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Abstract: Nucleus segmentation and classification are crucial in pathology image analysis. Auto-
mated nuclear classification and segmentation methods support analysis and understanding of cell
characteristics and functions, and allow the analysis of large-scale nuclear forms in the diagnosis
and treatment of diseases. Common problems in these tasks arise from the inconsistent sizes and
shapes of the cells in each pathology image. This study aims to develop a new method to address
these problems based primarily on the horizontal and vertical distance network (HoVer-Net), multiple
filter units, and attention gate mechanisms. The results of the study will significantly impact cell
segmentation and classification by showing that a multiple filter unit improves the performance of the
original HoVer-Net model. In addition, our experimental results show that the Mulvernet achieves
outperforming results in both nuclei segmentation and classification compared to several methods.
The ability to segment and classify different types of nuclei automatically has a direct influence on
further pathological analysis, offering great potential not only to accelerate the diagnostic process in
clinics but also for enhancing our understanding of tissue and cell properties to improve patient care
and management.

Keywords: computational pathology; nucleus segmentation; nucleus classification; deep learning;
multiple filter unit

1. Introduction

Pathology or histology images are stained by hematoxylin and eosin, allowing the
efficient processing of tissues for analysis and management. Each pathology image contains
tens of thousands of nuclei of different types, such as epithelial cells, inflammation, and
neutrophils. These nuclei can be further analyzed to predict clinical outcomes, disease
diagnosis, and prognosis. For example, nuclear features can be used to predict survival [1]
and to diagnose disease type and grade [2]. Furthermore, efficient and accurate nucleus
detection and segmentation can facilitate the quality of tissue segmentation [3,4] which, in
turn, not only facilitates the quantification of pathology images, but also serves as an im-
portant step in understanding how each component of the tissue contributes to the disease.
This necessitates the tasks of segmenting and classifying the nuclei in pathology analysis.

The segmentation and the classification of nuclei in previous work are separate pro-
cesses. The available nuclei-segmentation methods are based on thresholds, image gra-
dients, and morphological operations [5,6]. Recently, deep-learning methods have been
widely used for segmenting nuclei [7,8] by predicting nucleus boundaries and using them
for instance segmentation. Some have proposed using a nucleus distance map [9] or com-
bining the nucleus distance map and the nucleus boundaries for nucleus segmentation [10].
In addition, ref. [11] integrated dense steerable filters into a convolutional neural network
(CNN) to obtain the equivalence of rotation in nuclei segmentation.

The classification of nuclei has been studied in conjunction with the segmentation of nu-
clei. Many previous methods first segment individual nuclei and then classify them into ap-
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propriate classes through quantitative features, such as intensity [12] morphology [12–14],
and texture features [12], using machine-learning algorithms [12,14], and CNN [15,16].
Recently, ref. [17] proposed an end-to-end CNN horizontal and vertical distance net-
work (HoVer-Net) for simultaneous nuclear instance segmentation and classification in
multiple tissues.

However, nucleus segmentation and classification are challenging for several reasons.
First, there are many nuclei of different sizes and shapes in a pathology image and it
is difficult to analyze them manually. Second, tumor nuclei tend to cluster, resulting in
complex contexts and many cases of overlapping.

Our main contributions are summarized as follows: (1) we propose a variant of HoVer-
Net for improved simultaneous cell segmentation and classification; (2) we introduce the
strategy to combine multiple filter units and attention gates into the original HoVer-Net
in order to improve the performance of nucleus segmentation and classification; and (3)
we demonstrate that the proposed method achieves outperforming performance on both
nuclei segmentation and classification for diverse multi-tissue datasets.

The remainder of this paper is organized as follows. Section 2 describes the proposed
Mulvernet and how it solves the problem of simultaneous cell segmentation and classi-
fication. The performance of cell segmentation and classification on various datasets is
reported in Section 3. Finally, we discuss our experimental results in Section 4 and conclude
the paper in Section 5.

2. Materials and Methods

This section introduces details of the proposed nuclei segmentation and classification
model named Mulvernet, as shown in Figure 1. The input dimension is 256 × 256 and the
output dimension of each branch is 164 × 164. First, the input is normalized and mapped
to a 3-channel input form. Subsequently, the residual unit is used to extract a strong
and representative set of features, due to the excellent performance of ResNet50 in recent
computer vision tasks. Various residual units (RUs) are applied throughout the network at
different downsampling levels. The order of the encoders is three RUs with down-sampling
levels 1, four RUs with down-sampling levels 2, six RUs with down-sampling levels 4 and
three RUs with down-sampling levels 8. The skip concatenation of the original HoVer-Net
is replaced by an attention gate that can adjust the gain of the feature map to remove
irrelevant and noisy responses in skip connections.

Following the encoder path, we perform three decoder paths for three subtasks:
nuclei-classification task, horizontal and vertical distances of the pixel prediction task,
and nuclei-segmentation tasks. All decoder paths utilize the same architectural design,
consisting of a series of upsampling operations and multiple filter units. We use multiple
filter units to incorporate low-level features and high-level features, which are particularly
important in simultaneous tasks, where we aim for parallel nucleus segmentation and
classification. The details of the residual unit and the multiple filter unit are also shown in
Figure 1.
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Figure 1. Schematic of our proposed method. The proposed method adopted to solve the problem,
combining the HoVer-Net model [17] and a multiple filter unit [18], is named Mulvernet.

2.1. Multiple Filter Unit

The multiple filter unit [18] addresses the issue by increasing the filter size rather than
iteratively reducing the image size. A multi-filter unit is a stack of three convolutional
layers with different kernel sizes: 1× 1, 3× 3 and 5× 5. Each filter learns different features.
While small kernels extract small complex features, large kernels extract simpler features.
Therefore, the size of the first convolution kernel filter is 1× 1 to reduce the size of the input
vector and extract local features. The next convolutional layer is a 3 × 3 convolution kernel
using a downsampling size of 2 to obtain global features. The final convolutional layer has
a kernel size of 5 × 5 and a downsampling size of 2. Then, all features are concatenated
before proceeding to the next steps. Given an input X, the process of the multiple filter unit
(MF unit) can be written as follows:

x′ = max(0, F(X, f (1×1))
⊗

F(X, f (3×3))
⊗

F(X, f (5×5))), X ∈ R3×256×256 (1)

where F is the convolutional layer, f is a filter of various sizes (1× 1, 3× 3, and 5× 5), X is
the feature map input of the multiple filter unit, x′ is the output of the multiple filter unit,
and

⊗
represents the concatenation operation.

2.2. Attention Gate

Attention gates are integrated into the standard HoVer-Net architecture to focus on
certain parts of the image and highlight relevant features that pass through skip connections.
Given the feature map X as an input and the gating signal G ∈ R3×256×256 that is collected
on a coarse scale and contains contextual information, the attention gate uses additive
attention to obtain the gating coefficient. The input X and the gating signal are first linearly
mapped to an R3×256×256 dimensional space, and then the output is squeezed into the
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channel domain to produce a spatial attention weight map S ∈ R3×256×256. The overall
process can be written as follows:

S = σ(ϕ(δ(φx(X) + φg(G)))) (2)

Y = SX (3)

where ϕ, φx and φg are linear transformations implemented as 1 × 1 convolutions, δ
is an element-wise nonlinearity, σ is an activation function and Y is the output of the
attention gate.

This attention gate is performed before the concatenation operation to combine only
relevant activations and remove irrelevant and noisy responses in skip connections. In
essence, this enables updates to the model parameters in shallow layers based mainly on
spatial regions related to a specific task. This reduces computational resources wasted on
unnecessary activation and improves the network generalization power.

Furthermore, we use Preact-ResNet50 [19] as the backbone.

3. Results
3.1. Datasets

We used three publicly available datasets to evaluate our method: the MoNuSAC,
GlySAC, and CoNSeP datasets.

The MoNuSAC (multi-organ nucleus segmentation and classification) [20] dataset con-
tains images from various organs, such as breasts, lungs, kidneys, and prostates. There are
209 images with 31,411 nuclei of four types: epithelial nuclei, lymphocytes, macrophages,
and neutrophils. The training set contains 168 images, and the test set contains 41 images.
Figure 2 shows some examples from the MoNuSAC dataset with the groundtruth and
prediction by our proposed method.

Groundtruth

Prediction

Raw

Example 1 Example 2 Example 3

Figure 2. Sample tissue images from the MoNuSAC dataset with ground-truth annotations and
prediction of Mulvernet model.
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The GlySAC (gastric lymphocyte segmentation and classification) [21] dataset contains
59 images with various types of nuclei such as lymphocytes, cancerous epithelial and
normal epithelial nuclei, stromal nuclei and endothelial nuclei. Sets of 34 and 25 images are
used as the training and test sets, respectively. Figure 3 presents some examples from the
GlySAC dataset with the groundtruth and prediction by Mulvernet.

Groundtruth

Prediciton

Raw

Example 1 Example 2 Example 3

Figure 3. Sample tissue images from the GlySAC dataset with ground-truth annotations and predic-
tion of Mulvernet model.

The CoNSeP (colorectal nuclear segmentation and phenotypes) [17] dataset contains
24,319 nuclei from 41 images. These nuclei comprise four types: miscellaneous, inflam-
matory, epithelial, and spindle. The CoNSep images are divided into a training set of
27 images and a test set of 14 images. Figure 4 shows some examples from the CoNSeP
dataset with the groundtruth and prediction by Mulvernet.
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Groundtruth

Prediciton

Raw

Example 1 Example 2 Example 3

Figure 4. Sample tissue images from the CoNSeP dataset with ground-truth annotations and predic-
tion of Mulvernet model.

3.2. Evaluation Metrics

We employed five evaluation metrics: dice score, aggregate Jaccard index [22], detec-
tion quality, segmentation quality, and panoptic quality [23]. Given the ground truth x and
the prediction y, the TP computes the true positive, the FP computes the false positive, FN
computes the false negative, and IoU denotes the intersection over union of x and y.

The dice score for measuring the separation of all nuclei from the background is
defined as:

Dice =
2× TP

(TP + FP) + (TP + FN)
(4)

Detection quality (DQ) is used to measure the instance detection, while the segmenta-
tion quality (SQ) evaluates how closely matched are predictions with ground truths. We
formally define DQ and SQ as:

DQ =
|TP|

|TP|+ 1/2|FP|+ 1/2|FN| (5)

SQ =
∑((x,y)∈TP) IoU(x, y)

|TP|+ 1
2 |FP|+ 1

2 |FN|
(6)

Panoptic quality (PQ) is proposed for nuclei instance segmentation [23]. PQ is aggre-
gated from DQ and SQ components and is presented as follows:

PQ = DQ× SQ (7)



Electronics 2023, 12, 355 7 of 12

Aggregated Jaccard Index (AJI) is used to compute the nuclei-segmentation perfor-
mance by computing the ratio of an aggregated intersection cardinality and an aggregated
union cardinality between x and y.

AJI =
∑N

i=1 |xi ∩ yi
M|

∑N
i=1 |xi ∪ yi

M|+ ∑F∈U |PF|
(8)

where N is the number of nuclei, and xi and yi are the ith groundtruth and ith prediction,
respectively. yi

M denotes the Mth prediction which has the largest Jaccard Index with
xi. U presents the connected component in the prediction without the corresponding
ground truth.

AJI+ is the extension of AJI without over-penalization.

3.3. Comparative Experiments

Inspired by HoVer-Net, we propose a new method named Mulvernet. We compared
our method through experiments with four representative models: NucleiSegNet [24],
Triple U-Net [25], Mask-RCNN [26] and HoVer-Net.

NucleiSegNet [24] is based on the U-Net architecture, residual blocks and attention
mechanisms to deal with the nuclei-segmentation problem without any post-processing
step. Triple U-Net [25] uses the hematoxylin component to segment the nuclei. While
NucleiSegNet [24] and Triple U-Net [25] were originally built for nuclei segmentation only,
Mask-RCNN [26] was originally built for object localization and instance segmentation.
HoVer-Net [17] is the horizontal and vertical distance network that is built for both nuclei
segmentation and classification.

Table 1 presents the cell-classification results using the three datasets (MoNuSAC,
GlySAC, and CoNSeP) and five methods. Our proposed method outperformed HoVer-Net
and other competing models, regardless of the datasets.

Table 1. Cell-classification results using in three datasets (MoNuSAC, GlySAC, and CoNSeP) and
five methods.

Datasets Method Fd F-Epithelial F-Lymphocyte F-Macrophages F-Neutrophil

MoNuSAC

NucleiSegNet [24] 0.338 0.341 0.445 0.091 0.228
Triple U-net [25] 0.638 0.556 0.649 0.237 0.324
Mask-RCNN [26] 0.839 0.801 0.804 0.451 0.472
HoVer-Net [17] 0.825 0.754 0.803 0.382 0.387
Proposed method 0.841 0.764 0.829 0.371 0.435

Fd F-Epithelial F-Lymphocyte F-Miscellaneous

GlySAC

NucleiSegNet [24] 0.712 0.369 0.429 0.115 -
Triple U-net [25] 0.728 0.401 0.463 0.106 -
Mask-RCNN [26] 0.818 0.513 0.535 0.279 -
HoVer-Net [17] 0.861 0.555 0.517 0.352 -
Proposed method 0.864 0.575 0.568 0.310 -

Fd F-Epithelial F-Inflammatory F-Miscellaneous F-Spindle

CoNSeP

NucleiSegNet [24] 0.418 0.310 0.216 0.098 0.288
Triple U-net [25] 0.632 0.358 0.561 0.102 0.438
Mask-RCNN [26] 0.731 0.608 0.598 0.099 0.516
HoVer-Net [17] 0.719 0.599 0.508 0.200 0.479
Proposed method 0.736 0.813 0.340 0.248 0.517

Table 2 compares the cell-segmentation performance of the five methods using five
evaluation metrics and three datasets. Like the cell segmentation results, our proposed
model was superior to the competing models on all datasets. The highest performance
was in our proposed method with a dice score of 0.764, 0.835 and 0.833 on MoNuSAC,
GlySAC and CoNSeP dataset, respectively. The lowest performance of the five methods
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was the TripleUnet. Figure 5 shows the comparison between original HoVer-Net and Mul-
vernet through five evaluation metrics on three datasets. Overall, the Mulvernet achieved
better performance than HoVer-Net. In other words, the effectiveness of multiple filter unit
in improving the performance of HoVer-Net.

(A)

(B)

(C)

Figure 5. The comparison of five evaluation metrics in three datasets between original HoVer-Net
and Mulvernet. (A) The comparison on MoNuSAC dataset. (B) The comparison on GlySAC dataset.
(C) The comparison on CoNSeP dataset.
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Table 2. Cell segmentation results on three datasets (MoNuSAC, GlySAC and CoNSeP) using
Dice score.

Datasets NucleiSegNet [24] Triple U-Net [25] Mask-RCNN [26] HoVer-Net [17] Proposed Method

MoNuSAC 0.537 0.512 0.767 0.753 0.766

GlySAC 0.651 0.677 0.781 0.823 0.835

CoNSeP 0.744 0.512 0.767 0.828 0.833

3.4. Ablation Experiments

The purpose of these ablation experiments was to assess the effectiveness of multiple filters.
Tables 3 and 4 describe the results of the ablation experiments on cell classification and seg-
mentation, respectively. Besides that, Figure 6 shows the comparison of the total loss in the
validation sets of three datasets between the original HoVer-Net and Mulvernet. The effec-
tiveness of multiple filters for classification is apparent. By combining three different filters,
our proposed method improved the overall performance.

Table 3. Results of ablation experiments on cell classification.

Datasets Combinations Fd ACC F-Epithelial F-Lymphocyte F-Macrophages F-Neutrophil

MoNuSAC
1× 1 and 3× 3 0.838 0.944 0.741 0.809 0.353 0.330
1× 1 and 5× 5 0.833 0.953 0.754 0.813 0.340 0.517
1× 1 and 3× 3 and 5× 5 0.841 0.959 0.764 0.829 0.370 0.435

Fd ACC F-Miscellaneous F-Epithelial F-Lymphocyte

GlySAC
1× 1 and 3× 3 0.861 0.709 0.297 0.552 0.549
1× 1 and 5× 5 0.863 0.713 0.285 0.564 0.556
1× 1 and 3× 3 and 5× 5 0.864 0.725 0.310 0.575 0.568

Fd ACC F-Miscellaneous F-
Inflammatory F-Epithelial F-Spindle

CoNSeP
1× 1 and 3× 3 0.733 0.768 0.204 0.459 0.571 0.430
1× 1 and 5× 5 0.731 0.781 0.228 0.459 0.581 0.454
1× 1 and 3× 3 and 5× 5 0.736 0.784 0.248 0.340 0.813 0.517

Table 4. Results of ablation experiments on cell segmentation.

Datasets Filter Sizes Dice AJI DQ SQ PQ AJI+

MoNuSAC
1× 1 and 3× 3 0.745 0.589 0.717 0.779 0.579 0.593
1× 1 and 5× 5 0.763 0.608 0.742 0.784 0.601 0.613
1× 1 and 3× 3 and 5× 5 0.766 0.608 0.737 0.789 0.601 0.613

GlySAC
1× 1 and 3× 3 0.835 0.647 0.799 0.786 0.629 0.661
1× 1 and 5× 5 0.835 0.651 0.800 0.787 0.632 0.665
1× 1 and 3× 3 and 5× 5 0.835 0.650 0.804 0.786 0.634 0.666

CoNSeP
1× 1 and 3× 3 0.826 0.507 0.623 0.751 0.469 0.541
1× 1 and 5× 5 0.825 0.486 0.610 0.746 0.456 0.514
1× 1 and 3× 3 and 5× 5 0.833 0.515 0.635 0.757 0.482 0.542

Similar results were seen for cell segmentation. The use of three filters boosted the
segmentation performance. Therefore, by combining multiple filters, our proposed model
facilitated the improved classification and segmentation of cells across all three datasets.

Table 3 shows the results of the cell-classification ablation experiments. The data were
collected using three methods. Overall, a multiple filter unit with three sizes (1× 1, 3× 3,
and 5× 5) performed best of all three combinations, with an Fd of 0.841 on the MoNuSAC
dataset, 0.864 on GlySAC dataset, and 0.740 on the CoNSeP dataset.
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(A) (B) (C)

Figure 6. The comparison of total loss in the validation set of three datasets between original HoVer-
Net and Mulvernet. (A) The comparison on MoNuSAC dataset. (B) The comparison on GlySAC
dataset. (C) The comparison on CoNSeP dataset.

Table 4 compares the cell-segmentation results using six evaluation metrics according
to three combinations of multiple filters on the MoNuSAC, GlySAC, and CoNSeP datasets.
On the MoNuSAC dataset, the MF unit with filter sizes of 1× 1 and 3× 3 and 5× 5 achieved
the highest Dice score of 0.764, while the Dice score of filter sizes of 1× 1 and 3× 3 was
0.745. On the GlySAC and CoNSeP datasets, the Dice scores of the MF unit with filter sizes
of 1× 1 and 3× 3 and 5× 5 were 0.835 and 0.828, respectively, were higher than those of the
other filter sizes combinations. Thus the ablation experiments demonstrated that the MF
unit with filter sizes of 1× 1 and 3× 3 and 5× 5 is the best choice for our proposed method.

3.5. Implementation

For network training, we used a patch as the input with a size of 256 × 256 pixels and
a batch size of 4. For an input image, 0-1 normalization is applied before it is fed into the
network. Furthermore, no data-augmentation technique was applied to this experiment.
Our method is an end-to-end model. We trained the network using Adam optimization
with a learning rate of 10−4 for 100 epochs until convergence. For loss computation, we
calculated multiple regression losses, including the mean squared-error loss, cross-entropy
loss [27], and dice loss [28] for simultaneous nucleus segmentation and classification was
presented in [17]. Model selection was guided by the highest performance on the validation
set. The Adam optimizer [29] was used as the optimization method for model training.
All models were implemented using the PyTorch framework [30] with a NVIDIA GeForce
3090 Ti GPU (NVIDIA Corporate, Santa Clara, CA, USA).

4. Discussion

This study proposed a solution to the problem of parallel cell segmentation and
classification in pathology images. We created a new simultaneous segmentation and
classification model based on HoVer-Net combined with multiple filter units and attention
mechanisms. We tested this method on the three datasets, assessed the performance of
the segmentation and classification model, and compared it to several available methods.



Electronics 2023, 12, 355 11 of 12

The experimental results showed that our method achieved the best overall result. We also
designed ablation experiments to demonstrate the effectiveness of the proposed model and
combined the proposed module with the original HoVer-Net to analyze its effectiveness.
The ablation-experiment results showed that the proposed multiple filters improved the
performance of HoVer-Net to some extent. The above experimental results show that
our method has some advantages in the automatic segmentation and classification of nuclei.

5. Conclusions

This paper presented a method for nucleus segmentation and classification from
pathology images. Our method integrates multiple filter units into HoVer-Net with atten-
tion gates. The experimental results show the effectiveness of the multiple filter unit in
improving the performance of the original HoVer-Net model as well as outperforming
other models. The ability to segment and classify nuclei of different types automatically
is directly associated with subsequent pathological analysis. It not only facilitates an ex-
cellent opportunity to speed up the diagnostic process in the clinic but also increases our
understanding of tissue characteristics, leading to improved patient care and management.
Our nucleus segmentation and classification model allows for the identification of mor-
phological characteristics and quantification of the different types of nuclei and, thus, can
provide additional diagnostic and predictive value. We observe low classification scores
for nuclei with fewer samples and high variability. Future work will involve improving the
class balance of data in simultaneous learning.

Author Contributions: Conceptualization, V.T.-T.V. and S.-H.K.; Methodology, V.T.-T.V. and S.-H.K.;
Software, V.T.-T.V.; Validation, V.T.-T.V. and S.-H.K.; Formal analysis, V.T.-T.V. and S.-H.K.; Investi-
gation, V.T.-T.V. and S.-H.K.; Resources, V.T.-T.V. and S.-H.K.; Data curation, V.T.-T.V. and S.-H.K.;
Writing—original draft preparation, V.T.-T.V.; Writing—review and editing, S.-H.K.; Visualization,
V.T.-T.V. and S.-H.K.; Supervision, S.-H.K.; Project administration, S.-H.K.; Funding acquisition,
S.-H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Bio & Medical Technology Development Program
of the National Research Foundation (NRF) and funded by the Korean government (MSIT) (NRF-
2019M3E5D1A02067961) and also supported by Institute of Information & Communications Technol-
ogy Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2021-0-02068,
Artificial Intelligence Innovation Hub).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, C.; Romo-Bucheli, D.; Wang, X.; Janowczyk, A.; Ganesan, S.; Gilmore, H.; Rimm, D.; Madabhushi, A. Nuclear shape and

orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers. Lab. Investig. 2018,
98, 1438–1448. [PubMed]

2. Alsubaie, N.; Sirinukunwattana, K.; Raza, S.E.A.; Snead, D.; Rajpoot, N. A bottom-up approach for tumour differentiation in
whole slide images of lung adenocarcinoma. In Proceedings of the SPIE Medical Imaging—Medical Imaging 2018: Digital
Pathology, Houston, TX, USA, 10–15 February 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10581, pp. 104–113.

3. Sirinukunwattana, K.; Snead, D.; Epstein, D.; Aftab, Z.; Mujeeb, I.; Tsang, Y.W.; Cree, I.; Rajpoot, N. Novel digital signatures of
tissue phenotypes for predicting distant metastasis in colorectal cancer. Sci. Rep. 2018, 8, 13692. [CrossRef] [PubMed]

4. Javed, S.; Mahmood, A.; Fraz, M.M.; Koohbanani, N.A.; Benes, K.; Tsang, Y.W.; Hewitt, K.; Epstein, D.; Snead, D.; Rajpoot, N.
Cellular community detection for tissue phenotyping in colorectal cancer histology images. Med. Image Anal. 2020, 63, 101696.
[CrossRef] [PubMed]

5. Veta, M.; Van Diest, P.J.; Kornegoor, R.; Huisman, A.; Viergever, M.A.; Pluim, J.P. Automatic nuclei segmentation in H&E stained
breast cancer histopathology images. PLoS ONE 2013, 8, e70221.

6. Chang, C.S.; Ding, J.J.; Wu, Y.F.; Lin, S.J. Cell segmentation algorithm using double thresholding with morphology-based
techniques. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW),
Taichung, Taiwan, 19–21 May 2018; pp. 1–5.

7. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.;
Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/29959421
http://doi.org/10.1038/s41598-018-31799-3
http://www.ncbi.nlm.nih.gov/pubmed/30209315
http://dx.doi.org/10.1016/j.media.2020.101696
http://www.ncbi.nlm.nih.gov/pubmed/32330851
http://dx.doi.org/10.1016/j.media.2017.07.005


Electronics 2023, 12, 355 12 of 12

8. Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221. [CrossRef]
9. Naylor, P.; Laé, M.; Reyal, F.; Walter, T. Segmentation of nuclei in histopathology images by deep regression of the distance map.

IEEE Trans. Med. Imaging 2018, 38, 448–459. [CrossRef]
10. Liu, X.; Guo, Z.; Li, B.; Cao, J. Nuclei segmentation by using convolutional network with distance map and contour information. In

Proceedings of the Eleventh Asian Conference on Machine Learning, Nagoya, Japan, 17–19 November 2019; PMLR: London, UK,
2019; pp. 972–986.

11. Graham, S.; Epstein, D.; Rajpoot, N. Dense steerable filter cnns for exploiting rotational symmetry in histology images. IEEE
Trans. Med. Imaging 2020, 39, 4124–4136. [CrossRef]

12. Wienert, S.; Heim, D.; Saeger, K.; Stenzinger, A.; Beil, M.; Hufnagl, P.; Dietel, M.; Denkert, C.; Klauschen, F. Detection and
segmentation of cell nuclei in virtual microscopy images: A minimum-model approach. Sci. Rep. 2012, 2, 503. [CrossRef]

13. Nguyen, K.; Jain, A.K.; Sabata, B. Prostate cancer detection: Fusion of cytological and textural features. J. Pathol. Inform. 2011, 2, 3.
[CrossRef]

14. Wang, P.; Hu, X.; Li, Y.; Liu, Q.; Zhu, X. Automatic cell nuclei segmentation and classification of breast cancer histopathology
images. Signal Process. 2016, 122, 1–13. [CrossRef]

15. Sirinukunwattana, K.; Raza, S.E.A.; Tsang, Y.W.; Snead, D.R.; Cree, I.A.; Rajpoot, N.M. Locality sensitive deep learning for
detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 2016, 35, 1196–1206.
[CrossRef] [PubMed]

16. Basha, S.S.; Ghosh, S.; Babu, K.K.; Dubey, S.R.; Pulabaigari, V.; Mukherjee, S. Rccnet: An efficient convolutional neural network
for histological routine colon cancer nuclei classification. In Proceedings of the 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 1222–1227.

17. Graham, S.; Vu, Q.D.; Raza, S.E.A.; Azam, A.; Tsang, Y.W.; Kwak, J.T.; Rajpoot, N. Hover-net: Simultaneous segmentation and
classification of nuclei in multi-tissue histology images. Med. Image Anal. 2019, 58, 101563. [CrossRef]

18. Vo, V.T.T.; Yang, H.J.; Lee, G.S.; Kang, S.R.; Kim, S.H. Effects of Multiple Filters on Liver Tumor Segmentation From CT Images.
Front. Oncol. 2021, 11, 697178. [CrossRef] [PubMed]

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the 14th European
Conference–Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland,
2016; pp. 630–645.

20. Verma, R.; Kumar, N.; Patil, A.; Kurian, N.C.; Rane, S.; Graham, S.; Vu, G.D.; Zwager, M.; Ahmed, Raza, S.E.; Rajpoot, N.; et al.
MoNuSAC2020: A multi-organ nuclei segmentation and classification challenge. IEEE Trans. Med. Imaging 2021, 40, 3413–3423.
[CrossRef]

21. Doan, T.N.; Song, B.; Vuong, T.T.; Kim, K.; Kwak, J.T. SONNET: A self-guided ordinal regression neural network for segmentation
and classification of nuclei in large-scale multi-tissue histology images. IEEE J. Biomed. Health Inform. 2022, 26, 3218–3228.
[CrossRef]

22. Kumar, N.; Verma, R.; Sharma, S.; Bhargava, S.; Vahadane, A.; Sethi, A. A dataset and a technique for generalized nuclear
segmentation for computational pathology. IEEE Trans. Med. Imaging 2017, 36, 1550–1560. [CrossRef] [PubMed]

23. Kirillov, A.; He, K.; Girshick, R.; Rother, C.; Dollár, P. Panoptic segmentation. In Proceedings of the 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 9404–9413.

24. Lal, S.; Das, D.; Alabhya, K.; Kanfade, A.; Kumar, A.; Kini, J. NucleiSegNet: Robust deep learning architecture for the nuclei
segmentation of liver cancer histopathology images. Comput. Biol. Med. 2021, 128, 104075. [CrossRef]

25. Zhao, B.; Chen, X.; Li, Z.; Yu, Z.; Yao, S.; Yan, L.; Wang, Y.; Liu, Z.; Liang, C.; Han, C. Triple U-net: Hematoxylin-aware nuclei
segmentation with progressive dense feature aggregation. Med. Image Anal. 2020, 65, 101786. [CrossRef] [PubMed]

26. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969.

27. Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018;
Volume 31.

28. Li, X.; Sun, X.; Meng, Y.; Liang, J.; Wu, F.; Li, J. Dice loss for data-imbalanced NLP tasks. arXiv 2019, arXiv:1911.02855.
29. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
30. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic

Differentiation in Pytorch. 2017. Available online: https://openreview.net/forum?id=BJJsrmfCZ (accessed on 15 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://dx.doi.org/10.1109/TMI.2018.2865709
http://dx.doi.org/10.1109/TMI.2020.3013246
http://dx.doi.org/10.1038/srep00503
http://dx.doi.org/10.4103/2153-3539.92030
http://dx.doi.org/10.1016/j.sigpro.2015.11.011
http://dx.doi.org/10.1109/TMI.2016.2525803
http://www.ncbi.nlm.nih.gov/pubmed/26863654
http://dx.doi.org/10.1016/j.media.2019.101563
http://dx.doi.org/10.3389/fonc.2021.697178
http://www.ncbi.nlm.nih.gov/pubmed/34660267
http://dx.doi.org/10.1109/TMI.2021.3085712
http://dx.doi.org/10.1109/JBHI.2022.3149936
http://dx.doi.org/10.1109/TMI.2017.2677499
http://www.ncbi.nlm.nih.gov/pubmed/28287963
http://dx.doi.org/10.1016/j.compbiomed.2020.104075
http://dx.doi.org/10.1016/j.media.2020.101786
http://www.ncbi.nlm.nih.gov/pubmed/32712523
https://openreview.net/forum?id=BJJsrmfCZ

	Introduction
	Materials and Methods
	Multiple Filter Unit
	Attention Gate

	Results
	Datasets
	Evaluation Metrics
	Comparative Experiments
	Ablation Experiments
	Implementation

	Discussion
	Conclusions
	References

