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Abstract: Coverless data hiding is resistant to steganalytical tool attacks because a stego image is
not altered. On the other hand, one of its flaws is its limited hiding capacity. Recently, a coverless
data-hiding method, known as the coverless information-hiding method based on the most significant
bit of the cover image (CIHMSB), has been developed. This uses the most significant bit value in
the cover image by calculating the average intensity value on the fragment and mapping it with a
predefined sequence. As a result, CIHMBS is resistant to attack threats such as additive Gaussian
white noise (AGWN), salt-and-pepper noise attacks, low-pass filtering attacks, and Joint Photographic
Experts Group (JPEG) compression attacks. However, it only has a limited hiding capacity. This
paper proposes a coverless information-hiding method based on the lowest and highest values of the
fragment (CIHLHF) of the cover image. According to the experimental results, the hiding capacity of
CIHLHF is twice that of CIHMSB.

Keywords: coverless information hiding; image data hiding; most significant bit

1. Introduction

Data-hiding methods in the Internet era and open access for various applications
are in unavoidable and continuous demand [1–6]. This has resulted in rapid research
developments in the field of data hiding, also known as steganography. According to this
trend, antisteganography and steganalytical research subjects are also quickly developing.

Steganography is a technique for concealing confidential messages. To conceal a
message in classical steganography, a modified medium is required. This is referred to as
spatial domain if the alteration is performed directly on the pixel image value [7–13]. If
the histogram value and frequency of the pixel image are changed, this is known as the
transform domain [14–16]. Lastly, compressed domain steganography is when changes are
performed after an image compression method had been executed [17–25].

On the other hand, steganalysis is a process for detecting images that have modifica-
tions to the embedded hidden message. Then, the secret message is extracted to identify
and utilize it for further purposes. Steganalytical attacks are currently the most widely used
additive Gaussian white noise (AGWN), salt-and-pepper noise attacks, low-pass filtering
attacks, and JPEG compression attacks. This is a significant threat in classical steganography.
The current research on steganalysis is more advanced by employing machine learning and
deep learning methods [26–30].

Coverless image steganography (CIS) was introduced by Zhou et al. in 2015 [31]. The
scheme of Zhou et al. [31] is based on an image mapping operation. First, an indexed image
database is constructed on the basis of each image hash sequence. Then, the transformation
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of secret data into a bit string and several segments is operated. Lastly, a mapping operation
between a secret data segment and the hash image is developed to match the appropriate
image as the stego image. The scheme of Zhou et al. [31] is robust against steganalytical
tools and provides resistance to common image attacks such as rescaling, luminance change,
and noise addition. However, the scheme of Zhou et al. [31] has a low embedding capacity
of eight bits per carrier.

To improve the embedding capacity of the scheme of Zhou et al. [31], in 2018, Zou
et al. [32] proposed a CIS method based on the average pixel value of the subimages. In
this approach, the secret information is segmented according to the structure of a Chinese
sentence, including subject, predicate, object, and preposition. Then, a hash sequence is
generated on the basis of the average pixel value of the subimages by using a hashing
algorithm. After that, a mapping operation between the segmented secret information and
the hash sequence is operated. Lastly, a multilevel index structure is built to retrieve the
appropriate stego images. This approach achieved higher embedding capacity than that of
the scheme of Zhou et al. [31], which is 80 bits per carrier. In the same year, Zhou et al. [33]
developed a CIS approach on the basis of partial-duplicate picture retrieval, which has a
larger embedding capacity. This approach can embed 384 bits of secret messages per carrier.

Furthermore, instead of sending the original secret images, the sender utilizes the
highest similarity image in this approach. In 2019, Luo et al. [34] introduced a novel
coverless information-hiding approach based on deep learning. This scheme implemented
a convolutional neural network algorithm as the high-level semantic feature extracted to
retrieve real-time image data hiding. Besides achieving better robustness, this approach
also has higher embedding capacity than that of the previous approach, which can hide
800 bits per carrier.

In 2021, Yang et al. [35] proposed the novel coverless information-hiding method
based on the most significant bit of the cover image (CIHMSB). CIHMSB is based on image
mapping operation, the same as CIS. The difference is that, instead of mapping to an
indexed image dataset, CIHMSB maps the secret message with the MSB of the fragment
average value. As a result, the mapping flag and unmodified cover image are sent to a
receiver. CIHMSB is a simple computation method. In addition, CIHMSB performed well
against steganalytical attacks. Although CIHMSB achieved higher hiding capacity than
that of the previous scheme above, which is 4.096 secret bits per carrier, it is still categorized
as having low hiding capacity because CIHMSB only utilizes the average pixel value of
image fragments. So, CIHMSB can potentially increase the hiding capacity by utilizing
fragment properties, i.e., the fragment’s highest and lowest pixel values.

In order to address CIHMSB’s low hiding capacity, in this paper, we propose a cover-
less information hiding method based on the lowest and highest values of the fragment
(CIHLHF) of the cover image. It can be computed supposing an image size of 256 × 256,
and the image fragment is 4 × 4, so that the hiding capacity is 8192 secret bits. Experi-
mental results showed that the CIHLHF hiding capacity was doubled. Moreover, CIHLHF
performs more securely toward attackers regarding the time cost of breaking the method.
Our other contribution is constructing the table for mapping the rule of embedding and
extracting procedures, which makes CIHLHF more applicable for real-word and real-time
security problems.

The remainder of the work is organized as follows: Section 2 explains our proposed
method, coverless information hiding of the highest lowest fragments. Then, Section 3
discusses the experimental results. Lastly, Section 4 addresses the conclusions.

2. Proposed Method CIHLHF

To resolve the issue of CIHMSB, we developed CIHLHF. The flowchart of CIHLHF is
presented in Figure 1. Moreover, the proposed CIHLHF may be classified into embedding
and extracting operations, as discussed in Sections 2.1 and 2.2, respectively.
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Figure 1. Flowchart of the proposed CIHLHF.

2.1. Embedding Procedures

There are three main procedures in the proposed coverless information hiding scheme:
cover image preparation, secret data preparation, and mapping. First, a cover picture is
converted into a segmented image Ci. Then, for each Ci, the lowest and highest, Li and Hi,
are determined. Second, secret data are converted into binary format Mi. Lastly, a mapping
operation is performed among the MSBs of Li, Hi, and Mi.

The embedding process is explained in depth below:
Cover Image Preparation:

1. Divide the cover picture I, of size K × L pixels, into m × n nonoverlapping segments,
Ci.

2. Determine the lowest and highest values, Li and Hi.

Li = min(v1Ci, v2Ci, . . . , vm × nCi
Hi = max(v1Ci, v2Ci, . . . , vm×nCi

(1)

where v1Ci, . . . vm×nCi are the pixel values in the segment Ci.
3. Convert Li and Hi into an eight-bit binary.
4. Using Equation (2), calculate the hiding capacity of the cover picture:

EC =

(
K× L
m× n

)
× 2 (2)

The total number of fragments for the cover image with K × L pixels into m × n
non-overlapping segments is (K× L)/(m× n). Since the proposed hiding scheme is hidden
on the 2 pixels (the lower and higher pixels), each fragment can be hidden to 2 bits.

Secret Data Preparation:
Convert the secret data Ti into a seven-binary (an ASCII code) format.
For example, the ASCII code of character A is 65 in a decimal value. Therefore, the

character A of secret information (T) is (1,0,0,0,0,0,1).
Mapping:
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1. Determine the predetermined mapping key Z between a sender and a receiver, where
the length of Z is the same as EC.

2. Create a mapping between Ti and the MSB of Li and Hi according to Z, which results
in mapping flag Ui. The following is the mapping rule equation:

Ui = Not (Ti ⊕ Ci-MSB)

The mapping rule of the embedding procedure is presented in Table 1.

Table 1. Mapping rule of embedding procedure.

Ti MSB of Li, Hi Ui

0 0 1
0 1 0
1 0 0
1 1 1

For example, assume that we have a cover picture I with a size of 8 × 8 pixels. First,
divide the cover picture into 4 × 4 nonoverlapping segments, Ci = 4. Then, identify and
convert the lowest and highest values, Li and Hi. The cover image preparation is presented
in Figure 2. Therefore, on the basis of Equation (1), we can embed 8 bits of secret data.
Suppose the characters of secret data are A and B, and the decimal values are 65 and 66,
respectively. Convert them into seven-binary format Ti = 1,0,0,0,0,0,1,1,0,0,0,0,1,0. The
embeddable Ti = 1,0,0,0,0,0,1,1. Suppose that mapping key Z = 7,8,1,2,3,4,6,5. Lastly, on
the basis of the rule in Table 1, Ui = 0 0 1 1 1 1 0 0, as shown in Figure 3. Figure 3 is a
continuation of Figure 2, in which the secret bits are mapped to the lowest and highest
segment values. The first secret bit is mapped with the 7th MSB, so that 1 is mapped with 0
resulting in 0. This is followed by the second secret bit, which is mapped with the 8th MSB,
the third secret bit mapped with the 1st MSB, the fourth secret bit mapped with the 2nd
MSB, the fifth secret bit mapped with the 3rd MSB, the sixth secret bit mapped with the
4th MSB, the seventh secret bit mapped with the 6th MSB, and the eight secret bit mapped
with the 5th MSB.
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2.2. Extracting Procedures

The extracting procedures include two important processes: cover image preparation
and mapping. The extraction technique is described in full below:

Stego Image Preparation

1. Divide a stego picture S with size J × K pixels into j × k nonoverlapping segments,
Di.

2. Determine the lowest and highest values, Li and Hi.
3. Convert Li and Hi into an eight-bit binary.

Mapping
Construct a mapping between Ui and the MSB of Li, Hi in accordance with Z, resulting

in secret data Ti. The mapping rule of the extraction procedure is shown in Table 2.

Table 2. Mapping rule of extraction procedure.

Ui MSB of Li, Hi Ti

1 0 0
0 1 0
0 0 1
1 1 1

3. Experimental Results and Comparison

To evaluate the performance of the proposed CIHLHF, we compare it to that of
CIHMSB on six test grayscale images, namely, Airplane, Baboon, Barbara, Boat, Lena, and
Pepper, as shown in Figure 4a–f, respectively. To assess image quality, we employed several
indicators, including peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and Q.
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PSNR is typically used to assess the quality between original and modified images
after embedding (stego image). PSNR calculation is denoted in Equation (3), and the mean
square error (MSE) is denoted in Equation (4):

PSNR = 10 log10
2552

MSE
(3)

MSE =
1

M×M ∑M
i=1 ∑M

j=1

(
Lij − L′ij

)2 (4)

where Lij denotes the pixel location of image L located in the i-th row and the j-th column,
and L′ij indicates a pixel position of stego image L′ located in the i-th row and the j-th
column.

The structural similarity (SSIM) index is used to compare the similarity of a cover
image and a stego image. It has a value between −1 and +1. When a cover image and a
stego image are the same, SSIM equals to 1, which is also the optimal value of SSIM. It can
be expressed as Equation (5):

SSIM =
(2pq + c1)

(
2σxy + c2

)[
(p)2 + (q)2 + c1

](
σ2

x + σ2
y + c2

) (5)

where p and q denote the average pixel values of the cover and stego images. σ2
x and σ2

y
represent the standard deviation of the cover and stego images, while σxy represents the
covariance between the cover and stego images. Constant c1 = 2.5, c2 = 7.65.

Another important criterion for determining the similarity between cover and stego
images is the universal image quality index (Qi). When a cover image and a stego image
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are exactly the same, Qi can obtain the optimal value of 1. The following is a definition
of Qi:

Qi =
4σxypq(

σ2
x + σ2

y

)[
(p)2 + (q)2

] (6)

where p and q represent the average pixel values of the cover and stego images, respectively.
σ2

x and σ2
y represent the standard deviation of the cover image and the stego image, while

σxy represents the covariance between the cover image and the stego image.
In addition, to evaluate the performance of CIHLHF, we compared it with that of

other methods. In this study, we compared CIHLHF with CIHMSB [35]. The main reason
is that CIHMSB provides a larger hiding capacity than that of the prior method in the same
approach [31–34]. The main difference between the proposed scheme and CIHMSB is that,
instead of mapping a secret message to the average value of MSB, the proposed scheme
maps the secret message to the MSB’s maximum and minimum.

Table 3 presents the performance comparison of CIHMSB and CIHLHF in terms of
image quality (PSNR, SSIM, and Qi) and hiding capacity. As shown in Table 3, the PSNR,
SSIM, and Qi of the CIHMSB and CIHLHF techniques achieved optimal values of ∞, 1,
and 1, respectively. The fundamental reason is that neither the CIHMSB nor the CIHLHF
procedure modified the cover image, in accordance with the concept of coverless data
hiding, in which the cover image is identical to the stego image. PSNR value ∞ indicates
that the pixel values of the original and stego images were the same.

Table 3. Performance comparison of CIHMSB and CIHLHF.

Methods Bits Carrirer−1 Hiding Capacity
(Bits∗ Carrirer−1) PSNR (dB) SSIM Qi

CIHMSB [35] 4 (512 × 512)/(8 × 8)
= 4096

16,384 ∞ 1 1
CIHLHF 12 49,152 (3 times higher) ∞ 1 1

Furthermore, CIHLHF surpassed CIHMSB in terms of hiding capacity. As seen in
Table 3, for cover image size of 512 × 12 and fragment size of 8 × 8, the hiding capacity
was 16,384 and 49,152 for CIHMSB and CIHLHF, respectively. The prominent reason
is that CIHLHF examines the fragment’s lowest and highest values, whereas CIHMSB
uses the fragment’s average value. Figure 5 presents the hiding capacity comparison of
CIHMSB and CIHLHF. CIHLHF’s hiding capacity was clearly three times higher than that
of CIHMSB.
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On the basis of the experimental results, we can conclude that the more pixel values
used to embed the secret bits, the higher the hiding capacity is. So, we can generalize the
hiding capacity of our proposed method as k×m bits, where k = 1, 2, 3 . . . n is the number
of pixel values, and m is the number of secret bits.

We analyzed the security of the CIHLHF method under the time cost of breaking the
method with the scenario below. Assume that attackers have complete access to stego
image S and mapping flag Ui. In this experiment, the cover image is a grayscale image
with a size of 512 × 512. If the fragment size is 8 × 8, the number of segments Ci is 4096.

For CIHLHF, for example, the number of secret bits Ti is 49,152. So, when attackers
need to extract 49,152 bits of secret data from the 4096th fragment, they would use the
brute-force method because they have no information regarding mapping key Z. When the
adversary needs to extract Ti bits of secret information from Ci image fragments, they must
use brute-force attacks without knowing mapping key Z. Therefore, brute-force attacks can
be calculated as follows:

U =
(Ci)!

(Ci− Ti)!
(7)

Assuming that an ordinary computer can perform 10 billion calculations per second,
it would take 2.69× 10177,113 years to extract the secret data.

Under the same scenario, CIHMSB would take 4.83× 1031,916 years to extract 16,384 bits
from 4096 fragments. As seen in Table 4, with the same size of the cover image, due to the
hiding capacity of CIHLHF being higher than that of CIHMSB, it took longer for the attack
to extract secret data from CIHLHF than from CIHMSB. Therefore, CIHLHF is more secure
than CIHMSB.

Table 4. Security comparison of CIHMSB and CIHLHF.

Method Total Bits Time (Years)

CIHMSB [35] 16,384 4.83× 1031,916

CIHLHF 49,152 2.69× 10177,113

Next, we discuss storage costs. Assume a cover image with size (K × L) pixels and
a segment block with size (m × n) pixels. Thus, the number of fragments is m = [(K ×
L)/(m × n)]. In CIHMSB, the hiding capacity of the cover image is m, and the extra cost
is needed to store mapping flag Ui with m bits. In the proposed CIHLHF, the hiding
capacity of the cover image is 2 m, and the extra cost is needed to store the mapping flag Ui
with 2 m bits. Although the mapping flag’s size in the proposed CIHLHF is double that
of CIHMSB, the hiding capacity in the proposed CIHLHF is double that of CIHMSB. In
addition, the mapping flag’s size is significantly smaller than that of the cover and stego
images. Therefore, if we want to hide a secret message as with the proposed CIHLHF, 2 m
bits, in CIHMSB, the size of a cover image needs to with 2(W × H) pixels, which is double
the proposed CIHLHF size.

4. Conclusions

This work proposed high-capacity coverless image data hiding to solve the constraint
of hiding capacity in coverless data hiding. Our proposed method exploits the lowest
and highest pixels in each fragment. The secret data binary form is then mapped to the
most significant bit of the lowest and highest binary forms. The mapping is ordered
using predefined keys. The experimental findings suggest that our proposed technique
has a higher hiding capacity than that of similar methods. Furthermore, our approach
outperformed similar methods in terms of security.
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