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Abstract: Nowadays, a huge amount of research is done on introducing and implementing new
fractional-order chaotic systems. In the majority of cases, the implementation is done using embedded
hardware, and very seldom does it use integrated circuit (IC) technology. This is due to the lack of
design automation tools ranging from the system level down to layout design. At the system level,
the challenge is guaranteeing chaotic behavior by varying all parameters while optimizing dynamical
characteristics, such as the Lyapunov spectrum and the Kaplan–Yorke dimension. Using embedded
hardware, the implementation is straightforward, but one must perform a scaling process for IC
design, in which the biases may be lower than 1 volt but the amplitudes of the state variables of the
chaotic systems can have values higher than one. In this manner, this paper describes three levels of
abstraction to design fractional-order chaotic systems: The first one shows the optimization of a case
study, the mathematical model of the fractional-order Lorenz system to find the fractional-orders of
the derivatives, and the coefficients that generate better chaotic behavior. The second level is the block
description of a solution of the mathematical model, in which the fractional-order derivatives are
approximated in the Laplace domain by several approximation methods. The third level shows the IC
design using complementary metal–oxide–semiconductor (CMOS) technology. The transfer functions
approximating the fractional-order derivatives are synthesized by active filters that are designed
using operational transconductance amplifiers (OTAs). The OTAs are also used to design adders
and subtractors, and the multiplication of variables is done by designing a CMOS four-quadrant
multiplier. The paper shows that the simulation results scaling the mathematical model to have
amplitudes lower than ±1 are in good agreement with the results using CMOS IC technology of
180 nm.

Keywords: chaos; CMOS design; operational transconductance amplifier; fractional-order derivative;
active filter; particle swarm optimization

1. Introduction

There is a wide variety of natural phenomena in science and engineering applications
that exhibit chaotic behavior, whose main property is a high sensitivity to initial conditions.
Such phenomena can be modeled by integer or fractional-order chaotic systems, and their
randomness can be exploited to develop engineering applications. In particular, the elec-
tronic design of chaotic systems is generally performed using embedded systems, such as
field-programmable gate arrays (FPGAs), due to its popularity for fast prototyping. It has
also been shown that the mathematical models of either integer or fractional-order chaotic
systems can be optimized to generate better chaotic behavior, as shown in [1], where
the authors show how the optimized models can be implemented using commercially
available amplifiers, field-programmable analog arrays (FPAA), FPGAs, micro-controllers,
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and nanometer technology of integrated circuits (ICs). The big challenge is the develop-
ment of an electronic design automation (EDA) tool with the capabilities of optimizing the
mathematical model, macro-modeling of the chaotic system, and designing of the blocks
using complementary metal–oxide–semiconductor (CMOS) IC technology. In this manner,
this paper summarizes recent advances on the development of EDA tools for analog design
of chaotic systems that require the design of filters, adders, subtractors, multipliers, and
comparators. A case study is given to show the optimization, block description, and CMOS
design of a fractional-order chaotic system.

Recently developed EDA tools perform the design of electronic systems in a hierarchi-
cal fashion, as shown in [2], where the authors cover the device, circuit, and system levels
for radio-frequency ICs. This is a big problem known as physical design that requires a
massive amount of computer resources in order to meet the tape-out schedule [3] and to
mainly accomplish target specifications that support process variations, for instance. Some
works introduce systematic and multilevel approaches [4], and others pay special attention
to the placement of the circuit blocks [5,6]. Modern EDA tools include optimization [7,8]
and machine learning [9]. These combinations of design methods allow one to guarantee the
layout generation [10], which sometimes requires one to have the lowest silicon area [11–13].
The authors of [14] introduced the automated design of analog circuits, whose algorithm
not only successfully reaches unique, valid, and practical performances, but also does so in
state-of-the-art run time, achieving target specifications post-layout for the folded cascode
amplifier. Such a task was also performed by some authors applying multi-objective op-
timization algorithms [15–17], and recently by applying many-objective algorithms [18].
Those EDA tools include process variations and statistical analyses to guarantee robust
design. Others put emphasis on the layout generation [19] and yield-aware optimization in
nanometer-scale technologies [20]. These EDA tools inspired this work to use three levels of
abstraction to design fractional-order chaotic systems: The first one is devoted to showing
the application of metaheuristics to find the coefficients and the fractional-orders of the
derivatives that generate better chaotic behavior from a mathematical model. The second
level is the block description of the mathematical model, in which the fractional-order
derivatives are approximated in the Laplace domain. The third level shows the IC design
using CMOS technology of 180 nm.

Researchers involved in real applications of chaotic systems, such as the design and
synchronization of random number generators (RNGs) [21], generally use FPGAs to verify
the generation of a chaotic attractor, as already shown in [1,22–24]. However, for low
power consumption and wireless applications, the design of CMOS ICs is recommended,
as they can be fabricated in a very-low silicon environment. The CMOS design of chaotic
systems is not new; it was done three decades ago for the introduction of the IC chip of
Chua’s circuit [25], using 2 µm technology, occupying a silicon area of 2.5 mm × 2.8 mm,
and biased with a single 9V battery. The authors highlighted that the CMOS IC can be
employed as a basic component in the design of complex circuits making use of chaotic
signals, including a class of cellular neural networks and secure communication systems.
By the same time, the authors of [26], introduced a CMOS IC design of a chaotic discrete-
time system for the generation of broadband white noise using 3 µm technology. From
recent times, one can find CMOS designs of chaotic systems using CMOS technology of
180 nm, provided from different fabrication companies [27–32]. These IC designs can
be improved by performing variation analyses of the process (voltage and temperature)
and Monte Carlo simulations [33]. Further, those robust designs can be used to design
random number generators [34,35], which have shown real engineering applications, such
as for the design of a CMOS high-data-rate true random bit generator through delta sigma
modulation [36]. Other applications of CMOS chaotic systems are the design of high-
precision analog-to-digital converter (ADC) calibration systems [37], a 1 Gbps chaos-based
stream cipher [38], and a chaos-key based data encryption system, in which the data secrecy
is compared to the advanced encryption standard (AES) [39]. Regarding fractional-order
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chaotic systems, there have been very few trials generating CMOS designs, as shown
in [18,40,41].

The organization of the paper is as follows: Section 2 shows the adaptation of an opti-
mization algorithm to fractional-order chaotic systems, Section 3 shows the approximation
of the fractional-order derivatives in the Laplace domain, Section 4 shows the CMOS design
of a fractional-order chaotic system, and Section 5 summarizes the results and shows the
suitability for the development of an EDA tool for the design of CMOS fractional-order
chaotic systems. Finally, the conclusions are given in Section 6.

2. Simulation and Optimization of Fractional-Order Chaotic Systems

This section shows the optimization of two chaotic systems taken as case studies,
namely, those of Chen and Liu [42]. They are fractional-order Lorenz-type systems. Each
system is optimized to maximize the chaotic characteristic known as the Kaplan–Yorke
dimension (DKY) by applying the particle swarm optimization (PSO) algorithm.

2.1. Optimization of Chaotic Systems by PSO

As already shown in [1], every chaotic system can be optimized in its dynamical
characteristics, e.g., by maximizing the positive or maximum Lyapunov exponent and
DKY. Afterwards, one can implement the optimized systems using commercially available
electronic devices, FPAAs, FPGAs, and micro-controllers, or by designing an IC using
CMOS nanometer technology, as shown here. All these tasks can be automated to develop
an EDA tool ad hoc for fractional-order chaotic systems. In addition, the first challenge
is determining whether or not a mathematical model generates chaotic behavior. To that
end, the authors of [43] introduced a method based on the Fourier transform to evaluate if
the generated time series is chaotic or not. The Fourier spectrum of a chaotic time series
has several peaks surpassing a determined threshold, and they are not multiples of a
fundamental frequency, as happens for a periodic signal. Evaluating the Fourier spectrum
of a time series saves computing time in an optimization loop, and therefore, not all the
time series are used to evaluate dynamical characteristics as Lyapunov exponents and
DKY, which can be performed by using the free time-series analysis (TISEAN) software.
The dynamical characteristics are evaluated, generating about 30,000 data points from a
mathematical model, but the transient must be eliminated, and it associates with the first
10,000 data. In this manner, a chaotic system can be optimized by maximizing Lyapunov
exponents and DKY using TISEAN within PSO. The majority of people agree that PSO is an
easy algorithm to implement, and we provide the main pseudocode for the optimization
of fractional-order chaotic systems. PSO consists of a set of n possible solutions called
particles, which represents a potential solution in D-dimensional space [44]. It requires
the definition of the population size Np and the number of generations G in which the
potential solutions are evolved, and the algorithm is calibrated until generating good,
feasible solutions.

From a mathematical model of a fractional-order chaotic system, the derivatives have
fractional-order values that can be a fraction of unity. In this work, the fractional-orders are
considered to be in the range [0.3, 0.9] and can vary in steps of 0.1. During the optimization
task, the coefficients and fractional-orders of the derivatives are the design variables,
for which random values are generated within PSO, and their associated time series are
analyzed with the Fourier spectrum [43] to determine if they can go to TISEAN to evaluate
DKY. The iterations within PSO are performed until a determined number of generations,
and the last particles are saved and considered feasible solutions.

The pseudocode of PSO is given in Algorithm 1. It begins by initializing a random pop-
ulation, and the speed and position of each particle are updated according to (1) and (2) [45].
In these equations, i is the index of the particle, j its dimension, pi the best position found
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for it initially, and pg the best position found during the optimization [43]. In this work:
c1 = 0.5, c2 = 0.9, Np = 30 (population), and G = 10 (number of generations).

vij = vij + c1rand()(pij − xij) + c2rand()(gj − xij) (1)

xij = xij + vij (2)

Algorithm 1 Optimization of a fractional-order chaotic system by PSO.

1: Initialize the first particle i of the population Np with known parameters, and the rest
randomly (x)

2: Initialize the velocity of the particles vs.
3: for (counter = 1; counter ≤ G; counter ++) do
4: for (i = 1; i ≤ Np; i ++) do
5: for (j = 1; j ≤ D; j ++) do
6: if the sum of the fractional order of all particles is ≥ 2.1 then
7: Evaluate the position of the particles to find the eigenvalues.
8: if at least one eigenvalue is greater than zero, then
9: Evaluate the position of the particles to generate the chaotic time series.

10: Calculate the Fourier transform of the time series.
11: if Fourier amplitude > Range then
12: Evaluate DKY
13: Initialize the particle’s best position pi ← xi
14: else
15: Do not calculate DKY because the system is not chaotic.
16: DKY = 0.
17: end if
18: else
19: Evaluate the next particle, go to step 26.
20: DKY = 0.
21: end if
22: else
23: Evaluate the next particle, go to step 26.
24: DKY = 0.
25: end if
26: Evaluate the new velocity using (1)
27: Evaluate the new position using (2)
28: end for
29: fx ← f unc(xi)
30: if fx is better than scorei then
31: scorei ← fx
32: pi ← xi
33: if pi is better than g then
34: g← pi
35: end if
36: end if
37: end for
38: end for
39: return x, p, g and score

2.2. Optimization of the Fractional-Order Chen System

The fractional-order Chen system is given in (3). According to [42], it is a Lorenz-type
system that generates chaotic behavior by setting a = 35, b = 3, and c = 28, with com-
mensurate fractional-order equal to q1 = q2 = q3 = 0.9. The simulation of this system and
using initial conditions x0 = −9, y0 = −5, z0 = 14, led us to generate the chaotic attractor
shown in Figure 1. As one can see, the amplitudes of the state variables are higher than
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20, but for a CMOS design, it is required to be in the range of about ±1, which can be
accomplished by scaling the optimized values of the mathematical model, as shown in the
following section.

Dq1
t x(t) = a(y(t)− x(t))

Dq2
t y(t) = (c− a)x(t)− x(t)z(t) + cy(t)

Dq3
t z(t) = x(t)y(t)− bz(t)

(3)

Figure 1. Chen attractor generated from (3) by setting a = 35, b = 3, c = 28, and q1 = q2 = q3 = 0.9,
and using initial conditions x0 = −9, y0 = −5, and z0 = 14.

The execution of PSO with a population of 30 particles and evolved during 10 gener-
ations for the maximization of DKY provided the five solutions given in Table 1. As one
can see, the fractional orders are 0.8 and 0.9 to have a DKY higher than 2.2240, which is
the value evaluated by TISEAN using the non-optimized parameters, the original ones,
and the optimal solutions have values somewhat similar to the original coefficients a, b, c.
The fractional orders of the derivatives are approximated in the Laplace domain in the
following section.

Table 1. Five solutions of the optimization of Chen system (3) applying PSO.

Parameter a b c q1 q2 q3 DKY

Original 35 3 28 0.9 0.9 0.9 2.2240
Solution 1 34.5379 2.4909 28.4066 0.9 0.9 0.9 2.2859
Solution 2 33.5356 3.1781 28.2312 0.8 0.8 0.9 2.3091
Solution 3 34.3726 3.0313 27.8618 0.9 0.9 0.9 2.2721
Solution 4 33.5929 3.2233 28.7034 0.8 0.8 0.9 2.3506
Solution 5 33.3714 3.3152 28.4679 0.8 0.8 0.9 2.3333

2.3. Optimization of the Fractional-Order Liu System

The fractional-order Liu system is given in (4). It was simulated to generate the
attractor shown in Figure 2, by setting a = 10, b = 2.5, c = 40, k = 1, h = 4, and
q1 = q2 = q3 = 0.9; and using initial conditions x0 = 0.2, y0 = 0.3, and z0 = 0.5. The time
series were introduced to TISEAN to evaluate DKY = 2.1917. Five optimal solutions are
given in Table 2, where it can be appreciated that the fractional orders are 0.8 and 0.9, and
the values of the coefficients are slightly similar to the original ones, but DKY has been
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increased. The fractional orders of the derivatives are approximated in the Laplace domain
in the following section.

Dq1
t x(t) = a(y(t)− x(t))

Dq2
t y(t) = cx(t)− kx(t)z(t)

Dq3
t z(t) = −bz(t) + hx2(t)

(4)

Figure 2. Liu attractor generated from (4) by setting a = 10, b = 2.5, c = 40, k = 1, h = 4, and
q1 = q2 = q3 = 0.9; and using initial conditions x0 = 0.2, y0 = 0.3, and z0 = 0.5.

Table 2. Five solutions of the optimization of Liu system (4) applying PSO.

Parameter a b c k h q1 q2 q3 DKY

Original 10 2.5 40 1 4 0.9 0.9 0.9 2.1917
Solution 1 9.413323 2.322034 40.139001 1.029814 4.008886 0.8 0.8 0.8 2.2331
Solution 2 9.724684 2.436013 39.808277 0.987385 4.017011 0.8 0.8 0.8 2.3304
Solution 3 9.770579 2.615027 39.844751 1.094766 4.054294 0.9 0.9 0.8 2.2505
Solution 4 10.057213 2.985930 40.071543 0.890802 3.873207 0.9 0.9 0.8 2.2444
Solution 5 10.069213 2.877164 39.450604 0.829341 4.084662 0.9 0.9 0.8 2.2419

3. Frequency Approximation of the Fractional-Order Chaotic Systems

This section shows the amplitude scaling of Chen and Liu fractional-order systems to
allow CMOS design. Taking an optimal solution given in the previous section, one can see
the fractional orders of the derivatives as 0.8 and 0.9; these orders are approximated herein,
and therefore, the scaled attractors are shown for the Chen and Liu systems.

3.1. Scaling the Amplitudes of the Chen System

The CMOS design performed in the following section requires that the state variables
have amplitudes of±1 or smaller. In this manner, the amplitude scaling is done by changing
variables. In this case, we propose (5) to be replaced in (3). It introduces k1, k2, and k3
that update the Chen system as in (6). By setting k1 = 45, k2 = 50, and k3 = 70, the new
amplitudes of the state variables are shown in Figure 3; as one can see, they are lower than
±0.6. By reordering (6), one gets (7), where ak2

k1
= m, (c− a) k1

k2
= n, k1k3

k2
= p, and k1k2

k3
= r.

x(t) = k1u(t)
y(t) = k2v(t)
z(t) = k3w(t)

(5)
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Dq1
t u(t) = ak2

k1
v(t)− au(t)

Dq2
t v(t) = (c− a) k1

k2
u(t)− k1k3

k2
w(t) + cv(t)

Dq3
t w(t) = k1k2

k3
u(t)v(t)− bw(t)

(6)

Figure 3. Chen attractor after scaling to allow CMOS design.

Dq1
t u(t) = mv(t)− au(t)

Dq2
t v(t) = nu(t)− pw(t) + cv(t)

Dq3
t w(t) = ru(t)v(t)− bw(t)

(7)

The scaling parameters m, n, p, r introduced by (7) do not modify the DKY values,
as shown in Table 3, and now, one can appreciate the maximum amplitude values of the
state variables x, y, and z that are lower values than ±1, so that they allow a CMOS design,
as shown in the following section.

Table 3. The scaling parameters m, n, p, and r introduced by (7) provide maximum amplitudes of x, y,
and z within ±0.71, while maintaining the values of the associated DKY .

Param. a b c m n p r Max x Max y Max z DKY

Original 35 3 28 38.89 −6.3 63 32.14 0.55 0.57 0.64 2.2397
Solution 1 34.53 2.49 28.41 38.37 −5.51 63 32.14 0.56 0.59 0.68 2.2973
Solution 2 33.53 3.17 28.23 37.26 −4.77 63 32.14 0.65 0.69 0.68 2.3153
Solution 3 34.37 3.03 27.86 38.19 −5.86 63 32.14 0.57 0.59 0.66 2.2748
Solution 4 35.59 3.22 28.70 37.32 −4.4 63 32.14 0.66 0.71 0.71 2.3303
Solution 5 33.37 3.31 28.46 37.08 −4.42 63 32.14 0.65 0.70 0.69 2.3329

3.2. Scaling the Amplitudes of Liu System

The scaling of Liu system is performed by replacing (5) in (4), thereby providing (8).

In a similar way, the parameters are reordered as: m = ak2
k1

, n = ck1
k2

, p = kk1k3
k2

, r =
hk2

1
k3

,
giving (9). Table 4, shows the scaled values using initial conditions equal to x0 = 0.2,
y0 = 0.3 and z0 = 0.5. Figure 4, shows the scaled values of the Liu attractor.

Dq1
t u(t) = ak2

k1
v(t)− au(t)

Dq2
t v(t) = ck1u(t)

k2
− kk1k3u(t)w(t)

k2

Dq3
t w(t) = −bw(t) + hk2

1u2(t)
k3

(8)
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Dq1
t u(t) = mv(t)− au(t)

Dq2
t v(t) = nu(t)− pu(t)w(t)

Dq3
t w(t) = −bw + ru2(t)

(9)

Figure 4. Liu attractor after scaling to allow CMOS design.

Table 4. The scaling parameters m, n, p, r introduced by (9) provide maximum amplitudes of x, y, z
within ±0.74, while maintaining the values of the associated DKY .

Param. a b c k h m n p r Max x Max y Max z DKY

Orig. 10 2.5 40 1 4 13.33 30.0 105.0 25.71 0.57 0.67 0.70 2.1938
Sln. 1 9.41 2.32 40.14 1.03 4.01 12.55 30.11 108.15 25.78 0.46 0.56 0.54 2.2169
Sln. 2 9.72 2.44 39.81 0.99 4.02 12.96 29.86 103.95 25.84 0.47 0.57 0.55 2.2211
Sln. 3 9.77 2.62 39.84 1.09 4.05 13.03 29.88 114.45 26.04 0.44 0.52 0.56 2.2392
Sln. 4 10.06 2.99 40.07 0.89 3.87 13.41 30.05 93.45 24.88 0.51 0.59 0.67 2.2304
Sln. 5 10.07 2.88 39.45 0.83 4.08 13.43 29.59 87.15 26.23 0.52 0.61 0.74 2.2331

The scaled values of the parameters listed in Tables 3 and 4 must be tested to choose
the one with the lowest sensitivity, which is correlated with the CMOS implementation
given in the following section.

3.3. Approximation of the Fractional-Order Derivatives in the Laplace Domain

Lets us consider the fractional order chaotic system given by (10) [32]. The scaled
system has the parameters a = 0.35, b = 0.03, and c = 0.28; and its simulation with initial
conditions x0 = y0 = z0 = 0.1 produces amplitudes of the state variables within ±0.5,
as shown in Figure 5.

s0.8X(s) = a(Y(s)− X(s))
s0.8Y(s) = (c− a)X(s)− X(s)∗Z(s) + cY(s)
s0.9Z(s) = X(s) ∗Y(s)− bZ(s)

(10)

By describing (10), one can infer the use of amplifiers, adders, subtractors, and
multipliers. In addition, two fractional-order integrators are also necessary; they have
fractional-orders of 0.8 and 0.9, which can be approximated in the Laplace domain by
applying Charef’s method [46], so that (11) describes H1(s) = 1/s0.8 and (12) describes
H2(s) = 1/s0.9. These transfer functions are suitable to be designed in CMOS IC technology,
as shown in the following section.

H1(s) =
1

s0.8 ≈
5.3088(s + 0.1334)(s + 2.371)(s + 42.17)(s + 749.9)

(s + 0.01334)(s + 0.2371)(s + 4.217)(s + 74.99)(s + 1334)
(11)
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H2(s) =
1

s0.9 ≈
2.2675(s + 1.292)(s + 215.4)

(s + 0.01292)(s + 2.154)(s + 359.4)
(12)
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Figure 5. Portraits of the chaotic Chen system given in (10), by setting a = 0.35, b = 0.03, and c = 0.28,
and using initial conditions x0 = y0 = z0 = 0.1. (a) x-y, (b) x-z, (c) y-z, and (d) x-y-z planes.

4. CMOS Design of a Fractional-Order Chaotic System

This section shows the CMOS design of the fractional-order integrators to implement
Chen system given in (10) that was proposed by [32]. As shown above, in order to design
a CMOS IC, the coefficients are set to: a = 0.35, b = 0.03, and c = 0.28 to reduce the
amplitudes of the state variables to be within ±1 or lower. As observed in Figure 5,
the portraits show amplitudes of around ±0.5, good enough to design the fractional-order
Chen system using CMOS technology of 180nm from UMC. The first step of the design
process is the synthesis of the fractional-order integrators that have been proposed in [47]
and given in (11) and (12). Both fractional-order integrators can now be approximated
by using bi-quadratic and low-pass filters, which are shown in Figure 6a and Figure 6b,
respectively, and the topologies use operational transconductance amplifiers (OTAs). These
OTA-based filters are taken from [48], which have the transfer functions given in (13) for
the bi-quadratic filter, and (14) for the low-pass filter.

(a) Bi-quadratic filter. (b) Low-pass filter.

Figure 6. OTA-based active filters.
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Vo =

gm1gm2

C1C2
V1 + s

gm2

C2
V2 +

gb0gm2

C1C2
V3 + s2V4 + s

gb1

C2
V5

s2 +
gm2

C2
s +

gm1gm2

C1C2

(13)

Vo =
gm1/C

s + gm2/C
Vi (14)

The transfer function given in (11) approximates the fractional-order integrator
H1(s) = 1/s0.8. As the denominator is of order five, it can be separated into two functions
of second-order, and one of first-order. In this manner, (11) can be decomposed by the func-
tions given in the right-hand sides of (15)–(17), which are synthesized by the OTA-based
active filters as follows.

In (13), one can set V1 = V2 = 0 and V3 = V4 = V5 = Vi, so that the resulting
transfer function of the circuit shown in Figure 6a can be described by (15), which is
associated with the first second order transfer function taken from (11). If gb0 = gb1 =
500 µA/V, then C2 = gb1/2.50 = 200 µF and gm2 = 4.45C2 = 886 µA/V. Additionally,
C1 = gb0gm2/0.31C2 = 7.4 mF and gm1 = 0.99C1C2/gm2 = 1.58 mA/V.

H(s) =
s2 +

gb1

C2
s +

gb0gm2

C1C2

s2 +
gm2

C2
s +

gm1gm2

C1C2

=
s2 + 2.50s + 0.31
s2 + 4.45s + 0.99

(15)

The second quadratic function given in (16) is solved by also setting gb0 = gb1 =
500 µA/V, but now the circuit elements are evaluated as: C2 = gb1/792.07 = 631 nF and
gm2 = 1408.99C2 = 889.43 µA/V. Additionally, C1 = gb0gm2/31,623.28C2 = 22.27 µF and
gm1 = 100,036.66C1C2/gm2 = 1.58 mA/V.

H(s) =
s2 +

gb1

C2
s +

gb0gm2

C1C2

s2 +
gm2

C2
s +

gm1gm2

C1C2

=
s2 + 792.07s + 31,623.28

s2 + 1408.99s + 100,036.66
(16)

The first-order low-pass filter shown in Figure 6b, is used to synthesize (17). If
gm1 = 500 µA/V, the capacitor value will be C1 = gm1/5.30 = 94.33 µF, and therefore,
R1 = 1/0.01292C = 796 KΩ.

H(s) =
gm1C

s + gm2C
=

5.3088
s + 0.01334

(17)

To carry out the design of the fractional-order integrator described in (12), in which
H2(s) = 1/s0.9, the transfer function can be split into two functions, one of second-order
and one of first-order, as given in (18) and (19), respectively.

H2(s) =
s2 + 216.6920s + 278.2968
s2 + 361.5540s + 774.1476

(18)

H3(s) =
2.2675

s + 0.01292
(19)

From (18) and (13) and by setting again V1 = V2 = 0 and V3 = V4 = V5 = Vi,
one gets (20). If gb0 = gb1 = 500 µA/V, the capacitor and transconductance values are
obtained as: C2 = gb1/216.6920 = 2.3 µF and gm2 = 361.5540C2 = 830 µA/V; and
C1 = gb0gm2/278.2968C2 = 650 µF and gm1 = 774.1476C1C2/gm2 = 1.4 mA/V. In a
similar way, the low-pass filter shown in Figure 6b is synthesized by the circuit element
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values evaluated as: if gm1 = 500 µA/V, the capacitor value will be C1 = gm1/2.2675 =
220 µF, and therefore, R1 = 1/0.01292C = 350 KΩ.

H2(s) =
s2 +

gb1

C2
s +

gb0gm2

C1C2

s2 +
gm2

C2
s +

gm1gm2

C1C2

=
s2 + 216.6920s + 278.2968
s2 + 361.5540s + 774.1476

(20)

Figure 7 shows the gain and phase behaviors of the approximated fractional order
integrators of orders 0.8 and 0.9, and the responses are compared with MatLab simulations
of (11) and (12), which show very low error, so that the OTA-based designs are suitable to
perform the CMOS design of the fractional-order system given in (10).
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Figure 7. Frequency responses of the two fractional-order integrators considering ideal transfer
function approximation in MatLabTM and HSPICETM simulation using CMOS transistor models.
(a) Gain and (b) phase of the fractional-order 0.8, and (c) fain and (d) phase of the fractional-order 0.9.

To complete the CMOS design of (10), the need for designing two two-input adders and
one three-input adder can be inferred; these are shown in Figure 8 using OTAs. To explain
how these adders work, let us consider the adder in Figure 8a: the output of this adder
must be equal to x = ay− ax, so that y is connected to the positive input of the OTA gma
and the variable x to the negative input of the OTA gmb. However, these OTAs must scale
the values of the variables y and x by a = 0.35. Therefore: if gmc is equal to 500 µA/V, then
gma and gmb should be equal to 175 µA/V. A similar analysis should be performed for
the other adders. It is important to mention that one of the most important characteristics
of an OTA to design these adders and active filters is its transconductance (gm) value.
In this work, the designed OTA is shown in Figure 9. This topology allows controlling the
value of the transconductance through the resistances in the sources of the MOS transistors,
i.e., those forming the differential pair. The Rs can be designed with MOS transistors,
as detailed in [33]. Table 5 shows the electrical characteristics for different gm values of the
OTA that is used for the design of the CMOS fractional-order chaotic system. Figure 10
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shows the layout of the OTA providing gm = 500 µA/V, and Figure 11 shows the layout of
the fractional-order integrator of 0.9.

The convolutions given in (10) (X(s) ∗Y(s) and X(s) ∗ Z(s)) were implemented using
a four-quadrant multiplier, as the one already given in [49]. As a result, the attractors of
the CMOS design of the fractional-order chaotic system given in (10), and using CMOS
technology of 180nm are shown in Figure 12.

(a) 1st Adder (b) 2nd Adder (c) 3th Adder

Figure 8. OTA adders.

Figure 9. One-Stage OTA.

Table 5. Electrical characteristics and feasible W/L sizes of the OTA shown in Figure 9.

gm (µA/V) 50 200 500 830 890 1400 1500 3000
FoMs 1500 1504 1469 1269 1284 1251 1236 1398

DCGain (dB) 80 80.2 80.1 75.8 76.2 71 73 60
Power dissipation (µW) 36 37.8 93.6 171 174.6 288 297 540

CMRR (dB) 115 117 110 103 105 106 109 93
GBW (MHz) 15 15.84 38.27 60.29 62.3 99 102 209

PM (◦) 68 68 61 62 62 52 52 55
PSRR+ (dB) 102 105 100 97 97 80 80 74
PSRR− (dB) 79 81 81 77 77 75 75 61
SR+ (V/µs) 5 5 11 34 34 33 33 74
SR- (V/µs) 5 5 13 13 14 31 31 49
Vmax (V) 0.59 0.59 0.62 0.63 0.63 0.62 0.62 0.6
Vmin (V) −0.5 −0.5 −0.55 −0.56 −0.55 −0.58 −0.58 −0.6

W1 [M1,M2] (µm) 27.9 30.42 49.32 81.81 81.81 90 90 261
W2 [M3a-M3d,M12-M15] (µm) 7.29 7.29 10.08 9.54 9.54 18.9 18.9 37.8

W3 [M4-M11] (µm) 18.27 18.2 7 23.22 36.99 36.99 27.9 27.9 31.5
W4 [Mn1-Mn4] (µm) 9.45 9.45 15.3 90 90 90 90 189

L1 [M1,M2] (µm) 1.08 1.08 0.72 0.81 0.81 0.81 0.81 0.54
L2 [M3a-M3d,M12-M15] (µm) 1.8 1.8 1.62 0.99 0.99 0.99 0.99 0.9

L3 [M4-M11] (µm) 0.9 1.17 0.9 0.72 0.72 0.72 0.72 0.18
L4 [Mn1-Mn4] (µm) 0.27 0.27 0.18 1.53 1.53 0.18 0.18 0.18

Ib (µA) 20 21 52 95 97 160 165 300
Vc (V) 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.9
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Figure 10. Layout of the OTA providing gm = 500 µA/V.

Figure 11. Layout of the fractional-order integrator of 0.9.
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(a) x vs. z

(b) x vs. y

(c) y vs. z

Figure 12. Phase portraits of the CMOS OTA-based fractional-order chaotic system given in (10)
and using CMOS technology of 180 nm.

5. Discussion of Results

As shown in the previous sections, the IC design of fractional-order chaotic systems by
using CMOS technology can be performed through the optimization of the mathematical
model by metaheuristics. The design process can then be performed considering three
major levels of abstraction; each one can be considered as a challenge to develop EDA
tools. The highest level has been highlighted in Section 2, describing the adaptation of an
optimization algorithm to optimize fractional-order chaotic systems from the mathematical
model, in order to maximize dynamical characteristics, such as Lyapunov spectrum and
Kaplan–Yorke dimensions. It has been appreciated that in this level of abstraction, the am-
plitudes of the state variables of a mathematical model can have large values, higher than
those supported by a CMOS design, which in this case the CMOS technology of 180 nm
leads us to scale the mathematical model to provide amplitudes within ±1 or lower.

Optimizing the mathematical model of a fractional-order system, as for the ones given
in (3) and (4), includes varying the values of the orders of the derivatives, which are higher
than zero but lower than one. More case studies are already given in recent works and
in the book [1], where one can find a summary on the single, multi, and many-objective
optimization algorithms applied to chaotic systems of integer and fractional-order. One
can also associate this optimization process with the system level when considering the
design of electronic systems, as described in [2].
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The second level of abstraction proposed in this work is described in Section 3, which
highlights the block description of a mathematical model, and the particular interest is the
approximation of the fractional-order derivatives in the Laplace domain. This is not a trivial
task, so several authors have been introduced different methods to perform the rational
approximations of arbitrary order, as recently done in [50], where the authors summarize
several rational approximations of arbitrary order for differentiators and integrators in the
frequency domain. Basically, similar works that introduce methods to approximate and
arbitrary order, use the basic definitions already given by Riemann–Liouville, Grünwald–
Letnikov and Caputo. One can think on the exactness of each method along with their
advantages and disadvantages, since each method approximates the arbitrary order with
polynomials of high order, thereby generating different errors. Some authors also introduce
methods to reduce the polynomial orders; those methods are known as model-order-
reduction (MOR) ones and are quite suitable in the design of very large scale integration
(VLSI) systems, as shown in [51]. In fact, MOR techniques reduce the complexity of VLSI
designs, paving the way to higher operating speeds and smaller feature sizes. In this
paper, the fractional-orders of the derivatives, i.e., 0.8 and 0.9, were approximated by
applying Charef’s method [46]. Those transfer functions are different from the ones that
can be obtained applying other methods to approximate an arbitrary order, as detailed
in [50]. In the case of approximating an arbitrary order in the Laplace domain, higher-order
polynomials can be reduced to have third or even second order, by allowing an increase
in the error. This is still a challenge focused on the reduction of the polynomial order and
generating low error in the band of interest.

The third level of abstraction described herein is oriented to the design of a fractional-
order chaotic system using CMOS technology. In this manner, the transfer functions
approximating the fractional-order derivatives are implemented using topologies of active
filters, and due to the exactness and reduced numbers of transistors, filters, adders, and
subtractors, were designed using OTAs, as detailed in Section 4. The first design step
consists of scaling the amplitudes of the state variable to be within ±1 Volt or lower,
as required by the CMOS IC technology of 180 nm. The next step is identifying the
operations such as addition, subtraction, and multiplication, which can be designed using
CMOS technology, and in some cases OTAs. The rational approximations of arbitrary
order can then be designed using active filters, but the challenge is for the decomposition
of higher-order polynomials to have second-order and first-order polynomials that can
be associated with bi-quadratic and single pole/zero filters. The task of dealing with
high-order polynomials can be solved by performing a partial fraction expansion, as shown
in [52]. The transfer functions can also be implemented using FPAAs, as shown in [53].

Once a CMOS design is verified at the transistor level of abstraction, one can proceed
to generate the layout [10,12], for which another problem in VLSI design is the placement
and routing of the designed blocks [5,6,13]. Recall that the first integrated chaotic system
was introduced three decades ago [25], so that the layout was not as complex as for VLSI
circuits. Therefore, the authors conclude that working with these three levels of abstraction
makes possible the design of CMOS ICs for fractional-order chaotic systems.

6. Conclusions

The electronic implementation of fractional-order chaotic systems can be performed
by using commercially available devices, FPAAs, FPGAs, and microcontrollers. However,
for low power and wireless applications, they are not as suitable as a CMOS IC, the design
of which is not a trivial task. In this manner, this work proposed the design of CMOS
fractional-order chaotic systems performing three main tasks, associated with three levels
of abstraction. The first one, the high-level, was oriented to optimizing the mathematical
model to guarantee chaotic behavior, which was verified evaluating the Fourier transform
of the chaotic time series. In this level of abstraction, the coefficients and orders of the
derivatives were varied to maximize the dynamical characteristics DKY. As one can infer,
this task can be performed using other metaheuristics to optimize a mathematical model.
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The second level of abstraction was focused on the block description of a mathematical
model, in which the arbitrary order of each of the derivatives was approximated in the
Laplace domain. The challenge is still guaranteeing chaotic behavior during the approxi-
mation of the fractional-orders, since a slight error may mitigate chaotic behavior, and this
influences the CMOS design of the chaotic system. Another important issue is the scaling
process of the mathematical model to have amplitudes of the state variables within ranges
that can be suitable for CMOS design. In this work, the amplitudes of the state variables of
Chen and Liu systems were scaled to have values in the range lower than ±1.

From the block description and Laplace approximation of the arbitrary orders, one can
go to the third level proposed herein, the CMOS design, and layout generation. The case
study was designed using OTAs, but one can think of using other active devices and also
other active filter topologies. These could lead to designing robust CMOS chaotic systems
that can support process and temperature variations. Finally, it was discussed that the
layout generation is a challenge for sensitive systems, as for the chaotic ones.

The phase portraits of the CMOS fractional-order Chen system shown in Figure 12 are
in good agreement with the theoretical results. One can also perform variation analyses as
already done in [33]. Finally, from the results of the CMOS design, one can conclude on the
suitability of performing the three levels of abstraction, which can lead to the development
of EDA tools for chaotic systems.
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