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Abstract: Noninvasive studies of the central respiratory control are of key importance to under-
standing the physiopathology of central apneas and periodic breathing. The study of the brainstem
and cortical-subcortical centers may be achieved by using functional magnetic resonance imaging
(fMRI) during gas challenges (hypercapnia). Nonetheless, disentangling specific from non-specific
effects of hypercapnia in fMRI is a major methodological challenge, as CO2 vasodilatory effects and
physiological noise do strongly impact the BOLD signal. This is particularly true in deep brainstem
regions where chemoreceptors and rhythm pattern generators are located. One possibility to detect
the true neural-related activation is given by the presence of a supralinear relation between CO2

changes and BOLD signal related to neurovascular coupling in overactive neural areas. Here, we
test this hypothesis of a supralinear relationship between CO2 and BOLD signal, as a marker of
specificity. We employed a group-masked Independent Component Analysis (mICA) approach and
we compared activation levels across different mixtures of inspired CO2 using polynomial regression.
Our results highlight key nodes of the central breathing control network, also including dorsal
pontine and medullary regions. The suggested methodology allows a voxel-wise parametrization of
the response, targeting an issue that affects many fMRI studies employing hypercapnic challenges.

Keywords: fMRI; chemoreflex; physiological noise; hypercapnia; central autonomic network; brainstem;
independent component analysis

1. Introduction

The central control of breathing arises from a complex network of interconnected small
subcortical nuclei, mainly located in the brainstem, and autonomic-related cortical areas. A
primary role in generating the breathing pattern after integrating peripheral mechano, baro,
and chemosensitive variations is played by groups of inter-inhibitory and inter-excitatory
interneurons in the brainstem [1]. Unravelling the complex dynamics underlying central
chemoreception and central breathing control is of great interest for targeting several
complex pathologies of this system, such as central apneas in heart failure [2,3], sudden
infant death syndrome and also sudden unexplained death in epilepsy [4–6]. Although
the brainstem is a deep brain region involved in vital processes, it is noticeably overlooked
and understudied with respect to the cortex [7,8]. This is due to several reasons, but
physiological noise is among the detrimental effects having the highest impact on these
deep regions surrounded by large pulsatile blood vessels, cerebrospinal fluid ventricles,
and tissue boundaries exerting geometric distortions [9]. In addition, the study of breathing
dynamics linked to physiological CO2 fluctuations is challenged by the vasodilatory effect of
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CO2, which further worsens the entanglement between the signal of interest and nonspecific
effects [10]. To overcome this limitation in the specific context of functional magnetic
resonance imaging (fMRI) studies of the central control of breathing, standard approaches
to physiological noise correction have been questioned [11,12]. On the other hand, a
supralinear relation between blood oxygenation level-dependent (BOLD) signal changes
and CO2 levels in chemosensitive regions has been hypothesized as a possible solution to
distinguish between specific and nonspecific effects of hypercapnia [13].

Here, the methodology that can be adopted to test this hypothesis is introduced and
applied to fMRI data acquired from six healthy subjects during CO2 challenges. Specifically,
we describe an analytic approach, merging both exploratory and confirmatory strategies,
which aims at identifying the local supralinear changes in BOLD activity associated with a
specific neural response to hypercapnia. The approach is based on masked independent
component analysis (mICA, ICA, [14]), a data-driven technique that has been specifically
designed for studying the activity of the brainstem. This technique is integrated with
polynomial regression on the estimated percent signal change for each independent com-
ponent across different levels of inspired CO2. Model evaluation scores are employed to
detect areas expressing a supralinear relation between CO2 levels and activation of the
CO2-related component.

2. Materials and Methods

Three runs of functional images were acquired for each subject on a cohort of 8 healthy
volunteers (age: 31 ± 8 years, 2 female) using a GE Signa HDx 3 Tesla scanner. Images
(TR = 2000 ms, TE = 30 ms, and 3 × 3 × 3 mm3 isotropic voxel size) allowed for a
partial head coverage centered on the brainstem, subcortical nuclei, and cortical regions
above them, with 20 coronal slices acquired on an oblique plane parallel to the dorsal
edge of the brainstem to minimize distortion and motion artifacts [15]. For the whole
length of the experiment, subjects had to breathe through a face mask connected to a
unidirectional T-valve. The three runs consisted of three different protocols, applied in
a randomized order: one run of free breathing (FB) with standard air composition, and
two runs of gas administration, one with a mixture of 3% CO2 and 21% O2 (CO2_3%),
and one with a mixture of 7% CO2 and 21% O2 (CO2_7%), both inducing hypercapnia
in normoxic conditions. Gas administration was performed in 12 cycles of 30 s of room
air alternated with 30 s of a hypercapnic mixture, for a total run length of 12 min. An
additional T1-weighted anatomical 3D FSPGR image was acquired for each subject to allow
the registration of functional images to a standard template. All subjects had to sign an
informed consent. The experimental protocol was approved by the Institutional Ethical
Committee and carried out in accordance with The Code of Ethics of the World Medical
Association. One subject was excluded from the analysis due to excessive movement,
probably caused by high sensitivity to CO2 that caused discomfort. Another subject was
excluded due to excessive distortions that impaired the co-registration process. The final
sample size amounts to 6 subjects.

All runs were preprocessed independently in AFNI (Analysis of Functional Neu-
roImages, [16]). Function Magnetic Resonance Imagining runs were truncated to 300 time
points since preliminary analyses evidenced a general increase in motion artifacts at the
end of each acquisition, possibly caused by conscious or unconscious complaints of CO2
challenges. Images underwent slices of temporal alignment (AFNI version 21.2, program
3dTshift), inter-volume rigid-body alignment (AFNI program 3dvolreg), a two-steps affine,
and nonlinear warp to register the functional images to the anatomy (AFNI version 21.2,
programs 3dAllineate and 3dQWarp), a registration to the OASIS template using ANTs
(Advanced Normalization Tools) to compute the affine matrix defining the transformation,
and finally, images were spatially blurred by convolution with a gaussian kernel having a
3 mm full-width half-maximum.

Group ICA: Independent component analysis (ICA) was performed at the group level
separately for each one of the three tasks (FB, CO2_3%, CO2_7%) using the Matlab Toolbox
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GIFT (Group ICA Of fMRI Toolbox, [17]). We employed subject-specific principal com-
ponent analysis (PCA) and GICA3 (group ICA 3) back-reconstruction. In this way, we
obtained group spatial maps and their projection to the subject level. Before entering ICA
decomposition, each dataset was scaled using the option “intensity normalization”, which
removes the mean from every voxel’s time series. The model order was estimated with the
built-in Maximum Description Length (MDL) criterion but limited to a maximum number
of allowed components to 20, in order to avoid component splitting [18]. The algorithm
fastICA [19] was used to implement the decomposition, with the hyperbolic tangent as a
nonlinear function used to approximate negentropy. The reliability of components was
assessed with the ICASSO method [20], for which the number of repetitions was set to 100.

Spatial masks: The analysis was repeated using two different masks, one, labelled
“global” and including the whole field of view (Figure 1B), and one labelled “subcortical”,
including only the brainstem and subcortical nuclei, and excluding the cortex, cerebellum
and all ventricles (Figure 1A). Both masks were further customized to exclude from the
analysis the voxels at the border of the field of view and those at the anterior edge of
the pons since residual distortions and motion artifacts have a particular impact on these
regions. Among the other options provided by the GIFT toolbox, we selected “no scaling”
for the postprocessing of results.
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Figure 1. Spatial masks employed in the masked Independent Component Analyses. (A) Subcortical
mask, including only the brainstem and subcortical nuclei; (B) Global mask, comprising the whole
field of view.

The component selection was performed first on the spatial domain, discarding com-
ponents related to noise by gold-standard visual inspection, following criteria exposed by
Griffanti et al. [21]. Then, for CO2_3% CO2_7% data, we evaluated the CO2-relatedness of
the components surviving the first selection step, by visualizing their associated time course
and their power spectral density. We discarded components that present high-frequency
peaks (frequency above 0.10 Hz), and we included in the final selection the components
that exhibited temporal periodicity similar to that of the task, i.e., components that present
a maximum for the power spectral density function in a neighborhood of 1/60 Hz, i.e., the
characteristic frequency of the task.

After component selection, we implemented a qualitative procedure to define triads
of similar components from each condition (FB, CO2_3%, CO2_7%), with the goal of
identifying the same component across different levels of inspired CO2 and characterize
differences in activation levels. A triplet was defined if it included a FB component, a
CO2_3% component, and a CO2_7% component, mutually correlated with a spatial Pearson
correlation coefficient ρ ≥ 0.5.

At the subject level, the spatial maps were multiplied by the maximum of the asso-
ciated time series: thanks to the applied scaling, back-projected spatial maps of selected
triplets are expressed in terms of percent signal change. We assume that a high level of spa-
tial similarity across components is an indication that the same component has been found
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across the three tasks. Under this assumption, at each voxel, our approach provides for each
triplet and for each subject the percentage of signal explained by the considered component.

The relationship between the three activation values (dependent variable y = [yCO2_FB
yCO2_3% yCO2_7%]) and the associated three levels of administered CO2 (independent vari-
able x = [0%, 3%, and 7%]), was tested by fitting voxel-by-voxel two different polynomial
models, i.e., a first-order one and a second-order one, using linear regression. Thus, for
each voxel two coefficients a0 and a1 for the linear model, and three coefficients b0, b1, and
b2 for the quadratic one, are obtained (1):

y = a0 + x × a1 + w,
y = b0 + x × b1 + x2 × b2 + w.

(1)

Coefficients in Equation (1) are derived using iteratively reweighted least-squares
estimation. The algorithm iteratively performs weighted least-square fitting, updating
the weights at each iteration on the base of the distance of points from model predictions
in the previous iteration [22]. For both models, the adjusted R2 statistic was extracted
for each voxel as a measure of fit quality, which is independent of the number of model
coefficients. Finally, we evaluated the difference between the two adjusted R2 values
(i.e., adjR2

quadratic–adjR2
linear) to identify the voxels for which the quadratic model fits

better than the linear one. Since in this work we are focused on finding supralinear
relations between CO2 and BOLD activity, we imposed a set of conditions on the values
of regression coefficients. Specifically, we wanted the BOLD activity to increase with CO2,
and the concavity of the quadratic relationship to be positive. The conditions imposed on
regression coefficients are thus:

(1) b2 > 0 as tested with a t-test with alpha = 5%
(2) a1 > 0 as tested with a t-test with alpha = 5%
(3) y (x = 3%) > y (x = 0%)

We generated maps of the difference between the adjusted R2 of the nonlinear model
and the adjusted R2 of the linear one. Maps are thresholded with a mask defined by voxels
satisfying all the conditions on regression coefficients and showing a positive difference,
i.e., a higher R2 for the nonlinear model. On these maps, we also applied a threshold of 2
for the cluster size. A summary of the whole analysis pipeline is reported with a flowchart
in Figure 2.
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Step 1: Spatial selection, performed on maps by visual inspection according to criteria available in
the literature [21]. Step 2: temporal selection, components whose temporal periodicity was similar
to that of the task were accepted while components showing high-frequency peaks in the PSD
were discarded. Step 3: Component matching and triplet definition: triplets were composed with
components showing a mutual correlation above 0.5. Triplets of similar components express for each
voxel and for each condition a percent signal change value. Two regression models (one linear and
one quadratic) are fitted on the levels of inhaled CO2. The two models are compared in terms of
adjusted R2. Positive differences are thresholded by imposing the three conditions reported in the
Section 2.

3. Results
3.1. Independent Component Selection and Triad Identification

For what regards component selection, we reported for the global mask two compo-
nents selected at 3% CO2 (#17 and #20) and two components selected at 7% (#18 and #20).
For the subcortical mask, we reported two components selected at 3% CO2 (#4 and #9) and
two components selected at 7% (#7 and #9). The model order estimated with the MDL
criterion on the global mask was 40 and 41 respectively for 3% and 7% CO2. Therefore, we
limited the number of components to 20. For the subcortical mask, the estimated number
of components was 9 for both 3% and 7% CO2, therefore this value was kept.

We related component maps with each other using Pearson correlation to define tuples
of similar components. In Table 1 we reported for the global mask and the subcortical
mask the couples of components extracted from different analyses associated with a spatial
Pearson correlation coefficient ρ≥ 0.5. Only two triplets of similar components satisfied the
employed criteria: 19 (0%)–17 (3%)–18 (7%) (marked with 1 in Table 1) for the global mask
and 8 (0%)–7 (3%)–4 (7%) (marked with 2 in Table 1) for the subcortical mask. For the two
triplets, we showed the spatial maps and the temporal characterization in Figures 3 and 4.

Table 1. Couples of components extracted from two different tasks exhibiting spatial Pearson
correlation above 0.5.

Global Mask Subcortical Mask

3–7% (ρ) 3–0% (ρ) 7–0% (ρ) 3–7% (ρ) 3–0% (ρ) 7–0% (ρ)

4–2 (0.73) 1–1 (0.66) 2–2 (0.76) 1–3 (0.72) 1–3 (0.65) 3–3 (0.69)

11–5 (0.65) 4–2 (0.69) 5–10 (0.57) 6–2 (0.60) 2–1 (0.59) 5–1 (0.61)

17–18 (0.64) 1 11–10 (0.60) 18–19 (0.58) 1 2–5 (0.64) 4–8 (0.58) 2 7–8 (0.60) 2

20–20 (0.54) 17–19 (0.73) 1 20–20 (0.52) 4–7 (0.75) 2 6–4 (0.59) 2–4 (0.57)

9–9 (0.51)
1 Triplet for the global mask. 2 Triplet for the subcortical mask.

The two triplets of inter-task similar components 19 (0%)–17 (3%)–18 (7%) and 8 (0%)–4
(3%)–7 (7%) were compared in terms of spatial Pearson correlation, showing correlation
coefficients ρ = 0.61 for CO2 at 0% ρ = 0.85 for CO2 at 3%, and ρ = 0.58 for CO2 at 7%.

3.2. Quadratic Model

For the two highlighted triplets of independent components, both the linear and the
quadratic models were tested, then the parametric maps of the difference between adjusted
R2 were thresholded as detailed in the methods section. Clusters of supralinear dependency
between CO2 levels and selected component activations were isolated and their maps are
displayed in Figure 5 for the 7 clusters associated with the 19 (0%)–17 (3%)–18 (7%) tuple
and in Figure 6 for the 9 clusters associated to the 8 (0%)–4 (3%)–7 (7%) tuple.
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analysis performed with the subcortical mask. We report the voxels for which the adjusted R2 of the
quadratic model was higher than the adjusted R2 of the linear one and that satisfied the conditions:
(i) b2 > 0 (p-value < 0.05) (ii) a1 > 0 (p-value < 0.05) and (iii) y (x = 3%) > y(x = 0%).
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4. Discussion

In fMRI, the brainstem is still way understudied with respect to the cortex. The investi-
gation of these deep regions demands tailored approaches that account for the higher levels
of noise and non-specific effects, and the smaller size of structures. In this study, we ex-
plored a novel brainstem-specific analysis pipeline for the detection of supralinear dynamics
in CO2-dependent BOLD signal changes isolated with independent component analysis.

The use of a data-driven approach fits with our need to highlight components of
interest without a strong a priori hypothesis about temporal dynamics of the central
response to hypercapnic events, within each task, e.g., gas challenge, as well as across
different breathing tasks. Specifically, it allowed the highlighting of possible neural as well
as vascular-related signal changes after hypercapnic stimuli, with a common distribution
across different gas challenges and breathing of standard air. The successive exploratory
modelling steps using linear and supralinear functions of CO2 concentration changes at
the group level might be used to explore possible evidence for the hypothesis of brain
activation having supralinear dependencies on CO2 changes. The selected components
cover key subcortical candidates for central chemoreception in the hypothalamus and the
brainstem, relay centers in the thalamus and basal ganglia, and key autonomic-regulating
cortical nodes such as the cingulate and frontal cortex. Here, we focused on dynamics
that are robustly linked to CO2 fluctuations across different levels of inspired CO2. The
two extracted triplets express maps showing maxima over thalamic regions, but they also
covered part of the ventricles as well as highly perfused regions. This confirms the strong
entanglement between specific CO2-related BOLD signal changes, related to neural activity,
and non-specific effects linked to the CO2 vasodilatory effect [23]. Notably, by isolating
regions in which the percent signal change is mostly explained by the quadratic model, we
observe an exclusion of non-specific activations. Particularly, most of the clusters reported
in Figures 5 and 6 are easily interpretable in the context of the central control of breathing
as they cover the thalamus, putamen, or hypothalamus. CO2-dependent neural activation
in the hypothalamus is in line with the presence of orexin neurons, which are believed
to exert vigilance-dependent modulation on the activity of primary chemoreceptors in
the medullary raphe [24]. Activation in the putamen, which is highly targeted by cortical
autonomic hubs [25], had already been observed in [13] and associated with top-down
non-sensory feedback to autonomic control. In the brainstem, a cluster is located along the
lower dorsal median line of the pons, possibly activating structures of the ascending arousal
network [26] such as locus coeruleus, parabrachial nuclei, and laterodorsal tegmentum, and
involved in alarm-triggering responses to autonomic processes [27]. In close proximity to
the pontomedullary junction, we expect to find key primary and secondary chemoreceptive
sites such as the medullary raphe and the retrotrapezoid nuclei [28,29]. The presence
of activity in the ventral pontine and periaqueductal regions is of less straight-forward
interpretation, nonetheless, we observe that the brainstem networks regulating arousal
and the switch between voluntary and autonomic motion are highly interconnected and in
close proximity with the central autonomic control network.

It is worth noting that the component selection step performed on group maps and
time series provided eight components among which four end up being included in the
triplets of inter-task similar components, i.e., end up being recognized as robust across
tasks. For the two components, nine (3%) and nine (7%) were extracted with the brainstem
mask, and for the two components 20 (3%) and 20 (7%) were extracted with the global
mask, no complete triplet could be defined. Although we might discard breathing control
centers being activated only at high levels of CO2, here we propose inter-task robustness as
a criterion for component selection which, at least in this specific case, seems to work in
confirming the presence of the same components of interest indicated by more standard
approaches (i.e., the gold-standard visual inspection and the analysis of the time course in
the frequency domain). The use of a lower threshold to assess spatial similarity could impact
the number of detected triplets. Nevertheless, we reported the two triplets characterized
by the highest stability across conditions, and this selection choice allowed to obtain
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physiologically plausible, albeit conservative, results. Future studies investigating the
proper methodology to assess component similarity might reveal a richer network, which
would be discussed in an additive fashion in light of the present literature but considering
the lower performance in terms of stability.

Masked ICA has been introduced in 2014 exactly for fMRI studies of the brainstem.
In fact, deep brainstem regions present lower temporal and spatial SNR [9]. This, as well
as the smaller size of brainstem structures with respect to larger cortical processing units,
impairs the detection of subcortical dynamics with blind source separation techniques,
in favor of cortical ones [12]. Nonetheless, in this work, we obtain an indication of the
robustness of our selected components across analyses performed on both subcortical and
global masks. This is a supportive finding, as the breathing control network is known to
extend to subcortical rhythm-pattern-generating and chemoreceptive nuclei, as well as
to cortical autonomic-regulating centers [30]. Nonetheless, local variability is expected in
independent component maps extracted with such different masks [23,31,32], therefore we
present in this work a regression analysis performed on both triplets.

A limitation of the current study is the reduced sample size, as only six subjects entered
the final analysis. In this light, despite the physiological plausibility of the brain network
responding supralinearly to increasing levels of administered CO2, we cannot generalize
such results to a broader population. In our case, the main limitation is given by the external
delivery of CO2 mixtures, possibly causing a sense of discomfort [33]. Specifically, at higher
CO2 concentrations we observed a reduced tolerability by some subjects, which caused
large head movements and also distress: one subject was excluded due to excess motion,
while the remaining time series was shortened to limit the increased movement observed
at the end of some acquisitions, as exposed in the Materials section. Crucially, we point
out that the goal of this paper is to propose a methodology for the analysis of hypercapnic
stimulation, as we underlined in the introduction. The results and the validity of our
methodology are supported by (1) the presence of couples of independently-estimated
group-level independent components that highly correlate with each other across tasks;
(2) the physiological plausibility of brain regions responding to increasing levels of CO2.

The focus on the brainstem is challenged by the limited spatial and temporal resolu-
tion of our images. Together with the low tissue contrast and low SNR typical of these
regions [10], these factors impair the precision of the co-registration process and the amount
and quality of data available for the estimation of components.

The estimation of the model order is performed by imposing an empirical upper
threshold. Model order estimation in ICA is a tricky task, around which no clear con-
sensus has been achieved yet [34–36]. Consequently, subjective, arbitrary choices are still
commonly used [37,38].

5. Conclusions

The goal of this work is to propose a methodological approach to BOLD fMRI studies
involving hypercapnic stimulation, by means of CO2 gas challenge. We offer a strategy
to characterize independent components on the basis of their temporal relationship with
the task, in order to tackle the challenge of results interpretability with data-driven ap-
proaches. The physiological plausibility of our results suggests the validity of the proposed
approach. Among these, we successfully highlighted subcortical networks showing ac-
tivation levels that are modulated by the concentration of inhaled CO2 in a supra-linear
fashion, namely, the thalamus, the hypothalamus, the putamen, and the brainstem. This
last result is particularly interesting as the clusters in which we observed the differences
were located along the medial dorsal line, where the ascending arousal network is expected
to respond to alarm-triggering sensations exerted by CO2 inhalation, and in the proximity
of the pontomedullary junction, where the medullary raphe nuclei, i.e., the main candidates
for primary chemoreception. Overall, our results speak in favor of the hypothesis of a
supra-linear relation between CO2 and BOLD signal changes in brain regions involved in
breathing control and CO2 sensing. Although the small sample size limits the generaliz-
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ability of our results, the proposed approach is promising for further studying the central
response to hypercapnia.
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