. Accordingly,
the exchange of data that could make more complete intelligent categorizers that would
generalize also poses risks to the security and privacy of sensitive data, which military
commanders and operators do not want to risk [7].

To overcome the above double challenge, this work proposes FAMEL. It is a holistic
system that automates selecting and using the most appropriate algorithmic hyperparam-
eters that optimally solve a problem under consideration, approaching it as a model for
finding algorithmic solutions where it is solved by mapping between input and output data.
The proposed framework uses meta-learning to identify similar knowledge accumulated in
the past to speed up the process [8]. This knowledge is combined using heuristic techniques,
implementing a single, constantly updated intelligent framework. Data remains in the
local environment of the operators, and only the parameters of the models are exchanged
through secure processes, thus making it harder for potential adversaries to intervene with
the system [9,10].

2. Proposed Framework

In the proposed FAMEL framework, each user uses an automatic meta-learning system
in a horizontal federated learning approach (horizontal federated learning uses datasets
with the same feature space across all devices. Vertical federated learning uses different
datasets of different feature space to jointly train a global model). The most appropriate
algorithm with the optimal hyperparameters is selected in a fully automated way, which can
optimally solve the given problem. The implementation is based on the entity’s available
data and is not required to be disposed of in a remote repository or shared with a third
party [11].

The whole process is described in Figure 1.
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Specifically:

5. Step 1—Fine-tune the best local model. The fine-tuning process will help to improve
the accuracy of each machine learning model by integrating data from an existing
dataset and using it as an initialization point to make the training process time- and
resource-efficient.

6. Step 2—Upload the local model to the federated server.
7. Step 3—Ensemble the model by the federated server. This ensemble method uses

multiple learning algorithms to obtain a better predictive performance than could be
obtained from any of the constituent learning algorithms alone.

8. Step 4—Dispatch the ensemble model to local devices.

The best models (winner algorithm) that result from the process are channelled to
a federated server, where an ensemble learning model through a heuristic mechanism is
created. This ensemble model essentially incorporates the knowledge represented by the
local best models, which, as mentioned, came from the local data held by the users [12].
Hence, collectively, the ensemble model offers high generalization, better predictability,
and stability. Its general behaviour smoothens noise while lowering the overall danger
of making a false choice due to modelling or prejudice in handling scenarios of local
data [13,14].

2.1. Federated Learning

Assuming that Fi = 1, 2, . . . , N data owners want to train a machine learning model
using their data D = {Di, i = 1, 2, . . . , N}. A traditional way would be to collect all data
into a single set Dsum = D1 ∪ D1 ∪ ··· ∪ DN to train a model Msum. The proposed federated
learning system creates a single universal model [15]:

M f ed =
K

∑
k=1

nk
n

wk
t+1
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where K is the total number of nodes used in the process, n is the data points, and t
is the number of federated learning rounds [16]. The model comes from local models
∆w1, ∆w2, . . . , ∆wK, which are trained from the Di of each federal user separately. Data
D1 of the user F1 is not exposed to other federal users. In addition, the accuracy Vsum and
Msum of the models Vf ed and M f ed, must be close or equal. Specifically, if δ is a negative
number, then the federal learning method suffers from a loss of accuracy, as indicated in
the following formula [11,13]: ∣∣∣Vf ed −Vsum

∣∣∣ < δ

The Auto-Machine Learning technique is used to develop an accurate and robust
federal system that will remain stable in new information without the ability to generalize
or suffer a considerable loss of δ-accuracy [17,18].

2.2. Auto-Machine Learning

Initially, each federation member has a set of D data containing attribute vectors and
class tags on a supervised problem linked with a job. Data set D is specifically divided into
two parts: a set of training S and a set of forecasts B for testing and testing so that D = 〈S, B〉.
Furthermore, the data set D contains vector-label pairings such that D = {(xi, yi)}. Each
label represents a known class and belongs to a known set of L labels [19].

Considering P(D) the distribution of aggregate data held by federal agencies, we can
sample the issuance of an individual data set such that Pd = Pd(x, y). Our problem lies
in creating a trained classifier Mλ : x 7→ y which is fully and optimally configured with
λ ∈ Λ so that it can automatically generate predictions for samples from the Pd distribution
minimizing the expected generalization error so that [20]:

GE(Mλ) = E(x,y)∼Pd
[L(Mλ(x), y)]

The first phase is the best model selection procedure, which appears to be a standard
learning procedure in which a data set is regarded as a sample of data. Furthermore,
given that each data set of each independent body can only be observed through a set of n
independent observations, i.e.,:

Dd = {(x1, y1), . . . , (xn, yn)} ∼ Pd

Implies that we can only empirically approach the generalization error in data samples,
i.e., [20,21]:

ĜE(Mλ,Dd) =
1
n ∑n

i=1 L(Mλ(xi), yi)

From the above, we conclude that we have access to unconnected, finite samples in
practice where Dtrain and Dtest (Dd,train, Dd,test ∈ Pd). Therefore, to search for the best
machine learning algorithm, we only have access to Dtrain. However, in the end, the
performance is calculated once in Dtest.

Assume a classifier fλ, the parameter λ obtains the likelihood that a data point belongs
to the class y specified by the attribute vector x, Pλ (y|x) . The best model should increase
the likelihood of correctly detecting tags over several training batches B ⊂ D so that [18,22]:

λ∗ = argmaxλEB⊂D

 ∑
(x,y)∈B

Pλ(y|x)


Given that there is only a limited collection of quick learning support that can act as

fine-tuning, the objective, as with any other work using machine learning, is to minimize the
prediction error made on data samples with unknown labels. It is possible that obtaining the
best model is challenging to undertake. A fake data set is created with only a tiny fraction of
labels to prevent releasing all labels in the model. The optimization technique is modified to
make it easier to acquire knowledge quickly. According to this interpretation, each sample



Electronics 2023, 12, 430 5 of 17

pair can be regarded as a data point. As a direct consequence, the model has been educated
to the point where it can generalize to fresh, untested data sets. To summarize, the process
of computing the best model through the application of the meta-learning approach is
represented by the following function [20]:

λ∗ = argmaxλELs⊂L

[
ESL⊂D,BL⊂D

[
∑(x,y)∈BL Pλ

(
x, y, SL

)]]
Therefore, the proposed framework performs an automatic search in the solutions

area to identify the optimalMλ∗ :

Mλ∗ ∈ argmin
λ∈Λ

ĜE(Mλ,Dtrain )

For the calculation of GE, with cross-validation k-fold, the following relation is
used [17,20,23]:

ĜECV(Mλ,Dtrain) =
1
K ∑K

k=1 ĜE
(
MD(train,k)

train
λ ,D(val,k)

train

)

whereMD(train ,k)
train

λ denote thatMλ was trained based on the k-fold datasetD(train ,k)
train ⊂ Dtrain

and then evaluated by:

D(val,k)
train =

Dtrain

D(train,k)
train

Accordingly, the problem of optimizing the hyperparameters λ ∈ Λ of the best
learning algorithm A is essentially similar to selecting the best model. Some significant
characteristics are that hyperparameters are frequently continuous, hyperparameter spaces
are often vast, and we can benefit from the correlation between different hyperparameter
settings λ1, λ2, . . . , λn ∈ Λ.

Specifically, when n hyperparameters λ1, λ2, . . . , λn ∈ Λ the hyperparameter space
L includes the subsets Λ1, Λ2, . . . , Λn. This logic strictly defines each subset, so some
hyperparameter settings make other hyperparameters inactive.

Specifically, the hyperparameter λi is subject to the sub-constraints of another hyper-
parameter λj, if λ is active only if the hyperparameter λj takes values from a given set
Vi(j) ( Λj. Based on this logic, the hyperparameters in the proposed framework create
a structured solution space which is determined on the basis of a pair of variables with
B = 〈G, Θ〉(where G a graph). Graph G conveys the assumption that each variable λi
is independent of the inheritance undertaken by G. It determines the parameters of the
network and, in particular, the whole θλi |πi

= PB(λi

∣∣∣πi ) for each λi ⊂ Λi based on the con-
straint condition πi, for the set of constraints in G. Therefore, B defines a unique probability
distribution such that [24]:

PB = (Λ1, Λ2, . . . , Λn) =
n

∏
i=1

PB(πi) =
n

∏
i=1

θλi |πi)

Finding the optimal graph path based on the Markov inequality is calculated as [25,26]:

n

∑
k=ω

(
n
k

)
(k− 1)!pk =

n

∑
k=ω

∏k−1
i=0 (n− i)

nk
λk

k
≤

n

∑
k=ω

λk = O(λω)

Hence, with the following equation, the calculation of its expectation is performed
by Λn:

E[Λn] = ∑n
k=3

(
n
k

)
(k− 1)!pk
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It follows from the above equation:

lim
n→∞

E(Λn) = lim
n→∞

n
∑

k=3

∏k−1
i=0 (n−i)

nk
λk

k ∼
∞
∑

k=3

λk

k = − log(1− λ)− λ− λ2

2

= a(λ)

Hence, its r-to factor momentum Λn is:

E[(Λn)r] = θ̂
n
∑

k1=3

n−k1
∑

k2=3
· · ·

n−∑r−1
i=1 ki

∑
kr=3

(
n

k1, k2, . . . , kr, n− k1 − · · · − kr

)
r

∏
i=1

(ki − 1)!pki

Finally, given the above-structured solution space, the hyperparameter optimization
issue is as follows [27,28]:

λ∗ ∈ argminλ∈Λ
1
k ∑k

i=1 L
(

Aλ,D(i)
train,D(i)

valid

)
The Meta-Ensemble Learning technique is used for the proposed framework to lead to

stable prediction models while offering generalization, minimizing bias, reducing variance,
and eliminating overfitting.

2.3. Meta-Ensemble Learning

Once the above procedure has identified the most appropriate algorithm with the opti-
mal hyperparameters to create a single model that improves generalization, the proposed
framework creates a boosting ensemble model of all the optimal models that emerged by
auto-machine learning.

The proposed technique is based on the logic of the boosting process, where through
the creation of successive tree structures, information transfer is applied to solve a dis-
tributed problem [29]. Specifically, it is set f (x) = 0 and εi = yi for each observation in the
set of training data of each body.

The winning algorithm from the process of auto-machine learning f̂ k is trained in each
round k with d nodes having as response variable the categorization errors resulting from
the previous classification round (auto-machine learning process), which are denoted by εi.
For the most efficient, effective, and computable feasible implementation of the proposed
framework, we consider a tree and even pruned version of a new tree so that [12,30]:

f̂ (x)← f̂ (x) + λ f̂ k(x) or εi ← εi − λ f̂ k(x)

Repeating the procedure K times (the user-specified K), the final form of the model
is obtained:

f̂ (x) = λ ∑K
k=1 f̂ k(x)

For the proposed technique to be effective, the user must specify the number and
depth of trees to be created. The incredible depth of the trees can easily create over-
adaptation processes and cannot be generalized. Accordingly, the number of trees controls
the complexity of the process [31]. The λ parameter defines the learning rate of the model.

Its derivative is first calculated to find the total minimum of the function using the
proposed technique, and then the inverse procedure of finding the derivative is used. The
derivative measures whether the value of a process will change J(θ) if the variable θ (slope
of the function) changes slightly. High values of the function indicate a significant slope
and, therefore, a substantial change in its value J(θ) for small changes of θ.
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This algorithm is iterative, initializes a random value in θ, calculates the derivative of
the function at the given point, and changes θ so that [28,32]:

θ = θ − ρ
dj
dθ

Taking as a function of loss the sum of the squares of the incorrect classifications εi is
divided by two so that: the parameter ρ determines how fast it will move in the negative
direction of the derivative. The process is repeated until the algorithm converges, which
proposes training trees in the negative derivative of the loss function:

L(yi, ŷi) =
1
2 ∑N

i=1(yi − ŷi)
2

Calculating the above derivative, we have:

dL(yi, ŷi)

dŷi
= ŷi − yi

The negative derivative of the loss function is equal to the classification errors εi. Hence,
essentially, the procedure provides for the training of a tree based on the classification
errors εi, to which a pruned version of the new tree is added. In this manner, the approach
adds successive trees to the negative derivative of the loss function at each given time t,
such that [33,34]:

ŷi
(t) = ∑K

t=1 ft(xi), ft ∈ F

where F =
{

f (x) = wq(x)

}
and q : Rm → T, w ∈ RT . The q represents the structure of

each tree, the T the number of leaves, and each ft corresponds to an independent tree
structure q with the leaf weights plotted as w. The loss function that is minimized at any
time t has a formula:

L(t) = ∑n
i=1 l

(
yi, ŷi

t)+ ∑T
k=1 Ω f (t)

Two terms are important: the model’s capacity for learning from training data (low
values imply good learning) and the complexity of each tree (adding a new term to the
number of leaves (T), which shrinks the weights of leaves so that:

Ω f (t) = γT +
1
2

λ
T

∑
j=1

w2
j

The parameter γ indicates the penalty value for the tree’s growth so that large values
of γ will lead to small trees. Respectively small values of γ will lead to large trees. The
parameter λ regulates whether the tree weights will shrink so that as its value increases,
the tree weights will shrink.

Thus, it follows that [33,35]:

ŷi
(t) =

K

∑
t=1

ft(xi) = ŷi
(t−1) + ft(xi)

Therefore, the problem now is deciding which ft(xi) minimizes the time loss function t:

L(t) = ∑n
i=1 l

(
yi, ŷi

(t)
)
+ ∑T

k=1 Ω f (t) = ∑n
i=1 l

(
yi, ŷi

(t−1) + ft(xi)
)
+ ∑T

k=1 Ω f (t)

Taylor’s Development shows:

f (x + ∆x) ∼= f (x) + f ′(x)∆x +
1
2

f ′′ (x)(∆x)2
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Hence, the resulting relationship is [33,35]:

L(t) ∼= ∑n
i=1

[
l
(

yi, ŷi
(t−1)

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω f (t)

where:
gi = dŷi

(t−1) l
(

yi, ŷi
(t−1)

)
and hi = d2

ŷi
(t−1) l

(
yi, ŷi

(t−1)
)

Subtracting the constants, the loss function becomes:

L′(t) ∼=
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω f (t)

where:
Ij = {i|g(xi) = j}

The set of observations on a leaf j in the above relation is recorded as follows:

L′(t) ∼= ∑n
i=1

[
giwq(xi) +

1
2

hiw2
q(xi)

]
+ Ω f (t) = ∑T

i=1

[(
∑i∈Ij

gi

)
wj +

1
2

(
∑i∈Ij

hi + λ

)
w2

j

]
+ γT

where:
Gj = ∑i∈Ij

gi and Hj = ∑i∈Ij
hi

The following relation emerges:

L′(t) = ∑T
i=1

[
Gjwj +

1
2
(

Hj + λ
)
w2

j

]
+ γT

If the structure of the tree (q(x)) is given, the optimal weight on each sheet is obtained
by minimizing the concerning wj in the above relationship so that [22,36,37]:

wj = −
Gj

Hj + λ

Finally, with its replacement wj, the following equation is obtained, which calculates
the quality of the new tree:

L′(t) = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT

Finally, the algorithm creates divisions using the formula:

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− γ

where the first fraction is the score of the left part of the partition, the second is the score of
the right amount of the division, the third is the score if the division is not made, and γ
measures the cost of the complexity of the partition.

3. Experiments and Results

For the experimental implementation of the proposed FAMEL and the performance
of the scenario, a collaborative network of three federated partners (domain_alpha, do-
main_bravo and domain_charlie) was simulated (Figure 2).
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Figure 2. FAMEL architectural modelling.

We consider that the optimal model created by the Auto-Machine Learning process
is an internal affair of each domain, which is implemented on a local server based on
the respective architecture of each domain. In the Demilitarized Zone (DMZone) is the
Federated Learning Server (LFS), which creates the ensemble model by applying the algo-
rithmic process of assembling the optimal models with the technique discussed above. The
proposed intelligent system was evaluated using one of the most extensive datasets for web
traffic analysis called CICDoS2019. This dataset was developed under the supervision of
the Canadian Institute for Cybersecurity. The evaluation’s primary objective was to identify
well-organized attacks in which the intruder’s identity remained a legal component of a
third party [31]. Each domain includes 70 independent variables: characteristics or statistics
of network analysis and six classes (Benign, Infiltration, SSH-Bruteforce, FTP-BruteForce,
DoS Attack-Hulk, and DDOS attack-HOIC). The individual sets include Alpha_dataset
70553, Bravo_dataset 69551, and Charlie_dataset 70128 instances [38].

The initial results of the Auto-Machine Learning process based on the data available
in each domain are presented in Tables 1–9 below, as well as the parameters of each optimal
model that emerged for each collaborative domain. We used the Area under the ROC Curve
(AUC) metric, which represents the degree or measure of separability. It tells how much
the model is capable of distinguishing between classes. Specifically, AUC (also known as
AUROC) is the Area beneath the entire ROC curve. AUC provides a convenient, single
performance metric for our classifiers independent of the specific classification threshold.
This enables us to compare models without even looking at their ROC curves.
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Table 1. The best model for the Domain Alpha.

Domain Alpha

Model Accuracy AUC Recall Precision F1-Score

Light Gradient Boosting Machine 0.879 0.926 0.876 0.879 0.879

Gradient Boosting Classifier 0.878 0.926 0.875 0.878 0.878

K Neighbours Classifier 0.876 0.927 0.873 0.876 0.876

Logistic Regression 0.873 0.924 0.869 0.873 0.873

SVM—Linear Kernel 0.870 0.925 0.867 0.870 0.870

Ada Boost Classifier 0.868 0.000 0.865 0.868 0.868

Random Forest Classifier 0.865 0.926 0.862 0.865 0.865

Linear Discriminant Analysis 0.864 0.924 0.861 0.864 0.864

Ridge Classifier 0.860 0.000 0.857 0.860 0.860

Extra Trees Classifier 0.853 0.920 0.852 0.853 0.853

Decision Tree Classifier 0.824 0.883 0.824 0.824 0.824

Naive Bayes 0.747 0.904 0.733 0.770 0.734

Quadratic Discriminant Analysis 0.367 0.900 0.405 0.575 0.321

Table 2. Best parameters of the winner model of the Domain Alpha.

Domain_Alpha

Best Model Best Parameters of the Winner Model

LGBMClassifier

boosting_type = ‘gbdt’, class_weight = None,
colsample_bytree = 1.0, importance_type = ‘split’,
learning_rate = 0.1, max_depth = −1, min_child_samples = 20,
min_child_weight = 0.001, min_split_gain = 0.0,
n_estimators = 100, n_jobs = −1, num_leaves = 31,
objective = None, random_state = 1599, reg_alpha = 0.0,
reg_lambda = 0.0, silent = ’warn’,subsample = 1.0,
subsample_for_bin = 200,000, subsample_freq = 0

Table 3. The best model for the Domain Bravo.

Domain_Bravo

Model Accuracy AUC Recall Precision F1-Score

Gradient Boosting Classifier 0.877 0.926 0.875 0.877 0.877

Light Gradient Boosting Machine 0.876 0.926 0.874 0.876 0.876

K Neighbours Classifier 0.876 0.926 0.873 0.874 0.875

Ada Boost Classifier 0.870 0.925 0.868 0.870 0.870

Random Forest Classifier 0.870 0.923 0.868 0.870 0.870

Linear Discriminant Analysis 0.865 0.923 0.863 0.865 0.865

SVM—Linear Kernel 0.865 0.000 0.863 0.865 0.865

Logistic Regression 0.863 0.925 0.861 0.863 0.862

Ridge Classifier 0.861 0.000 0.859 0.862 0.861

Extra Trees Classifier 0.849 0.920 0.849 0.849 0.849

Decision Tree Classifier 0.816 0.878 0.816 0.816 0.815

Naive Bayes 0.739 0.905 0.727 0.765 0.724

Quadratic Discriminant Analysis 0.594 0.917 0.570 0.572 0.545
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Table 4. Best parameters of the winner model of the Domain Bravo.

Domain_Bravo

Best Model Best Parameters of the Winner Model

GradientBoostingClassifier

ccp_alpha = 0.0, criterion = ‘friedman_mse’, init = None,
learning_rate = 0.1, loss = ‘deviance’, max_depth = 3,
max_features = None, max_leaf_nodes = None,
min_impurity_decrease = 0.0, min_impurity_split = None,
min_samples_leaf = 1, min_samples_split = 2,
min_weight_fraction_leaf = 0.0, n_estimators = 100,
n_iter_no_change = None, presort = ‘deprecated’,
random_state = 8515, subsample = 1.0, tol = 0.0001,
validation_fraction = 0.1, verbose = 0, warm_start = False

Table 5. The best model for the Domain Charlie.

Domain_Charlie

Model Accuracy AUC Recall Precision F1-Score

k-Neighbours Classifier 0.866 0.927 0.864 0.867 0.866

Light Gradient Boosting Machine 0.865 0.926 0.864 0.866 0.866

Gradient Boosting Classifier 0.865 0.926 0.865 0.865 0.866

Ada Boost Classifier 0.861 0.921 0.861 0.861 0.861

Logistic Regression 0.860 0.922 0.860 0.861 0.860

SVM—Linear Kernel 0.855 0.923 0.852 0.855 0.855

Random Forest Classifier 0.853 0.925 0.851 0.853 0.853

Linear Discriminant Analysis 0.851 0.923 0.849 0.852 0.851

Extra Trees Classifier 0.847 0.921 0.847 0.848 0.849

Ridge Classifier 0.847 0.920 0.848 0.849 0.848

Decision Tree Classifier 0.819 0.880 0.821 0.820 0.819

Naive Bayes 0.687 0.900 0.668 0.680 0.644

Quadratic Discriminant Analysis 0.542 0.914 0.536 0.662 0.528

Table 6. Best parameters of the winner model of the Domain Charlie.

Domain_Charlie

Best Model Best Parameters of the Winner Model

KNeighborsClassifier
algorithm = ‘auto’, leaf_size = 30, metric = ‘minkowski’,
metric_params = None, n_jobs = −1, n_neighbors = 5, p = 2,
weights = ‘uniform’

Table 7. Ensemble model for the Domain Alpha.

Domain_Alpha

Model Accuracy AUC Recall Precision F1-Score

Ensemble model 0.898 0.933 0.899 0.897 0.898

Light Gradient Boosting Machine 0.879 0.926 0.876 0.879 0.879

Gradient Boosting Classifier 0.878 0.926 0.875 0.878 0.878

k-Neighbors Classifier 0.876 0.927 0.873 0.876 0.876

Logistic Regression 0.873 0.924 0.869 0.873 0.873
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Table 7. Cont.

Domain_Alpha

Model Accuracy AUC Recall Precision F1-Score

SVM—Linear Kernel 0.870 0.925 0.867 0.870 0.870

Ada Boost Classifier 0.868 0.000 0.865 0.868 0.868

Random Forest Classifier 0.865 0.926 0.862 0.865 0.865

Linear Discriminant Analysis 0.864 0.924 0.861 0.864 0.864

Ridge Classifier 0.860 0.000 0.857 0.860 0.860

Extra Trees Classifier 0.853 0.920 0.852 0.853 0.853

Decision Tree Classifier 0.824 0.883 0.824 0.824 0.824

Naive Bayes 0.747 0.904 0.733 0.770 0.734

Quadratic Discriminant Analysis 0.367 0.900 0.405 0.575 0.321

Table 8. Ensemble model for the Domain Bravo.

Domain_Bravo

Model Accuracy AUC Recall Precision F1-Score

Ensemble model 0.891 0.930 0.890 0.890 0.892

Gradient Boosting Classifier 0.877 0.926 0.875 0.877 0.877

Light Gradient Boosting Machine 0.876 0.926 0.874 0.876 0.876

k-Neighbors Classifier 0.876 0.926 0.873 0.874 0.875

Ada Boost Classifier 0.870 0.925 0.868 0.870 0.870

Random Forest Classifier 0.870 0.923 0.868 0.870 0.870

Linear Discriminant Analysis 0.865 0.923 0.863 0.865 0.865

SVM—Linear Kernel 0.865 0.000 0.863 0.865 0.865

Logistic Regression 0.863 0.925 0.861 0.863 0.862

Ridge Classifier 0.861 0.000 0.859 0.862 0.861

Extra Trees Classifier 0.849 0.920 0.849 0.849 0.849

Decision Tree Classifier 0.816 0.878 0.816 0.816 0.815

Naive Bayes 0.739 0.905 0.727 0.765 0.724

Quadratic Discriminant Analysis 0.594 0.917 0.570 0.572 0.545

Table 9. Ensemble model for the Domain Charlie.

Domain_Charlie

Model Accuracy AUC Recall Precision F1-Score

Ensemble model 0.871 0.929 0.871 0.871 0.872

k-Neighbors Classifier 0.866 0.927 0.864 0.867 0.866

Light Gradient Boosting Machine 0.865 0.926 0.864 0.866 0.866

Gradient Boosting Classifier 0.865 0.926 0.865 0.865 0.866

Ada Boost Classifier 0.861 0.921 0.861 0.861 0.861

Logistic Regression 0.860 0.922 0.860 0.861 0.860

SVM—Linear Kernel 0.855 0.923 0.852 0.855 0.855
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Table 9. Cont.

Domain_Charlie

Model Accuracy AUC Recall Precision F1-Score

Random Forest Classifier 0.853 0.925 0.851 0.853 0.853

Linear Discriminant Analysis 0.851 0.923 0.849 0.852 0.851

Extra Trees Classifier 0.847 0.921 0.847 0.848 0.849

Ridge Classifier 0.847 0.920 0.848 0.849 0.848

Decision Tree Classifier 0.819 0.880 0.821 0.820 0.819

Naive Bayes 0.687 0.900 0.668 0.680 0.644

Quadratic Discriminant Analysis 0.542 0.914 0.536 0.662 0.528

AUC is measured on a scale of 0 to 1, with higher numbers indicating better perfor-
mance. Scores in the [0.5, 1] range indicate good performance, while anything less than
0.5 indicates very poor performance. An AUC of 1 indicates a perfect classifier, while an
AUC of 0.5 indicates a perfectly random classifier. A model that always predicts a negative
sample is more likely than a positive sample to have a positive label. It will have an AUC
of 0, indicating a severe modelling failure.

It should be noted that all the tests were performed with 10-fold cross-validation. Each
of the ten subsets was used for the algorithm’s training and certainly once for its evaluation,
so there was no case of misleading the algorithmic result.

Meta-Ensemble Learning is created with an ensemble model that includes the best
classifiers. The ensemble model returns through the Federated Learning process in each do-
main and retests in each local dataset (Alpha_dataset, Bravo_dataset, and Charlie_dataset).
Then, the three best models from each domain (LGBMClassifier, Gradient BoostingClassi-
fier, and k-NeighborsClassifier) are sent with the Federated Learning process to FLS. Again,
it should be emphasized that all the tests were performed with the method of 10-fold
cross-validation so that there was no case of misleading the algorithmic result. The results
of the process are presented in the following tables.

The ensemble model ensures an improved categorization accuracy and smoothening
of the system. This dramatically simplifies trend detection and visualization by eliminating
or reducing statistical noise in the data. The experimental results suggest that using the
ensemble model ensures improved categorization accuracy. The categorization becomes
more accurate with each instance, providing critical pointers to the failure problems that
an individual algorithm’s bias could generate [39]. This allows for a precise diagnosis
before embarking on a new condition or occurrence associated with adversarial attacks
or zero-day exploits. This is one of the most effective strategies for predicting a trend’s
strength and the likelihood of shifting direction [40].

The convergence achieved by employing multiple models provides more outstanding
reliability than any of them could provide separately. This revelation, directly related to
the experimental outcomes, significantly accelerates arriving at the optimum decision in
ambiguous situations [41]. It is also important to remember that this process is dynamic,
which must be emphasized. This dynamic process ensures the system’s adaptability by
providing impartiality and generalization, resulting in a system that can respond to highly
complicated events [42,43].

4. Conclusions

Applying machine learning to real-world problems is still particularly challenging [44].
This is because highly trained engineers and military specialists who have a wealth of
experience and information will be required to coordinate the numerous parameters of the
respective algorithms, correlate them with the specific problems, and use the data sets that
are currently available. This is a lengthy, laborious, and expensive undertaking. However,
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the hyperparametric features of algorithms and the design choices for ideal parameters
can be viewed as optimization problems because machine learning can be thought of as
a search problem that attempts to approach an unknown underlying mapping function
between input and output data.

Utilizing the above view, in the present work, FAMEL was presented, extending the
idea of formulating a general framework of automatic machine learning with effective
universal optimization, which operates at the federal level. It uses automated machine
learning to find the optimal local model in the data held by each federal user and then,
making extensive meta-learning, creates an ensemble model, which, as shown experimen-
tally, can generalize, providing highly reliable results. In this way, the federal bodies have
a dedicated, highly generalized model, the training of which does not require exposure
to the federation of the data in their possession. In this regard, FAMEL can be applied to
several military applications where continuous learning and environmental adaptation
are critical for the supported operations and where the exchange of information might
be difficult or not possible due to security reasons. For example, which is the case in
the real-time optimization of information sharing concerning tasks and situations. The
application of FAMEL would be of special interest in congested environments where IoT
sensor grids are deployed, and many security constraints need to be met. Similarly, it
can be applied in cyberspace operations to find and identify potential hostile activities in
cluttered information environments and complex physical scenarios in real-time, including
countering negative digital influence [45,46]. It must be noted that the proposed technique
can be extended to cover a wider scientific area without reducing the main points that are
currently described. It is a universal technic that develops and produces an open-frame
holistic federated learning approach.

Although, in general, the methodology of the federated learning technique, the ensem-
ble models, and recently the meta-learning methods have occupied the research community
intensely, and relevant work has been proposed that has upgraded the relevant research
area, this is the first time that such a comprehensive framework is presented in the in-
ternational literature. The methodology offered herein is an advanced form of learning.
The computational process is not limited to solving a problem but through a productive
method of searching the solution space and selecting the optimal one in a meta-heuristic
way [47,48].

On the other hand, the federated learning model should apply average aggregation
methods to the set of cooperative training data. This raises serious concerns for the effec-
tiveness of this universal approach and, therefore, for the validity of federated architectures
in general. Generally, it flattens the unique needs of individual users without considering
the local events to be managed. How one can create personalized intelligent models that
solve the above limitations is currently a prominent research problem. For example, the
study [49] is based on the needs and events that each user must address in a federated for-
mat. Explanations are the assortment of characteristics of the interpretable system, which,
in the case of a specified illustration, helped to bring about a conclusion and provided the
function of the model on both local and global levels. Retraining is suggested only for those
features for which the degree of change is considered quite important for the evolution of
its functionality.

Essential topics that could expand the research area of the proposed framework
concern the Meta-Ensemble Learning process and, specifically, how to solve the problem
of creating trees and their depth so that the process is automatically fully simplified. An
automated process should also be identified for pruning each tree with optimal separations
to avoid negative gain. Finally, explore procedures to add an optimally trimmed tree
version to the model to maximize frame efficiency, accuracy, and speed.
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