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Abstract: Emotion recognition is a very challenging research field due to its complexity, as individual
differences in cognitive–emotional cues involve a wide variety of ways, including language, expres-
sions, and speech. If we use video as the input, we can acquire a plethora of data for analyzing
human emotions. In this research, we use features derived from separately pretrained self-supervised
learning models to combine text, audio (speech), and visual data modalities. The fusion of features
and representation is the biggest challenge in multimodal emotion classification research. Because of
the large dimensionality of self-supervised learning characteristics, we present a unique transformer
and attention-based fusion method for incorporating multimodal self-supervised learning features
that achieved an accuracy of 86.40% for multimodal emotion classification.

Keywords: self-attention transformer; multimodality; inter-modality attention transformer; contex-
tual emotion recognition; depth of emotional dimensionality; computer vision; real-time application

1. Introduction

Emotion recognition and sentiment analysis have recently received a lot of attention
due to their numerous applications, such as in human–computer interactions, education,
and healthcare robotics. The correlation between the information reflected in and trans-
mitted by the facial expression and the person’s contemporaneous emotional state is a hot
topic in both customer service and education research. Earlier techniques for encoding
data modalities included emotion identification features such as mel-frequency cepstral
coefficients (MFCC) [1], elements of facial muscle activity, and glove embedding [2]. Recent
studies [3,4] have looked into the use of transfer learning approaches for extracting features
from pretrained deep learning (DL) models as opposed to low-level features. The primary
purpose of our research was to create contextualized representations from these extracted
features using transformer-based architecture, and then use these representations to eval-
uate low/high degrees of arousal and valence. The goal of our study was to extract face
expressions and acoustic sound features [5] from trained DL models for supervised learn-
ing. Previous work has combined low-level and deep features rather than representing all
modalities using characteristics derived from trained deep learning models [6]. In contrast
to earlier research, we have used deep features taken from pretrained self-supervised learn-
ing models for representing all input modalities (audio, video, and text) [7–9]. RoBERTa [9],
FAb-net [9], and Wav2Vec [9] are three freely accessible pretrained self-supervised learning
(SSL) embedded models that we used to represent text, speech, and facial expressions.
Emotional indicators that are transferable across speakers, environments, and semantic
contents can be incorporated into our representation. Because of the high dimensions of
SSL embeddings, the longer SSL feature sequence lengths, and the lack of consistency
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in the sequence lengths and sizes of SSL embedding features extracted from distinct SSL
models across modalities, SSL embedding features provide powerful presentations of all
input modalities, but fusing them prior to the final prediction is a difficult task. Although a
simple concatenation is a possible solution, additional training parameters are necessary
for the embeddings to fully link to the high-dimensional SSL embeddings and increase the
likelihood of overfitting the network. We present a novel transformer and attention-based
fusion method for incorporating multimodal self-supervised learning features due to the
high dimensionality of self-supervised learning characteristics. We also conducted an
extensive literature review and discovered that the most recent transformer-based models,
such as Fab-Net, Wav2Vec, and RoBERTa, outperform traditional deep learning models.
In previous research, we experimented with the machine learning model Support Vector
Machine (SVM), where we obtained an accuracy of 61% and with the deep learning model
Convolutional Neural Network (CNN), where we obtained an accuracy of 94% on a uni-
modal approach for emotion classification using image and an accuracy of 82.29% on a
unimodal approach for emotion classification using audio [10]. Thus, taking such concerns
into account, we developed the reliable and efficient feature fusion approach based on the
self-attention transformer. The fusion mechanism was capable of effectively combining
input modalities. Two transformers based on self-attention initially enhanced voice and
video SSL embeddings. By incorporating a classification (CLS) token that combined the
data interwoven throughout the entire sequence, this phase altered both speech and video
sequences; it added details from the other modality to the sequence representation in
each modality. We used modality-specific CLS tokens in this phase. In the concluding
section, we developed a method based on the Hadamard product to identify the salient
characteristics of each modality. In conclusion, our primary contributions appeared to be
multimodal emotion classification, where we leveraged trimodal SSL features derived from
three separately pretrained SSL architectures. We provided an innovative transformer-
based fusion technique for fusing SSL characteristics with variable embeddings, sizes, and
sequence lengths.

2. State of the Art

Computer researchers are looking into a variety of techniques for replicating tech-
niques that can successfully build effective algorithms in order to create analytical models
for face-image analyses that can successfully identify human expressions. Computer vi-
sion, artificial intelligence, and pattern recognition are three fields of study that have a
history of developing novel solutions to emotional perception problems. Most of the ear-
lier research in this area focused on gathering data from unimodal systems. Machines
that can only read facial gestures [11] or speech sounds [12] have used these to predict
emotion. After thorough research over time, multimodal systems that predict mood using
various inputs have ultimately showed to be more accurate and efficient. The designing
of convolutional neural networks (CNNs), a form of neural network, over the past few
years has led to another significant milestone. When a signal that is inputted is broken
down (de-convolved) into a collection of invariant features, CNNs have been used as
general problem solvers, offering reliable ways to extract pertinent features (like texture,
key-points, and corners). Numerous research articles, such as [13–15], have provided a
very thorough explanation of facial expression or emotion identification systems. They
have shed information on numerous facets of picture/video capturing, after-processing,
feature extraction, and recognition, as well as readily available datasets, which are cru-
cial inputs for effectively training an emotion recognition system. Other research papers
have expanded on the joint application of facial emotion recognition (FER) and subordi-
nate sources, including those on the expression of several facial emotions [16], utilizing
augmented reality [17], sentiment categorization, along with gender identification facial
expression recognition [18], and an evaluation of techniques particularly designed for real
against produced emotional face appearances [19]. At the moment, single-medium emotion
recognition, including text, speech, and image, is the focus of most emotion recognition
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research [20]. Multimodal emotion identification systems fully account for the interplay
between audio, text, image, and other modalities [21]. A multimodal fusion approach for
voice expressions was presented by Dong Liu et al. Speech expressions use convolutional
networks with long short-term memory (LSTM) cells to capture the correlation between and
within the various modalities, while video-based expressions use the Inception-ResNet-v2
network to extract the feature data [22]. Comparing multimodal approaches to unimodal
emotion identification techniques, the robustness of the emotion recognition system was
improved [23]. In this study, multimodal emotion recognition typically covered modal-
ities including speech, text, image, video, and many more. The Gaussian mixed model
(GMM) and hidden Markov model (HMM) have both been used extensively in studies
to extract facial features [24]. The authors suggested scale-invariant textures, Gaussian
mixture features, and multiresolution curvelet-transform-based symbiosis for image re-
trieval and classification [25]. CNNs serve as the foundational model of deep learning,
which has been chosen in conjunction with other network models in emotion recognition,
including LSTM and recurrent neural networks (RNNs). These optimization models have
produced great results in the domain of emotion recognition [26]. For recognizing speech
emotions, [27] suggested a parallel convolutional RNN incorporating spectral characteris-
tics. To categorize emotions using the SoftMax classifier, several high-level characteristics
were merged and then batch-normalized, improving emotion detection. By combining
Wavegram-Logmel features, which combine the wavegram and log-mel spectrograms and
speech characteristics in the waveform, which are directly retrieved from one-dimensional
time–domain waveforms, Hussain et al. developed a revolutionary method. By com-
bining the traits from each previously trained SSL embedding model with three distinct
modalities—video, audio, and text—Shamane et al. used SSL to illustrate emotion recogni-
tion using a multimodal approach. Here, the author combined multimodal SSL features by
using innovative transformers and attention-based fusion mechanisms [28]. The three sepa-
rate modes that Baijun et al. considered are sound, text, and video. These modalities were
structured and optimized on the Multimodal EmotionLines Dataset (MELD). To determine
the emotion, the author combined the EmbraceNet architecture with a transformer-based
cross-modality fusion [29]. Tzirakis et al. presented a multimodal approach for emotion
recognition using CNNs for extracting audio features and ResNet (50 layers) for extracting
features from images. Several authors have used LSTM for working upon outliers for
modeling the context [30]. Kansizoglou et al. used the emotion identification aspect to
recognize the personality of humans by tracking the continuous variations of emotions of
an individual. The author proposed a system which used face landmarks to train a deep
recurrent neural network and estimated two coefficients of emotions that were arousal and
valence [31]. Zhang at el. proposed an audio–visual spatiotemporal deep neural network
that contained a visual block containing a 2D-CNN pretrained temporal convolutional
network, an aural block containing a parallel temporal convolutional network (TCN), and a
leader–follower attentive fusion block, which combined the audio–visual information [32].
Kansizoglou et al. developed a method for an artificial agent to conceive of and eventually
understand the personality of a human by observing his/her emotional fluctuations over
the course of his/her encounter. To accomplish this, the subject’s facial landmarks were
retrieved and fed into deep neural network architecture that calculated the two coefficients
of human emotions, namely arousal and valence [33].

3. Datasets
RAVDESS Audio–Visual Dataset

Twenty-four professional actors were involved in creating this dataset with a neutral
North American accent, representing a gender-balanced representation of the population,
and performing lexically matched sentences in the database. Both speech and music can
display a range of emotions, including fear, surprise, and disgust [34]. There were two
emotional intensity levels for each expression, in addition to a neutral expression. Various
forms of emotion for face-and-voice, face-only, and voice-only were all available for all
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situations. Each of the 7356 recordings in the collection received 10 ratings for emotional
validity, intensity, and sincerity. Two hundred and forty-seven people who represented the
untrained research participants from North America provided their ratings. Seventy-two
additional participants supplied test-retest information. There were three format options
for each actor’s recorded performance: video-only (VO), audio–visual (AV), and audio-only
(AO). We considered eight different emotion categories to identify human emotion, namely
Calm, Sad, Happy, Neutral, Surprised, Disgust, Fearful, and Angry. Figure 1 represents the
sample images from the RAVDESS Audio–Visual Dataset for various emotion categories.
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4. Methodology

This research aimed to develop an automated emotion identification system that suc-
cessfully integrates all input feature modalities with SSL properties to represent important
information that may be obtained through in-person mental state monitoring. A computer
system can provide an alarm when someone displays fear, scorn, misery, or any other
comparable emotion. This can assist medical professionals in monitoring a patient’s mental
state. If anything goes wrong, professionals can alter their strategy and technique for
treating the patient.

We created a fusion method that could be easily expanded to incorporate SSL features
from other modalities. Hadamard computation for information extraction, modality-
specific CLS token-based inter-modality attention (IMA), and embedding modifications
using CLS tokens for emotion categorization were the unique elements of our transformer-
based fusion approach. Finally, we explained the feature selection based on Hadamard com-
putation.

4.1. Multimodal Feature Extraction Using SSL Models

We used three pretrained SSL models in this study. All model checkpoints were
derived from openly accessible sources. The FAIRSEQ codebase [35] was utilized to gain
access to the pretrained RoBERTa [9] and Wav2Vec [9] models as well as to extract text and
audio SSL features. Using the publication [8], we could retrieve the pretrained Fab-Net
model to extract video modality features. By using the Retina Face [36] facial recognition
system, we clipped faces from each video frame to extract attributes from movies. Fab-Net’s
pretrained model was then utilized to extract features from the video stream for each frame
that featured a face. We did not enhance any SSL models using the multimodal emotion
identification datasets. The frozen SSL model was used to retrieve the features for each
data modality. Each modality had different SSL properties in terms of size and maximal
training sequence lengths, as stated in Table 1.

Table 1. SSL model representation and the respective embedding size and sequence length.

Model Embedding Size Max Sequence Length

Wav2Vec 512 935
Fab-Net 256 300

RoBERTa 1024 512
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(1). Wav2Vec

Layers of temporal convolution were used in the construction of the Wav2Vec [37]
architecture, and the self-supervised training pre-text task used the contrastive predictive
coding [38] concept.

Figure 2 represents the unprocessed audio waveform that can be represented by the
context representation C. A maximum audio shape duration of 9.5 s and a maximum
embedding size of 512 were taken into consideration. The network, which had 35 M
parameters, was pretrained using audio from the LibriSpeech collection totaling 960 h [39].
The FAIRSEQ repository was used to obtain the pretrained model checkpoint [35].
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(2). Fab-Net

We produced embeddings using Fab-Net [8] that had already been trained in every picture
in frame which featured the face of the speaker. The Fab-Net pre-text challenge was specifically
created to motivate the network to learn facial characteristics representing locations, poses,
and expressions. The network was expected to transform the input source frames into the
destination frames by predicting the flow field in between them, since only the extracted features
matched source and target frames. The network had to approach the offset that must take
place in the pixels of the input images in order to produce the target result image. This delicate
action required a network to extract the data needed to calculate the flow field, including head
location and expression into the source and destination embeddings. Despite being taken at
different angles and positions, the input and destination image frames both came from identical
face tracks of the same person. Using two substantial defocused datasets, the network was
pretrained [40]. The embedding dimension was 256.

4.2. Feature Extraction Mechanism

Three SSL pretrained models allowed us to extract characteristics from various forms of
raw data; SSL features come in a variety of sizes and maximal training sequence lengths de-
pending on the modality. To extract speech and text SSL features, the FAIRSEQ source [35]
was used to obtain the pretrained models RoBERTa [9] and Wav2Vec [9]. We obtained the
pretrained Fab-Net model from the publication [41] and extracted the features for the video
modality. In order to extract characteristics from movies, we cut faces out of each frame
of a video using the Retina Face [42] face identification algorithm. Later, for every frame
which had a human face in it, we utilized the previously trained Fab-Net model to record
video modality information.

4.3. SSL Embedding

We attempted to develop a technique that can explain a long embedding sequence
connected with different modalities using only one embedding. For this purpose, we
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applied self-attention to every embedding sequence and added a trainable vector called
CLS to the Wav2Vec and Fab-Net embeddings (A and V).

We chose an initial unique token named CLS for our embedding sequence adaptation
period for classification because the way that BERT [42] or RoBERTa [37] models express a
full sequence inspired us. Since the self-attention mechanism is bidirectional in BERT-based
models (past and future), the CLS token in the series was encoded with the data to its right.
As a result, as a compact representation, the CLS token may be used to address classification
difficulties such as emotion recognition. Given that Wav2Vec and Fab-Net embedding
sequences do not share a structure with BERT, we simply prepended CLS tokens to them
in our model. We selected the text embedding sequence, as RoBERTa works as a normal
BERT-based model. Thus, we were able to compute inter-modality attention (IMA) more
quickly and create a straightforward late fusion mechanism due to the availability of three
CLS tokens that represented three modalities.

Figure 3 depicts the sequence for speech and video embedding modification using
two transformer blocks. SSL model features have a huge embedding size and a lengthy
sequential length.
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4.4. IMA-Based Fusion Layer

The inter-modality attention (IMA) layer worked similar to the self-attention layer,
with the exception that it created the key (K) and value (V) vectors from the embedding
sequence of the other modality and the query (Q) vector from the CLS token of the other
modality. Three embedding sequences were provided to the inter-modality attention fusion
layer as inputs, with the CLS token appearing as the first token in each sequence. Since the
CLS token of each modality collected information from the sequence, the inter-modality
attention was roughly split between the whole embedding sequence of one modality and
its CLS token. Thus, there were six inter-modality-attention-based transformer blocks with
a Q vector formed from a modality’s CLS token and K-V vector derived from the modality’s
entire embedding sequence.

Figure 4 showcases the process of using multi-head-attention- and inter-modality-
attention-based approaches for classifying emotion. On a collection of inquiries that were
arranged into the Q matrix, we computed the attention function. The matrices K and V also
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included both the keys and values. The sign dk simultaneously indicates the query, value,
key, and dimensionality of the query vector. The output matrix is calculated as follows:

Attention(Q, K, V) = softmax

(
Qkt

√dk

)
V (1)

Electronics 2023, 12, x FOR PEER REVIEW 7 of 16 
 

 

4.4. IMA-Based Fusion Layer 
The inter-modality attention (IMA) layer worked similar to the self-attention layer, 

with the exception that it created the key (K) and value (V) vectors from the embedding 
sequence of the other modality and the query (Q) vector from the CLS token of the other 
modality. Three embedding sequences were provided to the inter-modality attention fu-
sion layer as inputs, with the CLS token appearing as the first token in each sequence. 
Since the CLS token of each modality collected information from the sequence, the inter-
modality attention was roughly split between the whole embedding sequence of one mo-
dality and its CLS token. Thus, there were six inter-modality-attention-based transformer 
blocks with a Q vector formed from a modality’s CLS token and K-V vector derived from 
the modality’s entire embedding sequence. 

Figure 4 showcases the process of using multi-head-attention- and inter-modality-
attention-based approaches for classifying emotion. On a collection of inquiries that were 
arranged into the Q matrix, we computed the attention function. The matrices K and V 
also included both the keys and values. The sign dk simultaneously indicates the query, 
value, key, and dimensionality of the query vector. The output matrix is calculated as fol-
lows: AttentionሺQ, K, V ሻ =  softmax ቆ𝑄𝑘௧ √𝑑௞ ቇ V (1)

 
Figure 4. The process of classifying the emotions using multi-head-attention- and inter-modality-
attention-based transformers. 

4.5. Hadamard Product 
Before the prediction layer, we looked at potential combinations. The obvious tech-

nique for aggregating information appeared to be the concatenation of six tokens. How-
ever, before concatenating in our work, we further simplified the CLS token. Based on the 
fundamental mode of the Q vector used in inter-modality attention computation, the three 
pairs of the six CLS embeddings were categorized. The key information produced by the 

Figure 4. The process of classifying the emotions using multi-head-attention- and inter-modality-
attention-based transformers.

4.5. Hadamard Product

Before the prediction layer, we looked at potential combinations. The obvious tech-
nique for aggregating information appeared to be the concatenation of six tokens. However,
before concatenating in our work, we further simplified the CLS token. Based on the
fundamental mode of the Q vector used in inter-modality attention computation, the three
pairs of the six CLS embeddings were categorized. The key information produced by the
video, speech (audio), and text modalities was extracted using the Hadamard product
between six CLS tokens, which were retrieved from the inter-modality attention layer by
computing the Hadamard product (*) among the CLS token pairs that corresponded to
the same core modality. Vfinal, Afinal, and Tfinal are the three vectors that are produced
following the computation of the Hadamard product between the outputs of the same core
inter-modality attention modality. It was possible to easily extract the shared data among
the two CLS models using the Hadamard product. After the Hadamard calculation, the
final three forms were concatenated and sent via a prediction layer.

4.6. Synopsis of the Fusion Method

Our approach for the integrated, self-supervised fusion transformer of the presented
fusion model used the self-supervised embedding of the three modalities as inputs. Before
applying a self-attention transformer, speech and visual modalities were first given a
special CLS token. These CLS tokens for each modality were used to aggregate the data
from the full series. Transformer blocks were used to modify Wav2Vec’s and Fab-Net’s
self-supervised embeddings. Each embedding cycle that covered both text and speech
modalities was first inserted using different tokens from CLS speech and video. The
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two distinct blocks of self-attention-based transformers were then independently passed
through with altered embedding sequences. Figure 5 represents the in-short architecture of
emotion classification using a Hadamard product and inter-modality attention transformer.
Each inter-modality attention transformer took as inputs the entirety of a modality’s
embedding sequence in addition to the CLS token from that modality. For example, the
notation “Audio Text” denoted that the CLS token belonged to the voice modality whilst
the other embedding sequence belonged to the text modality. Here, the shift from speech
to text was highlighted. Every single inter-modality attention transformer generated a
CLS token that was enhanced by embedding-level knowledge acquired from the opposite
modality. Six transformer models based on inter-modality attention (IMA) made up the
fusion process. A CLS token from one modality could access the entire embedding sequence
of another modality via each of the transformer stages and gather crucial cross-modal data.
Finally, the fusion process generated six CLS tokens improved using intermodal data.

Hadamard Product o f f inal f usion
=
[
(Video → Speech)[cls] � (Video → Text)[cls]

�(Speech→ Video)[cls] � (Speech→ Text)[cls]
�(Text→ Video)[cls] � (Text→ Speech)[cls]

(2)
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Prior to the concatenation layer, the Hadamard product was employed to extract signif-
icant features from CLS token sets that correlated to the same modality. To obtain the output
probabilities, the combined vectors were then passed through a fully connected layer.

4.7. Implementation Details

This section thoroughly describes the model’s application and the experimental setting.
To put our idea into action, we used FAIRSEQ [35]. The training was carried out on a
machine with 128 GB of RAM and a Nvidia Tesla v100 with a storage capacity of 20 TB,
32 GB of RAM, and a 576-core Intel Xeon 2 processor.

5. Results

The objective of this research was to build a fusion mechanism that would use SSL
properties to represent all input feature modalities. The major objective of our work was to
develop a process for fusion that could be simply enhanced with self-supervised learning
characteristics from some multimodal emotion recognition techniques. We thoroughly
investigated how features of self-supervised learning could depict all modalities while
resolving the issues of the SSL features’ high dimensionality. A variety of data-stream
pretrained self-supervised learning models are now available to the open-source commu-
nity as a result of the self-supervised learning (SSL) paradigm’s ability to operate with
publicly available unlabeled data. Six inter-modality-attention-based transformers and two
self-supervised-attention-based transformers constituted the majority of the fusion process
we suggest using. The fusion was primarily produced to deal with discrete self-supervised
sequence embedding while carefully taking into account variations in self-supervised em-
beddings produced by architectures of various pretrained algorithms that the academic
community can acquire without effort. There is an increasing number of self-supervised
learning models that have been pretrained for various streams because the self-supervised
learning (SSL) paradigm can make use of easily accessible unlabeled data. The core of
our proposed fusion technique consisted of two self-supervised-attention-based transform-
ers and six inter-modality-attention-based transformers. Our primary goal of the fusion
technique was to handle discrete self-supervised learning (SSL) embedding sequences
while taking into account variations in self-supervised sequence embeddings generated by
other architectures that are pretrained. This cause was the basis for the tests demonstrat-
ing the self-supervised learning (SSL) features’ potential to enhance performance for the
multimodal emotion recognition task utilizing publicly accessible RAVDESS datasets. The
results are shown in the table below. Due to these factors, studies using publicly accessible
RAVDESS datasets have demonstrated self-supervised learning (SSL) features’ superior
performance when used for multimodal emotion identification. The findings are shown in
Table 2.

In one or more dimensions of space, the dimensional model depicted the emotional
states. Wilhelm Max Wundt classified human emotions into three groups in 1897: “plea-
surable vs. unpleasurable”, “arousing vs. subduing”, and “strain vs. relaxation” [43].
Harold Schlosberg first proposed the three qualities of “pleasantness-unpleasantness”,
“attention-rejection”, and “degree of activation” in 1954 [43]. Most dimensional models
divide emotional states into the “valence” and “arousal” dimensions. The figure below
shows the mean ratings for arousal and valence in the audio-only (n = 21), visual-only
(n = 14), and audio–visual (n = 8) conditions. From Table 2, we recognized that our pro-
posed approach could classify all the eight emotions precisely and it worked best on the
Happy, Fearful, and Surprised emotions.

Figure 6 represents the plot of the confusion matrix for eight emotion categories that
included sad, calm, fear, surprise, angry, happy, neutral, and disgust.

Figures 7 and 8 represent the plotting of training and testing accuracy and loss with
regard to every epoch. This graph also showcases that there were no over-fitting or
unbefitting in our training method.
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Table 2. Precision, recall, and accuracy metrics per emotion for the top model that achieved an
accuracy of 86.40%.

Emotions

Modalities

Wav2Vec Fab-Net RoBERTa Multimodal

PRE F1 REC PRE F1 REC PRE F1 REC PRE F1 REC

Neutral 0.84 0.75 0.85 0.83 0.77 0.82 0.86 0.80 0.86 86.31 77.33 70.25

Calm 0.85 0.80 0.78 0.87 0.83 0.79 0.84 0.82 0.81 81.45 81.66 75.63

Happy 0.88 0.78 0.71 0.85 0.80 0.80 0.87 0.79 0.77 89.79 79.10 79.25

Sad 0.86 0.79 0.99 0.84 0.80 0.93 0.85 0.75 0.89 81.22 78.28 81.88

Angry 0.82 0.81 0.99 0.85 0.88 0.90 0.83 0.80 0.80 81.78 83.00 82.37

Fearful 0.78 0.80 0.88 0.85 0.79 0.81 0.80 0.83 0.88 88.26 80.66 83.62

Disgusted 0.85 0.85 0.96 0.86 0.86 0.80 0.81 0.84 0.95 83.99 85.12 85.50

Surprised 0.87 0.89 0.98 0.82 0.90 0.91 0.85 0.86 0.98 89.50 88.33 77.87

Avg Weightage 84.37 80.87 89.25 84.62 82.87 84.50 83.87 81.12 86.75 85.28 81.68 79.54
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Figure 9 shows the graphical representation of the results for all emotion categories in
two-dimensional form taking arousal and valence into consideration. We have considered
recognizing emotion categories into two forms (i.e., arousal and valence for identifying
acute feelings of the person).
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6. Comparison with Existing Studies

The comparative analysis of the multimodal approach for the suggested mode and existing
study is shown in Table 3. We carried out a series of comparisons and selected the latest work
in order to combine the modalities of audio, face, and text. Siriwardhana et al. [28] created
a multimodal fusion model and attained cutting-edge outcomes. By combining numerous
modalities as opposed to a single modality, the accuracy and F1-scores were enhanced, according
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to the findings of the earlier investigations. Similarly, Xie et al. [29] presented multimodal as
well as unimodal approaches for recognizing emotions for both audio and face modalities. We
suggest a method for identifying emotions and determining their valence and arousal when
compared with the following studies.

• Multi-level Multi-Head Fusion Attention RNN Model [28]

The authors presented a novel transformer-based fusion mechanism for fusing SSL
characteristics with arbitrarily embedded embeddings, sizes, and sequence durations. They
further tested and compared their model’s robustness and generalizability on four pub-
licly available multimodal datasets. Their fusion mechanism, called the “Self-Supervised
Embedding Fusion Transformer (SSE-FT),” used tri-modal SSL features extracted from
three independently pretrained SSL architectures for multimodal emotion recognition.
Their framework consisted mainly of two self-attention-based transformers and six inter-
modality-attention (IMA)-based transformer blocks. The speech and video SSL embeddings
were first modified by two self-attention-based transformers. This stage modified both
speech and video recordings by adding a special token called CLS that could consolidate
the information inherent in the entire sequence. Six IMA-based transformers then processed
the three SSL embedding sequences, enhancing each modality sequence representations
with information from another modality. They used CLS tokens particular to each modality
and then employed a Hadamard-product-based algorithm to determine the most important
characteristic in each modality.

• Robust Cross-modality Fusion [29]

This study demonstrated robust multimodal emotion categorization architecture that
combined three independent input modalities via cross-modal transformer fusion. The
architecture took into account both the modalities’ joint relationships and the robust fu-
sion of different representation vector sources. Three distinct prediction methods were
adapted to discern emotion using audio, video, and text-based inputs. GPT, WaveRNN,
and FaceNet+GRU were used to train text, audio, and image inputs, respectively. The
proposed transformer-based fusion method demonstrated its capacity to perform the job
of multimodal feature fusion from several pretrained models using EmbraceNet. The
attention results from the cross-modal systems were employed by EmbraceNet to build a
fused depiction of the emotion embedding vectors.

Table 3. Comparative study of proposed model with existing work on multimodal approaches.

Experiments Modality Accuracy F1-Score

Multi-level Multi-Head
Fusion Attention RNN

Model [28]

Multimodal (Audio +
Facial + Text) 64.3 63.9

Robust Cross-Modality
Fusion [29]

Audio 48.4 32.1
Facial 47.8 31.4
Text 62.6 61.2

Multimodal (Audio +
Facial + Text) 65.0 64.0

Our Proposed Approach Multimodal (Audio +
Facial + Text) 87.6 81.68

Our suggested method achieved greater accuracy and equivalent F1-scores, which
were on par with state-of-the-art performance and demonstrated the robustness in multi-
modal emotion categorization.

7. Conclusions

We proposed an approach that used unsupervised data that is extensively available
using self-supervised learning (SSL) algorithms to recognize the emotion. By utilizing



Electronics 2023, 12, 288 13 of 15

this strategy, we were able to save time in retraining the model or starting from scratch
and to utilize pretrained self-supervised learning algorithms that are currently available.
Using self-supervised learning as an input indicated that the features generated had high
dimensions and were regarded as high-level features that required a trustworthy and in-
depth fusion process. The outcomes indicated that we can successfully tackle the problem
of multimodal emotion identification using the self-supervised learning (SSL) and inter-
modality interaction approaches. By using pretrained self-supervised learning algorithms
for the extraction of features, we focused on improving the task of emotion identification.
We developed a multimodal fusion technique that was a transformer-based method to
achieve our goal. Moreover, we acutely identified our emotion categories by applying
them in two dimensions (i.e., arousal and valence). Initially, we demonstrated that our
technique could outperform earlier state-of-the-art methods by comparing our model to
strong baselines from RAVDESS datasets. In the future, we hope to experiment with
recognizing emotions from contextual data and categorizing them into three dimensions:
arousal, valence, and dominance. We also intend to put our model to the test in the medical
arena to assist specialists in accurately diagnosing patients.
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