
Citation: Zhang, X.; Tang, S.; Li, T.;

Li, X.; Wang, C. GFRX: A New

Lightweight Block Cipher for

Resource-Constrained IoT Nodes.

Electronics 2023, 12, 405.

https://doi.org/10.3390/

electronics12020405

Academic Editor: Elif Bilge Kavun

Received: 30 November 2022

Revised: 7 January 2023

Accepted: 10 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

GFRX: A New Lightweight Block Cipher for
Resource-Constrained IoT Nodes
Xing Zhang 1 , Shaoyu Tang 1, Tianning Li 2, Xiaowei Li 1 and Changda Wang 1,*

1 School of Computer Science & Communication Engineering, Jiangsu University, Zhenjiang 212013, China
2 School of Electrical & Information Engineering, Jiangsu University, Zhenjiang 212013, China
* Correspondence: changda@ujs.edu.cn

Abstract: The study of lightweight block ciphers has been a “hot topic”. As one of the main structures
of block ciphers, the Feistel structure has attracted much attention. However, the traditional Feistel
structure cipher changes only half of the plaintext in an iterative round, resulting in slow diffusion.
Therefore, more encryption rounds are required to ensure security. To address this issue, a new
algorithm, GFRX, is proposed, which combines a generalized Feistel structure and ARX (Addition
or AND, Rotation, XOR). The GFRX algorithm uses an ARX structure with different non-linear
components to deal with all the branches of a generalized Feistel structure so that it can achieve a
better diffusion effect in fewer rounds. The results of a security analysis of the GFRX algorithm show
that the effective differential attacks do not exceed 19 rounds and that the effective linear attacks do
not exceed 13 rounds. Therefore, the GFRX algorithm has an adequate security level for differential
and linear analysis. Avalanche test results obtained for the GFRX algorithm show that the GFRX
algorithm has strong diffusion and only takes six rounds to meet the avalanche effect. In addition,
the GFRX algorithm can achieve different serialization levels depending on different hardware
resource requirements and can achieve full serialization, which ensures operational flexibility in
resource-constrained environments.

Keywords: lightweight block cipher; generalized Feistel structure; ARX; serialization implementation

1. Introduction

With the development of the Internet of Things (IoT), the number of IoT devices
has increased very rapidly. Information interaction based on identification technology,
pervasive computing and edge computing [1] is the core of the IoT, in which IoT nodes are
the medium of information interaction. IoT nodes collect data by sensing external changes
and sending the collected data to a data analysis center. At present, IoT nodes, such as
RFID tags and sensors, are widely used in manufacturing, smart cities, defence and military
applications, public security and other fields. Generally, data collected by IoT nodes
are highly confidential; hence, it is particularly important to ensure the security of data
transmission and storage [2–4]. Therefore, with respect to the special requirements of the
IoT, a dedicated encryption algorithm is urgently needed for data storage and transmission
in the perception layer of the IoT.

Common IoT nodes consist of various sensors, such as pressure sensors, temperature
sensors, humidity sensors and smoke sensors. The sensors perceive external changes
and generate analog signals. To prevent data leakage or tampering, it is necessary to
deploy a lightweight encryption chip inside the sensor node. When the sensor generates
an analog signal, a compatible A/D converter is needed to convert the analog signal
into digital form as input to an encrypted chip. Based on the cryptographic functions
coded inside the chip, the sensed data is encrypted and then transmitted to the cloud
server through a data-analysis center for storage. Authorized users can only access the
encrypted data subsequently from the cloud server through the cloud service provider.

Electronics 2023, 12, 405. https://doi.org/10.3390/electronics12020405 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12020405
https://doi.org/10.3390/electronics12020405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7883-9258
https://orcid.org/0000-0002-9653-1476
https://doi.org/10.3390/electronics12020405
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12020405?type=check_update&version=2

Electronics 2023, 12, 405 2 of 16

The specific process is shown in Figure 1. However, IoT nodes are usually small embedded
devices, which have relatively limited computing power and storage space. It is noteworthy
that traditional encryption algorithms, such as AES (Advanced Encryption Standard) [5]
and IDEA (International Data Encryption Algorithm) [6], are not suitable for resource-
constrained devices. Therefore, a lightweight cryptographic algorithm is essential for
IoT nodes.

ADC GFRX

Encrypted

Data

Data Analytics

Center

Could Server
Could Service

Provider

Authorized

Applications

Manufacturing

Smart Cities

Public Security

Sensor

Data

Perception

Sensed Data

External

Environment

Temperature SmokeHumidityPressure Water Level DistanceDip Angle

Figure 1. The process of sensor information acquisition.

In recent years, many excellent lightweight cryptographic algorithms have emerged.
These algorithms can be roughly divided into four types of structures [7]: SPN (substitution
permutation networks), Feistel, ARX and a mixture of these. Lightweight block cipher
algorithms, such as PRESENT [8], GIFT [9], Loong [10] and ILEA [11], are all based on the
SPN structure. The SPN structure usually uses S-boxes as the only non-linear component,
but the hardware implementation is complicated. For resource-constrained IoT devices,
implementing algorithms with an SPN structure requires significant overhead. In contrast,
algorithms with a Feistel structure use the same components for both encryption and
decryption, thus consuming fewer resources. These algorithms are more suitable for
resource-constrained environments. Cryptographic algorithms based on ARX exhibit non-
linearity, diffusion and confusion through a combination of Addition or AND, Rotation and
XOR. The simple structure of ARX makes it ideal for lightweight block ciphers. However,
due to the particular features of ARX (Addition or AND, Rotation, XOR) operations, its
round function can only be based on a Feistel structure or a generalized Feistel structure,
otherwise, the decryption process cannot be completed correctly [12].

Traditional Feistel structures divide a plaintext source into two halves and apply a
round function to half of the state before adding the result to the other half. The algorithm
based on the Feistel structure is symmetrical and easily implemented in hardware and
software. Without needing a specially designed decryption function, this kind of algorithm
saves half of the hardware implementation design. However, generally, traditional Feistel
structures do not have a good diffusion effect because they only process half the data in
each round. Consequently, more rounds are required to ensure security.

A generalized Feistel structure [13] divides the input into k(k ≥ 2) sub-blocks and
potentially applies different F functions to each sub-block. Compared with a traditional
Feistel structure, the diffusion effect of the generalized Feistel structure is slightly improved,
but still cannot reach an ideal diffusion effect. Therefore, a new logical combination of a
generalized Feistel structure and an ARX operation is proposed to enhance the diffusion
speed, reduce iteration rounds and improve hardware performance. The main contributions
of this paper are as follows:

1. To improve the diffusion effect of the traditional Feistel structure, a new variant of
the generalized Feistel structure GFRX is proposed. In GFRX, two ARX structures

Electronics 2023, 12, 405 3 of 16

with different linear components are used to deal with all branches of the generalized
Feistel structure to enhance diffusion and confusion.

2. To reduce the cost of hardware implementation, the decryption process of the proposed
GFRX is similar to its encryption process, so significant additional resources are not
required. Meanwhile, the encryption structure is reused in the key extension to
minimize the additional resource consumption.

3. To improve the flexibility and efficiency of hardware implementation, different levels
of serialization implementation are proposed to ensure efficiency under different
hardware and throughput requirements.

The remainder of this paper is organized as follows: In Section 2, related studies are
reviewed. In Section 3, we describe the specific details of the GFRX algorithm. In Section 4,
the security of the GFRX algorithm is analyzed. In Section 5, we present performance
results for the GFRX algorithm. Finally, we conclude the paper in Section 6.

2. Related Work

Lightweight block ciphers with a Feistel structure that have been proposed in recent
years show excellent performance. SLIM [14] adopts a traditional Feistel structure and uses
4× 4 S-boxes as non-linear components in the round function, which results in high security
and excellent hardware performance. SAND [15] uses a combination of traditional Feistel
and ARX structures, with a novel design method. The core idea of SAND is to limit the
AND-RX operations to half bytes. Therefore, SAND enables equivalent representation
based on a 4× 8 synthetic S-box (SSb) in the security analysis, which greatly reduces the
complexity of security analysis and results in strong software performance. However,
the traditional Feistel structure makes the diffusion effect worse. Therefore, to address the
diffusion effect, SLIM32/64 encrypts 32 rounds, while SAND64/128 encrypts 54 rounds.
The high number of iterative rounds will inevitably lead to huge energy consumption.

Two methods have been introduced to improve the diffusion effect of the traditional
Feistel structure. One uses complex round functions, such as in MIBS [16], µ2 [17] and
LiCi [18]. MIBS uses a complete SPN structure in the round function. Although strong
diffusion is obtained, it offer an advantages in terms of hardware consumption. The round
function of µ2 uses a four-round ultra-lightweight cipher for higher security, but its hard-
ware implementation is more complicated. LiCi uses the SPN structure directly on the
branch of the Feistel structure. Therefore, its encrypted branch looks like an independent
SPN structure. However, this design method destroys the consistency of encryption and
decryption for the Feistel structure, which requires an independent decryption module.
Another approach uses the generalized Feistel structure constructed from the structure itself
to improve the diffusion effect. Piccolo [19] uses a four-branch generalized Feistel structure
with a more complex arrangement for the diffusion layers. TWINE [20] is a generalized
Feistel structure encryption algorithm with 16 branches. The plaintext is divided into more
sub-blocks in the encryption and the round function is used for the key extension. QTL [21]
uses a four-branch generalized Feistel structure to process all branches in one round of
encryption, which produces a very fast diffusion rate. However, to reduce the hardware
cost, the QTL does not have a key extension function. This means that the same key is used
in multiple iterations of the QTL, which makes the algorithm less resistant to standard
statistical attacks. Shadow [12] is constructed of a combination of generalized Feistel and
ARX structures, which enhances the diffusion of traditional Feistel structures. However,
the key extension of the Shadow requires a lot of resources, which means that it offers no
significant advantage in terms of hardware implementation. Therefore, hardware consump-
tion should be reduced while improving the diffusion effect, especially in processing key
extensions, which is addressed in this paper.

3. Specification of the GFRX

The proposed GFRX is based on a generalized Feistel structure with four branches.
It supports seven combinations of plaintext length ranging from 64 to 128 bits and key

Electronics 2023, 12, 405 4 of 16

lengths ranging from 96 to 256 bits. The available block size, key size and corresponding
rounds are shown in Table 1.

Table 1. Rounds of different block size.

Block Size
Key Size

96 128 144 192 256

64 26 27 - - -

96 28 - 29 - -

128 - 32 - 33 34
- : Rounds do not exist, no such combination of block size and key size.

3.1. Encryption

In this algorithm, the ARX structure is used as a round function of a generalized Feistel
structure, which makes the encryption more efficient in hardware, and ensures its diffusion
and confusion. The GFRX algorithm includes four main operations: AND, ADD, Rotation
and XOR. The structure of the proposed GFRX algorithm is shown in Figure 2.

...

...

T
he first roun

d

Plaintext

AN
F

0
L

AN
F

1
L

0
R

1
R

0

0
K

0

2
K

ADL
F

 ADR
F0

1
K

T
he last rou

nd

AN
F

AN
F

1

0

nK − 1

2

nK −

ADL
F

 ADR
F1

1

nK −

Ciphertext

Figure 2. The overall structure of the GFRX algorithm.

In the encryption process, the plaintext block is divided into four sub-blocks of the
same size. With the help of the primary key, the ciphertext is generated through multiple
iterations. The GFRX algorithm uses two different round functions, which are based on

Electronics 2023, 12, 405 5 of 16

the ARX structure with different non-linear components. According to the difference
between the non-linear components AND and ADD in the ARX structure, these two round
functions are represented as FAN and FAD, respectively. Moreover, FAD is divided into
FADL and FADR. In a round of encryption, half of the branches are processed by the FAN
function and the rest are processed by the FAD function. Then, a branch replacement
operation is required. Branch replacement means that the branches processed by FAN
in the current round will be processed by FAD in the next round instead. This method
ensures that the ARX structure with two different non-linear components is fully used in
the whole encryption process, which greatly improves the security and diffusion speed of
the algorithm. The GFRX algorithm is shown as follows:

Li+1
0 = FADL(Li

1, Ri
0)⊕ Ki

1,

Li+1
1 = FAN(Ri

0)⊕ Ri
1 ⊕ Ki

2,

Ri+1
0 = FAN(Li

1)⊕ Li
0 ⊕ Ki

0,

Ri+1
1 = FADR(Li+1

0 , Ri
0).

(1)

The FAN function is shown in Figure 3, referring to Equation (2).

FAN(X) = (X≪ a)&(X≪ b)⊕ (X≪ c). (2)

&

x a x cx b

X

Y

Figure 3. The flow of FAN function.

As shown in Figure 4, function FADL is on the left and FADR is on the right. Functions
FADL and FADR are separated from function FAD and their relationship is represented by
Equation (3):

FADL(X, Y) = (X≫ d)�Y,

FADR(Z, Y) = (Y≪ e)⊕ Z,

FAD(X, Y) = FADR(FADL(X, Y), Y),

(3)

Electronics 2023, 12, 405 6 of 16

where a, b, c, d, e in the above equation are called shift parameters; � indicates addition
modulo 2n.The pseudo-code of the GFRX encryption process is shown in Algorithm 1.

x d x e

X Y Y

Z

Z

C
Figure 4. The flow of FADL and FADR.

Algorithm 1 GFRX Encryption.
Input: Plaintext, key
Output: Ciphertext
1: (L0, L1, R0, R1)← Plaintext
2: for r=1 to RN do
3: state0 = (L1(≪1)&L1(≪8))⊕ L0 ⊕ L1(≪2) ⊕ keyr

0
4: state1 = (L1(≫8) + R0)⊕ keyr

1
5: state2 = R0(≪3) ⊕ state1
6: state3 = (R0(≪1)&R0(≪8))⊕ R1 ⊕ R0(≪2) ⊕ keyr

2

7: L
′
0 = state1

8: L
′
1 = state3

9: R
′
0 = state0

10: R
′
1 = state2

11: return Ciphertext← (L
′
0, L

′
1, R

′
0, R

′
1)

In the final step of each encryption, a branch replacement operation is required.
The process of branch replacement is shown in Figure 5. Before the branch replacement,
the X is x0‖x1‖x2‖x3; after the replacement it is x1‖x3‖x0‖x2.

Electronics 2023, 12, 405 7 of 16

0x 1x 2x 3x

0x1x 2x3x

Figure 5. The process of branch replacement.

3.2. Key Extension

To reduce the hardware consumption of the key extension as much as possible,
the round function in GFRX is reused to generate the required key. Specifically, FAN
is used to generate the Ki

1 in function FAD, while FAD is used to generate key Ki
0 and Ki

2
required for function FAN . Each round of GFRX requires three subkeys. The length of
the subkey is the same as the GFRX branch n. The subkey required for the first round is
obtained directly from the primary key. The subkeys required for the remaining rounds
are generated by key extension. During the key extension, the input key K is first cycli-
cally shifted left by n ∗ 3/2 bits and subsequently divided into m parts of length n. Then,
the m parts are divided into two blocks. Consequently, the key K can be expressed as
(klm/2−1

‖ · · · ‖kl0)‖(krm/2−1‖ · · · ‖kr0). Finally, the corresponding operation is used to pro-
cess K to generate the three subkeys required in the round. The details of the key extension
can be expressed by Equation (4):

kl1 = ((kl1 ≫ d)� kl0)⊕ c⊕ zi,

kl0 = (kl0 ≪ e)⊕ kl1 ,

kr0 = FAN(kr1)⊕ kr0 ⊕ c⊕ zi,

(4)

where c is a constant, i.e., c = 2n − 4; zi is the ith bit of the m-sequence z. The m-sequence z
with period 31 can be generated by the primitive polynomial x5 + x2 + 1 with the initial state
(1, 1, 1, 1, 1) of LFSR. When the round number is larger than 31, the sequence repeats itself.
In contrast to the encryption when the round function is used in the key extension, constant
c and m-sequence zi are used to replace part of the key that was originally introduced to
the round function.

Using this design method to generate round keys has two advantages. One is that
the possibility of generating weak keys is avoided by using a complex round function.
The other is that the hardware consumption is effectively reduced during the key exten-
sion so the round function does not need to rebuild new components. However, this
method has its drawbacks. In each round of encryption, the round key is generated by
the round function at first, then transferred to the round function to complete the whole
process. This serial process inevitably reduces the throughput of the encryption algorithm.
Lightweight encryption algorithms are usually used in harsh hardware environments with
low throughput requirements. Therefore, it is feasible to sacrifice some throughput to
reduce hardware consumption.

3.3. Decryption

The decryption process of the GFRX algorithm is similar to its encryption. Assuming
that the algorithm is partially symmetric in the FAN function with a reusable component,
this means that the decryption can be performed by directly reusing the encryption structure
of the FAN function when decrypting to the part. Therefore, the decryption process of the
GFRX algorithm only needs to be equipped with inverse functions of the FADL and FADR,

Electronics 2023, 12, 405 8 of 16

which does not need many additional resources. The corresponding inverse functions F−ADL
and F−ADR are shown in Equation (5):

F−ADL(X, Y) = (X�Y)≪ d,

F−ADR(X, Y) = (X⊕Y)≫ e,
(5)

where � indicates the reduction modulo 2n. One round of the GFRX decryption process
is shown in Figure 6. It should be noted that the order of using the round keys in the
decryption process is reversed.

0

iL
1

iL
0

iR
1

iR

1

iK ADR
F −

ADL
F −

0

iK AN
F

AN
F 2

iK

1

0

iL− 1

1

iL− 1

0

iR − 1

1

iR −

Figure 6. The i-th round decryption process of the GFRX algorithm

4. Security Analysis

In the encryption of the GFRX algorithm, branches affected by FAN in the current
round are processed by FAD in the next round through branch replacement. The GFRX
algorithm can be classified into a CFB [22] encryption mode. In each round, the encryption
result of one branch is XOR, with the other used to obtain the ciphertext.The ciphertext
obtained in the previous round will be encrypted again in the next round, where the
result will be XOR with the plaintext. The two ARX structures with different non-linear
components can be used by all branches in the whole encryption process through branch
replacement. The CFB mode makes each ciphertext block depend on all previous plaintext
blocks. Even if the data of a ciphertext block is cracked, it is difficult to crack other data
blocks by the same method, which greatly improves the algorithm’s security.

Differential analysis [23] and linear analysis [24] of cryptography algorithms are
effective attacks against iterative block ciphers. Any block cipher should be tested by both
differential analysis and linear analysis.

Electronics 2023, 12, 405 9 of 16

4.1. Overall Structure Analysis

The proposed GFRX algorithm is based on a generalized Feistel structure, which
is widely used in block ciphers and has good structural security [25]. In terms of en-
cryption, GFRX uses the CFB encryption mode slightly differently from traditional CFB.
The difference is that in the CFB mode of GFRX, the encryption function of each round is dif-
ferent. In terms of core components, the non-linear components of GFRX are implemented
through the ARX structure, which also appears in SIMON and SPECK [26]. In recent years,
a large number of studies has demonstrated that the components used by the SIMON and
SPECK algorithms are sufficiently secure [27–29]. Therefore, the GFRX algorithm with a
generalized Feistel and ARX structure can ensure adequate security.

4.2. Differential and Linear Analysis

The GFRX algorithm is divided into left and right, represented by GFRXL and GFRXR,
respectively. Since the left and right parts of GFRX use non-linear components which are
similar to those of SIMON, whose security has mainly been investigated through differential
and linear analysis, differential and linear analysis of the GFRX algorithm can utilize the
analysis results for the existing SIMON algorithm.

In addition, in the encryption process of GFRX64/128, the branch replacement causes
the left and right parts to interact with each other, making it more resistant to differential
and linear analysis than the two independent GFRX32/64.

Taking GFRX64/128 as an example, GFRX64/128 can be divided into mutually inde-
pendent GFRXL32/64 and GFRXR32/64. The GFRX64/128, which is resistant to differen-
tial and linear analysis, can be evaluated with the two independent GFRX32/64. Compared
to SIMON32/64, GFRX32/64 has higher security with no unprocessed branches in each
round of encryption. The evaluation of differential and linear security depends on the avail-
ability of efficient differential and linear trails. The authors of [30] proposed a technique
for automatically searching the differential trails in ARX ciphers, called threshold search.
The threshold search screens the differentials in the DTT (differential distribution table)
and keeps those differentials whose probability is higher than a fixed probability threshold
to form the partial DDT (pDDT). The authors of [31] improved the threshold search algo-
rithm and divided the pDDT more finely to form a primary pDDT and a secondary pDDT.
Subsequently, [31] used the improved threshold search algorithm to obtain the 13-round
effective differential trails of SIMON32/64. On this basis, it was extended for six rounds
and 19 rounds of attacks were carried out on SIMON32/64 using differential analysis with
a time complexity of 234 and a data complexity of 231. Most of the subsequent differen-
tial analyses for SIMON32/64 have been extended from the known 13-round differential
trails. By reducing the complexity, more rounds can be used to attack SIMON32/64. In
other words, the continuous differential trails for GFRX32/64 do not exceed 13 rounds,
and the effective differential attacks do not exceed 19 rounds, which means that a complete
GFRX64/128 is secure against differential analysis. Similarly, the effective linear trails of 11
rounds for SIMON32/64 are presented in [29]. Then, in [32], the result is extended by two
rounds and uses linear analysis with the data complexity of 232 to attack SIMON32/64 for
13 rounds. Thus, the continuous linear trails for GFRX32/64 do not exceed 11 rounds and
the effective linear attacks do not exceed 13 rounds. The entire round of GFRX64/128 can
withstand linear analysis.

5. Performance Evaluation
5.1. Avalanche Effect

The avalanche effect is an ideal property in cryptography. A good encryption algorithm
must satisfy the avalanche effect. In a cryptographic algorithm, the avalanche effect can be
defined as: when the plaintext changes by 1 bit, the ciphertext changes by about half. The
average avalanche range is equal to the average value of the avalanche range on all bits.
If an encryption algorithm satisfies the avalanche effect in a few rounds, it is considered

Electronics 2023, 12, 405 10 of 16

that its diffusion speed is fast. The avalanche effect test procedure for the GFRX algorithm
is shown as follows:

1. A set of keys K is fixed randomly, then a set of plaintexts P is selected randomly.
2. After encryption, the initial ciphertext C is obtained.
3. The first bit of the plaintext is reversed and the rest of the bits remain unchanged; then

the algorithm is input together with the key.
4. After encryption, the ciphertext C0 is obtained.
5. The Hamming weight of C ⊕ C0 represents the avalanche degree of the first bit in

the plaintext.
6. Repeat the above steps to find the avalanche degree on all bits of P.
7. Repeat the preceding steps 1000 times. Each time, P is random and K is the initial

fixed key.

After the above steps, 1000 sets of avalanche data are obtained. Then, the average
avalanche degree of each bit in the GFRX algorithm is accumulated with the average value.
The standard deviation is calculated as the average uncertainty of each bit in the GFRX
algorithm. Taking GFRX64/128 as an example, its average effect is shown in Figure 7.
The results of using the same method to test the avalanche effects of SIMON and SPECK
are shown in Figure 8 and Figure 9, respectively. From the figures, the average avalanche
degree for each bit of the above algorithms and the fluctuation range of data in the whole
avalanche process can be seen.

In the test of the avalanche effect of the above ciphers, error bars are used to indicate the
uncertainty of the measured data. The error bar is a line segment drawn along the direction
that indicates the size of the measured value with the measured arithmetic mean as the
midpoint. Half of the line segment length is equal to the uncertainty. The uncertainty reflects
the degree of fluctuation in the diffusion process. The smaller the uncertainty, the more
stable the algorithm is in the diffusion process. Table 2 shows the specific performance of
the SIMON, SPECK and GFRX algorithms on the avalanche effect. In general, the closer
the average avalanche of an algorithm is to half the length of the plaintext, the better its
diffusion performance is. Correspondingly, the less uncertain the algorithm, the more
stable the diffusion.

Figure 7. The average avalanche degree of GFRX64/128.

Electronics 2023, 12, 405 11 of 16

Figure 8. The average avalanche degree of SIMON64/128.

Figure 9. The average avalanche degree of SPECK64/128.

Table 2. Comparison of avalanche effect among structural algorithms.

Algorithm Block Size Key Size Average
Avalanche

Average
Uncertainty

Avalanche
Threshold

SIMON 64 128 31.970015 3.996816 12

SPECK 64 128 32.013781 4.000526 8

GFRX 64 128 32.005156 4.010121 6

It can be seen from Table 2 that the average avalanche degree of SIMON is less than
32 and the corresponding uncertainty is less than four. Meanwhile, the average avalanche

Electronics 2023, 12, 405 12 of 16

degree of SPECK is greater than 32 and the corresponding uncertainty is greater than four.
The average avalanche degree of the GFRX algorithm is closest to 32 with the uncertainty
slightly higher than four. The last column in Table 2 reflects the number of critical rounds
to achieve the avalanche effect, which means that the lower the number of critical rounds,
the faster the data will diffuse during the encryption. The minimum number of rounds
for GFRX to achieve the avalanche effect is six. Thus, the GFRX algorithm exhibits a good
avalanche effect.

5.2. Hardware Implementation

The GFRX algorithm uses a mixture of a generalized Feistel structure and an ARX
structure. Compared with lightweight block ciphers using S-box, this algorithm improves
the limitations of S-box in hardware implementation. It enables flexible serialization
and achieves full serialization. The GFRX algorithm can be implemented with different
serialization levels depending on the platforms’ hardware requirements and different
throughput requirements. Thus, this algorithm ensures efficient hardware implementation
on different platforms. The serial architecture of GFRX used in the encryption module only
is shown in Figure 10. In the figure, P1, P2, P3 and P4 represent the four branches of the
initial data to be encrypted. In encryption, the combination of branches is controlled by
4-to-1 multiplexers.

P2 P3 Reg_0

Mux 4 to 1

R
O

L
 8

&
 ⊕

P1 P4 Reg_1

Mux 4 to 1

R
O

L
 1

R
O

L
 2

⊕ ⊕

R
O

L
 3

R
O

R
8

+ ⊕ ⊕

Mux 4 to 1

K0 K1 K2

⊕

Ciphertext

K3

Figure 10. The serial architecture of the GFRX algorithm.

The performance of an encryption algorithm in hardware can be implemented by
FPGA [33], and measured according to the required slice. Alternatively, it can be imple-
mented by ASIC [34] and evaluated by the equivalent gate circuit GE. This section evaluates
the specific GFRX64/128 in the above two ways. The results show that when encryption
is implemented once per clock cycle on the FPGA Xilinx virtex-5 LX50T, the throughput
is 246.15 Kbps with a hardware consumption of 4504 slices for 27 rounds of encryption

Electronics 2023, 12, 405 13 of 16

at a clock frequency of 100 kHz. Under the ASIC IBM130nm-8RF standard, the hard-
ware consumption of a fully serialized GFRX algorithm is only 886.25 GE, while that of
PRESENT64/128 [35] is 1886 GE. Therefore, it can be concluded that the GFRX algorithm is
more suitable for use in resource-constrained environments.

5.2.1. FPGA Implementation

The GFRX64/128 algorithm is implemented by FPGA and the GFRX comprehensive
download performance is analyzed by ISE14.7. Figure 11 shows a direct screenshot of the
slices occupancy experimental data downloaded to the FPGA for the algorithm.

Figure 11. Implementation of the GFRX algorithm on FPGA.

The simulation results show that the GFRX algorithm downloaded to the FPGA
occupies 4504 slice units, 832 of which are occupied by slice registers and 3674 by LUTs.
In FPGA implementation, the longer the plaintext and key length, the more slices are
occupied for the same algorithm. Compared with PRESENT64/80, GFRX64/128 has a
longer key length, requires less hardware resource consumption, and performs better
on FPGA.

5.2.2. ASIC Implementation and Comprehensive Performance Evaluation

The unit GE is equal to the area required for a 2-input NAND gate with the lowest
driving strength of the corresponding technology. The hardware consumption number of
GE is equal to the total silicon area divided by the area occupied by the 2-input NAND
gates. The GE uses the ARM standard unit library and the IBM 8RF(0.13 micron) ASIC
manufacturing process. The GE consumption of some logic gates is shown in Table 3.

Table 3. Logical component resource consumption.

NOT NAND AND OR XOR XNOR 4-1 MUX D-Flip-Flop 1-Full-Adder

0.75 1.00 1.25 1.25 2.00 2.00 4.50 4.25 5.75

The GFRX algorithm is a lightweight block cipher that can be serialized flexibly.
The degree of serialization has a significant impact on the cost and efficiency of the
algorithm. The relationship between the degree of serialization and throughput can be
calculated according to the following Equation:

throughput = (
4LbC

4Lk + 3LbR
)δ. (6)

Electronics 2023, 12, 405 14 of 16

where Lb and Lk in Equation (6) represent the length of the plaintext and key, respectively;
C and R represent the frequency of the clock and encryption rounds, respectively; and
δ indicates the serialization degree. When the serialization degree is 1, this implies full
serialization. In the generalized Feistel structure, the degree of serialization does not exceed
the branch length. After the branch length is exceeded, only non-serialized implemen-
tations can be performed. Fully serialized implementation has hardware consumption
and the lowest throughput, while non-serialized implementation has the opposite. For a
specific encryption algorithm, its plaintext length, key length, and encryption rounds are
determined; the serialization degree is linearly related to the throughput, which increases
as the serialization degree decreases.

The hardware consumption of the algorithm consists of two parts: GEother and
GEcombinational_circuit. When the plaintext block size and key size are determined, GEother
and GEcombinational_circuit are fixed values. The relationship between the serialization degree
and hardware consumption can be expressed by the following Equation:

GEcipher = GEother + GEcombinational_circuit × δ. (7)

The performance of lightweight block cipher implementations can often be more
accurately evaluated by combining a throughput and implementation area. The FOM [36]
is usually used for evaluation. Its value is equal to the square of the throughput ratio over
GE, which is shown in the following Equation:

FOM = throughput/area squared. (8)

Equation (9) can be deduced by combining Equations (6) and (7), i.e, the relationship
between the FOM value and the degree of serialization.

FOM = (
4LbC

4Lk + 3LbR
)δ/(GEcipher)

2. (9)

When the length of the plaintext group and the length of the key group are fixed, many
values in Equation (9) are constants, so it can be abbreviated to Equation (10).

FOM = kδ/(a + bδ)2. (10)

where kδ in Equation (9) indicates the throughput. Based on the analysis, the hardware
consumption, throughput and FOM values according to different serialization levels can be
obtained when the GFRX algorithm is implemented in ASIC hardware. Table 4 shows the
hardware performance of GFRX64/128 at a clock frequency of 100 kHz.

Table 4. Performance comparison for different serialization degrees

Degree Throughput (Kbps) Area (GE) FOM

1-bit 4.49 886.25 57.17

2-bit 8.98 926.25 104.67

4-bit 17.96 1006.25 177.38

8-bit 35.92 1166.25 264.09

16-bit 71.84 1486.25 325.22

The performances of some common lightweight block ciphers are compared and the
results are listed in Table 5. The results in Table 4 and Table 5 show that the GFRX algorithm
has low hardware consumption. In the case of 64-bit plaintext length and 128-bit key length,
the maximum hardware consumption is only 1609GE, and the FOM value reaches the
maximum 797.20, which exceeds that of some existing lightweight block ciphers.

Electronics 2023, 12, 405 15 of 16

Table 5. Performance comparison of common lightweight block cipher.

Algorithm Throughput (Kbps) Area (GE) FOM

AES-128 12.40 3400 10.73

DES 44.40 2309 83.28

DESL 44.40 1848 130.00

Hight-128 188.25 3048 202.63

PRESENT-128 200.00 1886 562.27

GFRX-128 206.45 1609 797.20

6. Conclusions

In this paper, we propose a lightweight block cipher GFRX, combining a generalized
Feistel structure and an ARX structure. The algorithm is based on a generalized Feistel
structure with two different non-linear components of the ARX structure as round func-
tions. In the round function, operations such as AND, ADD, Rotation, and XOR replace
the hardware to effect the complex non-linear components. The flexible combination of
generalized Feistel and ARX structures solves the problems of slow diffusion and confusion
in traditional Feistel structures and offers great flexibility in hardware implementation.
Compared with the current generalized Feistel structure algorithms, the GFRX algorithm
has better diffusion and confusion effects, fewer iterations and higher hardware efficiency.
The security analysis results for the GFRX algorithm show that the effective differential
attacks do not exceed 19 rounds and the effective linear attacks do not exceed 13 rounds.
Therefore, the GFRX algorithm is secure against differential and linear analysis.

However, there is no such thing as the best encryption algorithm for a specific applica-
tion scenario, only the most appropriate one. The GFRX algorithm proposed in this paper
can consume fewer resources with a sufficient security margin. Therefore, it has greater
applicability in resource-constrained environments.

Author Contributions: Conceptualization, X.Z. and S.T.; Methodology, X.Z.; Software, S.T.; Valida-
tion, T.L., X.L. and C.W.; Formal analysis, X.Z. and S.T.; Investigation, X.Z.; Resources, X.L. and
C.W.; Data curation, S.T.; Writing—original draft, X.Z.; Writing—review & editing, S.T. and T.L.;
Supervision, X.L. and C.W.; Project administration, X.Z.; Funding acquisition, X.Z. and C.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Foundation of China under grant
61902156 and 62072217.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ray, P.P.; Dash, D.; De, D. Edge computing for internet of things: A survey, e-healthcare case study and future direction. J. Netw.

Comput. Appl. 2019, 140, 1–22. [CrossRef]
2. Goyal, P.; Sahoo, A.K.; Sharma, T.K.; Singh, P.K. Internet of things: Applications, security and privacy: A survey. Mater. Today

Proc. 2021, 34, 752–759. [CrossRef]
3. Kakkar, L.; Gupta, D.; Tanwar, S.; Saxena, S.; Alsubhi, K.; An, D.; Noya, I.D.; Goyal, N. A secure and efficient signature scheme for

iot in healthcare. Cmc-Comput. Mater. Contin. 2022, 73, 6151–6168. [CrossRef]
4. Rana, A.; Sharma, S.; Nisar, K.; Ibrahim, A.A.A.; Dhawan, S.; Chowdhry, B.; Hussain, S.; Goyal, N. The rise of blockchain internet

of things (biot): Secured, device-to-device architecture and simulation scenarios. Appl. Sci. 2022, 12, 7694. [CrossRef]
5. Daemen, J.; Rijmen, V. Aes proposal: Rijndael. AES Propos. 1999, 2, 1–45.
6. Basu, S. International data encryption algorithm (idea)–a typical illustration. J. Glob. Res. Comput. Sci. 2011, 2, 116–118.
7. Al-Aali, Y.; Boussakta, S. Lightweight block ciphers for resource-constrained devices. In Proceedings of the 2020 12th International

Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020;
pp. 1–6.

8. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.; Seurin, Y.; Vikkelsoe, C. Present: An
Ultra-Lightweight Block Cipher; Springer: Berlin/Heidelberg, Germany, 2007; pp. 450–466.

http://doi.org/10.1016/j.jnca.2019.05.005
http://dx.doi.org/10.1016/j.matpr.2020.04.737
http://dx.doi.org/10.32604/cmc.2022.023769
http://dx.doi.org/10.3390/app12157694

Electronics 2023, 12, 405 16 of 16

9. Banik, S.; Pandey, S.K.; Peyrin, T.; Sasaki, Y.; Sim, S.M.; Todo, Y. Gift: A Small Present; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 321–345.

10. Liu, B.-T.; Li, L.; Wu, R.-X.; Xie, M.-M.; Li, Q.P. Loong: a family of involutional lightweight block cipher based on spn structure.
IEEE Access 2019, 7, 136023–136035. [CrossRef]

11. Jha, P.; Zorkta, H.Y.; Allawi, D.; Al-Nakkar, M.R. Improved lightweight encryption algorithm (ILEA). In Proceedings of the 2020
International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 1–4.

12. Guo, Y.; Li, L.; Liu, B. Shadow: A lightweight block cipher for iot nodes. IEEE Internet Things J. 2021, 8, 13014–13023. [CrossRef]
13. Nyberg, K. Generalized feistel networks. In Proceedings of the International Conference on the Theory and Application of

Cryptology and Information Security, Singapore, 6–10 December 1996; pp. 91–104.
14. Aboushosha, B.; Ramadan, R.A.; Dwivedi, A.D.; El-Sayed, A.; Dessouky, M.M. Slim: A lightweight block cipher for internet of

health things. IEEE Access 2020, 8, 203747–203757. [CrossRef]
15. Chen, S.; Fan, Y.; Sun, L.; Fu, Y.; Zhou, H.; Li, Y.; Wang, M.; Wang, W.; Guo, C. Sand: An and-rx feistel lightweight block cipher

supporting s-box-based security evaluations. Des. Codes Cryptogr. 2022, 90, 155–198. [CrossRef]
16. Izadi, M.; Sadeghiyan, B.; Sadeghian, S.S.; Khanooki, H.A. Mibs: A new lightweight block cipher. In Proceedings of the

International Conference on Cryptology and Network Security, Kanazawa, Japan, 12–14 December 2009; pp. 334–348.
17. Yeoh, W.Z.; Teh, J.S.; Sazali, M.I.S.B.M. µ2: A lightweight block cipher. In Proceedings of the Computational Science and

Technology, Cagliari, Italy, 1–4 July 2020; pp. 281–290.
18. Patil, J.; Bansod, G.; Kant, K.S. Lici: A new ultra-lightweight block cipher. In Proceedings of the 2017 International Conference on

Emerging Trends & Innovation in ICT (ICEI), Pune, India, 3–5 February 2017; pp. 40–45.
19. Shibutani, K.; Isobe, T.; Hiwatari, H.; Mitsuda, A.; Akishita, T.; Shirai, T. Piccolo: an ultra-lightweight blockcipher. In Proceedings

of the International Workshop on Cryptographic Hardware and Embedded Systems, Nara, Japan, 28 September–1 October 2011;
pp. 342–357.

20. Suzaki, T.; Minematsu, K.; Morioka, S.; Kobayashi, E. Twine: A Lightweight Block Cipher for Multiple Platforms; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 339–354.

21. Lang, L.; Botao, L.; Hui, W. Qtl: A new ultra-lightweight block cipher. Microprocess. Microsystems 2016, 45, 45–55.
22. Ferguson, N.; Schneier, B.; Kohno, T. Block Cipher Modes; Wiley Online Library: Hoboken, NJ, USA, 2015; pp. 63–76.
23. Biham, E.; Shamir, A. Differential Cryptanalysis of the Data Encryption Standard; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2012.
24. Matsui, M. Linear cryptanalysis of the data encryption standard. In Proceedings of the EUROCRYPT 1993, Lofthus, Norway,

23–27 May 1993; pp. 386–397.
25. Hoang, V.T.; Rogaway, P. On Generalized Feistel Networks; Springer: Berlin/Heidelberg, Germany, 2010; pp. 613–630.
26. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The simon and speck lightweight block ciphers. In

Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA, 7–11 June 2015; pp. 1–6.
27. Abed, F.; List, E.; Lucks, S.; Wenzel, J. Cryptanalysis of the speck family of block ciphers. Cryptology ePrint Archive 2013.
28. Alkhzaimi, H.A.; Lauridsen, M.M. Cryptanalysis of the simon family of block ciphers. Cryptology ePrint Archive 2013.
29. Abed, F.; List, E.; Lucks, S.; Wenzel, J. Differential and linear cryptanalysis of reduced-round simon. Cryptology ePrint Archive

2013.
30. Alex, B.; Vesselin, V. Automatic search for differential trails in arx ciphers. In Proceedings of the Cryptographers’ Track at the

RSA Conference, San Francisco, CA, USA, 25–28 February 2014; pp. 227–250.
31. Biryukov, A.; Roy, A.; Velichkov, V. Differential analysis of block ciphers simon and speck. In Proceedings of the International

Workshop on Fast Software Encryption, Istanbul, Turkey, 8–11 March 2015; pp. 546–570.
32. Alizadeh, J.; Alkhzaimi, H.A.; Aref, M.R.; Bagheri, N.; Gauravaram, P.; Kumar, A.; Lauridsen, M.M.; Sanadhya, S.K. Cryptanalysis

of simon variants with connections. In Proceedings of the International Workshop on Radio Frequency Identification: Security
and Privacy Issues, New York, NY, USA, 23–24 June 2015; pp. 90–107.

33. Nemati, A.; Feizi, S.; Ahmadi, A.; Makki, V.A.-d. A low-cost and flexible fpga implementation for speck block cipher. In
Proceedings of the 2015 12th International Iranian Society of Cryptology Conference on Information Security and Cryptology
(ISCISC), Rasht, Iran, 8–10 September 2015; pp. 42–47.

34. Mace, F.; Standaert, F.X.; Quisquater, J.J. Asic implementations of the block cipher sea for constrained applications. In Proceedings
of the Third International Conference on RFID Security-RFIDSec, Amherst, MA, USA, 26–28 June 2007; Volume 2007, pp. 103–114.

35. Rolfes, C.; Poschmann, A.; Leander, G.; Paar, C. Ultra-lightweight implementations for smart devices–security for 1000 gate
equivalents. In Proceedings of the International Conference on Smart Card Research and Advanced Applications, London, UK,
8–11 September 2008; pp. 89–103.

36. Manifavas, C.; Hatzivasilis, G.; Fysarakis, K.; Rantos, K. Lightweight Cryptography for Embedded Systems—A Comparative Analysis;
Springer: Berlin/Heidelberg, Germany, 2013.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2940330
http://dx.doi.org/10.1109/JIOT.2021.3064203
http://dx.doi.org/10.1109/ACCESS.2020.3036589
http://dx.doi.org/10.1007/s10623-021-00970-9

	Introduction
	Related Work
	Specification of the GFRX
	Encryption
	Key Extension
	Decryption

	Security Analysis
	Overall Structure Analysis
	Differential and Linear Analysis

	Performance Evaluation
	Avalanche Effect
	Hardware Implementation
	FPGA Implementation
	ASIC Implementation and Comprehensive Performance Evaluation

	Conclusions
	References

