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Abstract: The vehicle routing problem (VRP) is a common problem in logistics and transportation
with high application value. In the past, many methods have been proposed to solve the vehicle
routing problem and achieved good results, but with the development of neural network technology,
solving the VRP through neural combinatorial optimization has attracted more and more attention
by researchers because of its short inference time and high parallelism. PMOCO is the most state-of-
the-art multi-objective vehicle routing optimization algorithm. However, in PMOCO, preferences
are often uniformly selected, which may lead to uneven Pareto sets and may reduce the quality
of solutions. To solve this problem, we propose a multi-objective vehicle routing optimization
algorithm based on preference adjustment, which is improved from PMOCO. We incorporate the
weight adjustment method in PMOCO that is able to adapt to different approximate Pareto fronts and
to find solutions with better quality. We treat the weight adjustment as a sequential decision process
and train it through deep reinforcement learning. We find that our method could adaptively search
for a better combination of preferences and have strong robustness. Our method is experimented
on multi-objective vehicle routing problems and obtained good results (about 6% improvement
compared with PMOCO with 20 preferences).

Keywords: vehicle routing problem; logistic and transportation; neural combination optimization;
multi-objective optimization

1. Introduction

The vehicle routing problem is a common problem in logistics and transportation.
With the rapid development of the e-commerce industry and intelligent transportation,
the VRP has become increasingly popular with researchers, and its purpose is to design
a series of routes to make vehicles move orderly under certain constraints [1]. The multi-
objective vehicle routing problem requires us to optimize two contradictory objectives at
the same time, and it has many application scenarios in practice. For example, in the task
of transporting dangerous goods, we need to reduce transportation risks and to reduce
transportation costs. In the task of green transportation, we need to reduce the distribution
cost of goods while trying to avoid environmental problems.

In the real world, the basic VRP often fails to meet diversified requirements, so a large
number of similar but more complex vehicle routing problems have been proposed to adapt
to practical applications. In the vehicle routing problem with a time window, the delivery
time of each customer is limited [2]. In the capacitated vehicle routing problem, there
is a limit to the maximum capacity of the vehicle [3]. In the multi-depot vehicle routing
problem, there are multiple depots in the distribution network, and the same goods can be
picked up at multiple depots [4]. In the split delivery vehicle routing problem, the same
customers’ goods can be delivered by multiple vehicles [5].
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The VRP is also a classical combinatorial optimization problem; since the problem was
first proposed by Dantig and Ramser in 1959 [6], many different types of algorithms have
been proposed to solve it. In general, these algorithms can be divided into three categories:
exact algorithm, approximate algorithm, and heuristic algorithm. The exact algorithm can
obtain the theoretical optimal solution, but the VRP is an NP-hard problem [7]. An NP
problem refers to the fact that validation can be found in polynomial time of the problem.
NP-hard problems are those in which all NP problems can be reduced in polynomial time.
NP-hard problems are usually very complex, and it is difficult to find an exact solution
in polynomial time. Therefore, it is usually not advisable to use exact solution methods
on large-scale VRP problems; the time cost brought by the exact algorithm is often unac-
ceptable with the increase in the problem size. Approximation algorithms hope to find an
approximate solution in an acceptable time, but many combinatorial optimization problems
do not have approximation guarantees. In the past, heuristic algorithms were more often
studied to solve the VRP. A heuristic algorithm is an algorithm based on experience design;
it could give a feasible solution in an acceptable time, but the optimality of the feasible
solution is often not guaranteed. Furthermore, heuristic algorithms are often designed for
specific problem, so they may lack flexibility. In recent years, with the development of deep
learning and reinforcement learning technology [8–14], neural combinatorial optimization
has become more and more popular among researchers for its short inference time, high
parallelism, and strong robustness [15–18]. However, neural combinatorial optimization
algorithms often require elaborate designs, esoteric domain knowledge, and long training
times. In many related studies, the VRP is modeled as a sequential decision problem, which
may lead to the problem of a long computation time when solving large-scale problems.
Therefore, solving the VRP with neural combinatorial optimization methods both has
potential and is challenging [19].

In our work, we mainly studied the multi-objective capacitated vehicle routing prob-
lem (MOCVRP) [20], where there are two contradictory objectives: one objective is the
total tour length, and the other one is the tour length for the longest route. PMOCO [21] is
the most state-of-the-art algorithm in solving MOCVRP. PMOCO takes Transformer [22]
as the backbone structure of the model. It uses an encoder to encode the location in-
formation of customers and the depot and uses a decoder to output the next selected
customer one by one, thus forming a route. In order to solve the multi-objective problem,
PMOCO proposes a preference-conditioned model using hypernetwork [23] to generate
decoder parameters, which can solve the multi-objective problem with any number of
preferences. Although PMOCO has a good effect on the multi-objective vehicle routing
problem, PMOCO does not take into account the importance of weight adjustment. Our
method proposes an adaptive weight adjustment method on the basis of PMOCO to ob-
tain a better weight combination. In addition, the weight adjustment strategy of most
traditional methods adopts a heuristic method [24], which has a high time complexity.
The combination of traditional weight adjustment strategies and deep learning algorithms
may make deep learning algorithms lose their advantages of a short inference time. There-
fore, we propose an end-to-end weight adjustment strategy, which is more suitable for
multi-objective algorithms based on deep learning, filling the gaps in weight adjustment
strategies and further improving the effect of PMOCO.

Our paper follows the following structure. In the Introduction section, we give a
brief overview of the problem background and the proposed approach. In the Related
Work section, we introduce some classical vehicle routing algorithms and neural multi-
objective optimization algorithms. In the Formulation section, we introduce the problem
formulation of MOCVRP and multi-objective problems, as well as several key concepts
in multi-objective optimization. In the Scalarization Method section, we introduce three
common Scalarization methods in solving the multi-objective problem. In the Methodology
section, we describe the details of the algorithms and model structures we used. In
the Experiment Setting section, we introduce the setting of our experiments, including
the baselines, problems and settings, and inference and metrics. In the Results section,
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we analyze the results of the experiment. In the Conclusion and Future Work section, we
summarize the proposed methods and propose some work worth improving in the future.

Our contributions of this paper are threefold:

• We analyze the shortcomings of applying the traditional weight adjustment method
directly to the neural combinatorial optimization algorithm.

• We propose an end-to-end weight adjustment method that is more suitable for solving
the VRP.

• We demonstrate the effectiveness of the proposed method by performing experiments
on standard MOCVRP instances.

2. Related Work

There have been many feasible algorithms for solving the VRP and multi-objective
optimization problems. In this section, we will provide a review of traditional vehicle
routing algorithms, heuristic VRP algorithms based on machine learning, and neural
multi-objective optimization algorithms.

Traditional VRP Algorithms. There are many traditional methods to solve the VRP.
The exact algorithms for solving the VRP mainly include the branch and bound method [25],
the mixed integer linear programming method [26], and the dynamic programming
method [27]. Exact algorithms can obtain exact solutions, but this method is often limited
by the size and form of the problem, and the performance is not good when solving large-
scale or complex problems. Renaud et al. [28] tried to combine the sweep algorithm and
the mixed integer programming method to improve the speed and quality of the solution.
Clark and Wright [29] sorted the routes according to the size of the savings value and
discharged the corresponding two customer points into the paths according to certain rules.
Shaw et al. [30] used the ruin and repair operators to improve the original solution and
achieved better local optimality. Dorigo et al. [31] designed an ant colony optimization
algorithm inspired by ant colonies and used it in the vehicle routing problem. Osman com-
bined tabu search and simulated annealing (SA) to solve the vehicle routing problem [32].
There are also many other studies that combined different heuristic methods to adapt to
more complicated problems [19].

Heuristic VRP Algorithms based on Machine Learning. Machine learning-assisted
heuristic VRP algorithms could be divided into two categories: one is end-to-end methods,
and the other is methods that assist traditional heuristics. Inspired by the problem of ma-
chine translation, Vinyals [33] designed a pointer network, with a long short-term memory
network as an encoder and an attention mechanism network as a decoder, and trained with
supervised learning. Scarselli et al. [34] combined a pointer network with graph neural
networks to increase the ability to generalize to large-scale problems. Kool et al. [35] used
Transformer as the backbone of his network. Meanwhile, in order to avoid expensive label
acquisition, reinforcement learning was used to train the network. Xin et al. [36] proposed
to update the learned node representations in the Transformer architecture in [35] at each
step of the decoding process, so as to obtain more precise information and better solutions.
Xin et al. [37] further proposed a multi-decoder architecture, which learns multiple decod-
ing policies at the same time, which increases the chance of finding better solutions. Despite
the potential of the end-to-end approach, the machine learning-assisted heuristic has better
performance [19]. Wu et al. [38] learned a method to improve the original solution. A new
search operator was designed by Chen [39] based on deep learning and achieved good
results. Santana et al. [40] adopted a heatmap to guide search. Feng et al. [41] adopted
transfer learning to optimize VRP.

Neural Multi-Objective Optimization Algorithms. Common methods for solving
multi-objective optimization problems fall into three categories: decomposition-based,
dominance-based, and indicate-based [42]. Neural multi-objective optimization algorithms
usually follow the first one. The decomposition-based method uses an aggregation function
to decompose a multi-objective problem into multiple single-objective problems corre-
sponding to different preferences and optimizes them with a neural network, which is
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similar to the idea of an MOEA\D [43]. DRL-MOA [44] adopts preference transfer training
to avoid repeated training for similar subproblems. PMOCO uses hypernetworks to inte-
grate preference information into neural networks to establish a preference-conditioned
model. COSMOS [45] concatenated preferences and instances as input features of neural
networks. MDRL [46] treats the single-objective problems corresponding to different pref-
erences as subtasks and trains a meta model to optimize these subtasks simultaneously.
PMTL [47] considers both the Pareto solution corresponding to the preference and the angle
of the preference itself to make the approximate Pareto front more uniform. Most of these
methods do not change the preference but split the preference evenly, and our method
is able to adjust the weights to further improve the effect of the neural algorithm based
on preference.

3. Formulation

In this section, we introduce the problem formulation of MOCVRP and multi-objective
problems, as well as several key concepts in multi-objective optimization.

Definition 1 (Multi-Objective Capacitated Vehicle Routing Problem (MOCVRP)). The VRP
could be described as assuming that there are n customers and a depot in graph G = (V, E), where
V consists of customers node and depot node and E = {(i, j) : i, j ∈ V, i < j} represents a edge set
which contains connects to different nodes, such as va and vb (a ∈ n, b ∈ n, a 6= b). The solution of
the VRP could be regarded as a trajectory π, and the objective of the VRP is to optimize the π under
certain conditions. The vehicle needs to depart from the depot and to return back after completing
the distribution task.

MOCVRP is an extension of the VRP. The vehicle has a maximum capacity limit D, and each
customer has a fixed amount of demand di(i ∈ n) to transport. For a distribution process of the
same vehicle, the sum of demand ∑ di through customer nodes cannot be greater than D. A simple
illustration is shown in Figure 1.

Figure 1. Example solution of CVRP. The five-pointed star represents the depot, and the triangle
represents the customer’s location. And, the blue, green, and purple lines represent different routes
for different vehicles to deliver goods.

Definition 2 (Multi-Objective Problems (MOP)). In general, a multi-objective problem can be
defined as follow:

min
x∈X

F(x) = ( f1(x), f2(x), . . . , fm(x)) (1)

where the X is the decision space, m is the number of objectives, fi(x) is the ith objective
(i = 1, 2, . . . , m), and F(x) is an m-dimension objective vector of the multi-objective problem.
In multi-objective optimization, the values of different objectives are often conflicting, which also
means that it is difficult to optimize multiple objectives at the same time.
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Definition 3 (Pareto Dominance). Let x1, x2 ∈ X , if and only if fi(x1) ≤ fi(x2), ∀i ∈
{1, 2, . . . , n} and fi(x1) < fi(x2), ∃i ∈ {1, 2, . . . , n}, we could said that x2 is dominated by x1
(i.e., x1 ≺ x2).

Definition 4 (Pareto Optimality). If x∗ ∈ X is Pareto optimality, then there is no x ∈ X (x 6= x∗)
dominating x∗. And, we call F(x∗) the Pareto optimal point.

Definition 5 (Pareto Set). In general, there exist multiple Pareto optimal solutions; we define the
set of all Pareto optimal solutions as the Pareto set and the image of all Pareto optimal points as the
Pareto front. But, in practice, the Pareto optimal solutions we can obtain is finite and it is difficult
to obtain the theoretical optimal solution, so we often replace the Pareto set with an approximate
Pareto set of finite Pareto optimal solutions and replace the Pareto front with an approximate Pareto
front of finite Pareto optimal points.

Definition 6 (Hypervolume (HV)). To measure the effect of our method, we need to compare
Pareto sets. However, Pareto sets are difficult to compare directly, so we choose the hypervolume
(HV) [48] that is most commonly used in multi-objective optimization to measure the advantages
and disadvantages of different methods. Since it is difficult for us to obtain the ground truth Pareto
set truth, we use the approximate Pareto set instead.

Hypervolume is the volume dominated by an approximate Pareto set V of reference points r∗.
So, we could define HV(V) as follow:

S = {r ∈ Rm | ∃ v ∈ V such that v ≺ r ≺ r∗} (2)

where m is the number of objectives and HV (V) = VOL (S). A simple illustration is shown in
Figure 2 for a more intuitive understanding of HV, where V = {v1, v2, v3, v4} is dominated by r∗

in our two-dimensional example.

Figure 2. Example of HV. The part of r∗ dominated by v1, v2, v3, and v4 is the HV of this example
(i.e., the area of the pink).

4. Scalarization Method

It is very difficult to solve multi-objective problems directly, so it is a common method
to transform a multi-objective optimization problem into a set of single-objective optimiza-
tion problems. The specific method is to normalize each sub-objective in the multi-objective,
so as to obtain a set of problems and to solve the set of problems. Three commonly used
quantization methods are defined below.

• Weighted Sum:

min
x∈X

gws(x | λ) = min
x
∈ X

m

∑
i=1

λi fi(x) (3)

Weighted sum is the simplest scalarization method [49], where λ is the coefficient
vector of the objective function, also known as preference. However, the weighted
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sum method is not good at solving non-convex parts of the Pareto front [50], and more
methods have been proposed to accommodate the more complex Pareto front.

• Tchebycheff Approach:

min gte(x | λ, z∗) = max
1≤i≤m

{λi| fi(x)− z∗i |} (4)

Tchebycheff is another commonly used scalarization method [49], which is roughly
based on the idea of reducing the maximum gap and thus approximating the individ-
ual to Pareto front.

• Penalty-based Boundary Intersection (PBI) Approach:

min
x∈X

gpbi(x | λ, z∗) = d1 + θd2 (5)

d1 =

∥∥∥(F(x)− z∗)Twλ
∥∥∥

‖λ| (6)

d2 =

∥∥∥∥F(x)−
(

z∗ + d1
λ

‖λ‖

)∥∥∥∥ (7)

PBI aims to make F(x) as close to the theoretical optimal solution as possible on the
premise of ensuring the convergence and diversity of the method [43]. However, PBI
needs to set hyperparameters in advance, which limits the flexibility of this method.

5. Methodology

In this section, we propose a method to automatically adjust preferences according
to the solution of the problem in the objective space, which hardly increases the quality
of solution of neural combinatorial optimization algorithm. We define the method as a
Markov Decision Process (MDP) and train it through reinforcement learning.

5.1. Markov Decision Process

Preference adjustment is an important part of multi-objective optimization. A good
adjustment method can ensure the diversity of solutions in multi-objective algorithms.
Traditional weight adjustment method includes several steps, an AdaW [24] summary
for archive maintenance, weight addition, weight generation, weight deletion, and five
weight update steps. The algorithm complexity of the traditional method will increase
with the number of objectives, number of populations, number of archives, number of
weights, and other parameters, and it is not suitable for the new neural method. However,
the algorithmic complexity of our proposed method is only related to the amount of fine-
tuning. If no fine-tuning is selected, the algorithm complexity at inference time is O1. We
define the MDP formulationM = (S ,A,P , r, γ) as follows:

State space S : st = {O1, O2} is a state in S , and it consists of two parts: the first part
is the objective values corresponding to the uniform preferences ou, and the second part is
the objective value corresponding to the adjustable weights oa. A more detailed definition
is as follows:

O1 = {(ou1
1, . . . , ou1

N), . . . , (ouM
1 , . . . , ouM

N )} (8)

O2 = {(oa1
1, . . . , oa1

N), . . . , (oaM
1 , . . . , oaM

N )} (9)

where N is the number of objective and M is the number of preferences.
Action spaceA: the action at ∈ A is to find a new preference, and the objective values

corresponding to the old weight in O2 will be replaced by the objective value corresponding
to the new weight.

Transition probability P : The transition probability here is obtained with the learned
method and is determined in our method.
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Reward function r: The reward function is designed as the difference between the HV
of the current state and the next state. That is, we learned a strategy of adjusting preferences
to make HV larger.

Discount rate γ: The discount rate γ is set to 1.0, which means that future rewards
are not discounted for the current state.

We define the process of weight adjustment as a sequential process. In this process, we
learn a strategy that aims to maximize the numerical value of HV by gradually adjusting
the preferences and learning it through a reinforcement learning algorithm; we apply the
Soft Actor Critic algorithm (SAC) [51] algorithm as our reinforcement learning algorithm.
A simple illustration is shown in Figure 3. To further improve the effect of our method,
in the experiment, we fixed instances and fine-tuned them. Of course, it is okay not to
fine-tune. The specific method of fine-tuning is that we will update the neural network
parameters several times online for a given instance to achieve better results, and the
fine-tuning time is usually not very long.

Figure 3. A simplified illustration of the MDP. Given state s, action a will choose the appropriate
preference at each step and obtain reward r.

5.2. Model Design
5.2.1. Basic Model

We selected the state-of-the-art preference-conditioned multi-objective model in PMOCO
as our basic model, and its structure is a improvement and extension of the famous
Attention Model [35].

Encoder The decoder mainly consists of multi-head attention, a batch norm layer, and
a feed forward layer [22]. Unlike Transformer, we do not use position embeddings in the
input to the model, instead taking the geographic location of n customers and a depot as
input. So, we could obtain the embedded location information in the encoder.

Preference-Conditioned Decoder The decoder in our paper is different from that in
Transformer. The preference-conditioned model is inspired by hypernetworks and trains a
network capable of generating decoder parameters θ(λ) = {WQ(λ), WK(λ), WV(λ), WMHA(λ)}
based on preferred input, where WQ(λ) is the query embedding, WK(λ) is the key embed-
ding, WV(λ) is the value embedding, and WMHA(λ) is the multi-head attention embedding;
more details can be found in Figure 4. In solving CVRP, the decoder obtains a complete
route through multiple iterations. In every iteration t, the encoder will concatenate the
first selected route embedding h1 with the previous selected node embedding ht−1 and
combines with the embedding parameters θ(λ) , obtaining the complete context embedding:

h(C) = MHA
(
Q = [h1, ht−1]WQ(λ), K = {e1,n, d}WK(λ), V = {e1,n, d}WV(λ)

)
WMHA(λ) (10)

where e1,n is the customer location embedding and d is the depot location embedding.
The selected customer node will be masked, and other customer node will be selected
according to the final so f tmax layer. The decoder selects a customer node for each iteration.
When the total amount of goods at the selected customer node exceeds the capacity of the
vehicle, the vehicle will restart from the depot. And, when all customer nodes are selected,
we obtain the full trajectory π.
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5.2.2. Preference Adjustment Model

In the model part of preference adjustment, we use the multi-layer perceptron [52]
(MLP) as the backbone of the model. We design a Y-shaped network, that is, the input
layer is divided into two parts: one part accepts the objective values corresponding to the
uniform embedding as input, and the other part accepts the objective values corresponding
to the adjustable embedding as input, and the two parts of the input are concatenated
together after the partial embedding layer (i.e., MLP). We predict the new weight at
last. Such a design can not only effectively obtain the characteristics of different types of
weights but also obtain their mixed characteristics, which helps neural networks make
more comprehensive use of valid input information. Both of the models are shown in
Figure 4. The pseudo-code of our training algorithm is given in Algorithm 1.

Figure 4. A simple illustration of the network structure. (a) is the preference-conditioned model, and
(b) is the preference adjustment model

Algorithm 1 Preference adjustment model training.
Input: A preference-conditioned model P, a preference adjustment model M with parameter θ,
training instance distribution D, number of preferences K, learning rate α, number of training
iterations N , batch size B;

1: for n = 1, . . . ,N do
2: Sample a mini batch of B instances dn ∼ D
3: Initialize preference set Q← ∅
4: for k = 1, . . . , K do
5: Generate a new preference pk =M(Q|θ)
6: Update preference set Q′ ← Q ∪ {pK}
7: Calculate reward r = HV(P(Q′, dn))− HV(P(Q, dn))
8: Training the model using SAC: ∇θM(θ)← SAC(pk, r, Q, Q′), θ ← θ − α∇θM(θ)
9: Q← Q′

10: end for
11: end for
12: Return The trained preference adjustment modelM

6. Experiment Setting

In this section, we introduce the setting of our experiments, including the baselines,
problems and settings, and inference and metrics.

6.1. Baseline

In this paper, we will compare our approach to the existing neural multi-objective
combinatorial optimization approaches PMOCO [21] and DRL-MOA [44]. DRL-MOA is
the first method to optimize multi-objective combinatorial optimization problems using
neural networks. It regards a multi-objective optimization problem as an optimization
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problem with multiple single objectives and uses transfer training method to improve the
effect and to reduce the training amount. PMOCO is a newly proposed state-of-the-art
method. Inspired by hypernetwork, it uses preference information to generate decoder’s
parameters and to obtain Pareto solutions under arbitrary preferences. In the experiments,
a data augment method (Aug) proposed by POMO is used in PMOCO and our method
adjustable preference (AP) to further improve the effect. The data augmentation method in
POMO considers the symmetry of CVRP and amplifies one instance into eight different
instances that have the same solution. The optimal solution of these eight instances is the
solution after using the data augmentation method.

6.2. Problems and Setting

We considered MOCVRP as our experimental study, and the MOCVRP has three sizes:
20, 50, and 100. We set the learning rate at α = 10−4, the training iterations at N = 10,000,
and batch size at B = 128 in our method. We set K = 20 preferences in our experiments,
both for our method and the baselines. We experimented on a single NVIDIA GeForce RTX
2080 super GPU and a single 3.6 GHZ intel i9-9900k CPU. All the results in our experiments
are averaged over the results of 100 random instances.

6.3. Data Sets

In CVRP, it has a homogeneous fleet of vehicles with the same capacity D, which
undertakes the task of transporting goods from one depot node to other n prespecified
customer nodes and back to the depot node. Capacity D represents a certain capacity of
the vehicle, such as the maximum load of the vehicle. Each customer node i is defined
as a two-dimensional coordinate with the number of demands di to be satisfied. For the
route traveled by each vehicle, the total demand of the customers it visits cannot exceed
its capacity. The multi-objective CVRP (MOCVRP) considered in this paper involves the
optimization of two conflicting objectives, namely minimizing the total trip length of all
vehicles and minimizing the longest route length between vehicles.

Our dataset is generated in the same way as PMOCO [21]. We consider three problem
sizes with 20, 50, and 100 customers. We generate the locations (i.e., the two-dimensional
coordinates) of the customer nodes and depot node by uniformly sampling from the unit
square [0, 1]2. For the demand, we uniformly sample di from the set {1, . . . , 9}, and the capac-
ity D is set to 30, 40, and 50, respectively, for problems of size 20, 50, and 100, respectively.

6.4. Inference and Metrics

We use a variety of metrics to measure the effectiveness of our approach, including
HV, gap, and model information. HV is one of the most commonly used metrics in multi-
objective optimization. It can reflect not only the quality of the solution but also the
uniformity of the solution, which is a comprehensive metric. More details about HV have
been explained in detail in Section 3. Gap is the ratio of hypervolume difference between
the current method and the optimal method under the same experimental conditions.

7. Results

We first discuss the number of trainable models and parameters of our method and the
baselines. In Table 1, we list the model information of different methods. We can see that
DRL-MOA [44], which is based on a pointer network [33] with 0.2 M trainable parameters,
needs to train a model for each required preference. In contrast, the number of trainable
models and parameters of PMOCO [21] and our method does not increase with the number
of preferences. Although the base model, which is the attention model in [35], has 1.4 M
parameters and is larger than that of DRL-MOA [44], the total number of trainable param-
eters is much smaller that of than DRL-MOA when the required number of preferences
is large (20 in our case). This is convenient in practice because usually a large number of
preferences is required to cover the Pareto front. In this case, the parameter training and
storage cost of DRL-MOA [44] would quickly become infeasible. Compared with PMOCO,
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though, our method needs to train one more model, i.e., the preference adjustment network;
however, it does not add many trainable parameters since the preference adjustment model
is very small.

Table 1. Model information for different methods (“#” means “numbers of”).

Method Base Model #Models #Params

DRL-MOA Pointer-Network #Pref #Pref × 0.2 M
PMOCO Attention Model 1 1.4 M
AP Attention Model + MLP 2 1.4 M

In Table 2, we summarize the experimental results on MOCVRP. From the table, we
can conclude that our method greatly improves the performance of the original method
(PMOCO) in all experiments. Among all the methods, DRL-MOA is less effective than
other methods. Compared with the state-of-the-art multi-objective neural combinatorial
optimization method PMOCO, our approach achieved an average improvement of about
6%, without the data augmentation technique. When the usage data were augmented,
the gap between our approach and PMOCO was narrowed, with an average improvement
of about 3%. In Figure 5, we can also intuitively see that the preference distribution learned
by our method is more uniform than that of PMOCO. Uniform preferences are unevenly
distributed across the Pareto front of MOCVRP, and many overlapping points are generated.
Our approach learns a more evenly distributed combination of weights across the Pareto
front, thus improving the quality of the solution. We are pleasantly surprised that even
without data augmentation, our approach did not lag far behind PMOCO using data
augmentation, which further demonstrates the competitiveness of our approach for data
augmentation, which typically requires additional GPU memory and a lot of inference time.

Table 2. Experimental results on MOCVRP with different input sizes (bold means the best among
all methods).

MOCVRP20 MOCVRP50 MOCVRP100

Method HV Gap HV Gap HV Gap

DRL-MOA 0.141 39.74% 0.218 53.72% 0.199 56.07%
PMOCO 0.206 11.97% 0.410 12.95% 0.400 11.70%
PMOCO-Aug 0.231 1.28% 0.454 3.61% 0.428 5.52%
AP 0.225 3.85% 0.442 6.16% 0.420 7.28%
AP-Aug 0.234 0.00% 0.471 0.00% 0.453 0.00%

Figure 5. Pareto front of PMOCO and ours. We can intuitively see that the weights learned through
our method are more evenly distributed across the Pareto front.

8. Conclusions and Future Work

We proposed a novel preference adjustable multi-objective vehicle routing optimiza-
tion method. It treats the preference adjustment as a sequential decision-making process
and was trained with common reinforcement learning methods. It makes the distribution
of preferences more consistent with the problem, rather than a simple uniform distribution.
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Because uniformly distributed preferences are often not guaranteed to be optimal pref-
erences. We improved the PMOCO with our proposed method, which greatly improves
the effect of PMOCO under 20 preferences. Furthermore, our proposed method solves the
problem of a high time complexity when combining the traditional heuristic-based weight
adjustment method and a deep learning algorithm. We also designed a series of experi-
ments to verify the effectiveness of our method. The experimental results on MOCVRP
with 20, 50, and 100 customers show that the proposed method can improve the results of
the state-of-the-art PMOCO by about 6% with 20 preferences.

Although our method has achieved good results, there is still much room for improve-
ment. Our approach treats preference adjustment as a sequential decision process, but in
reality, there is no strict ordering of preferences selected in a certain order because these
preferences are more similar to a set than a sequence. So, designing a set-based method
to adjust preferences may be an important research direction in the future. In addition,
our approach is less effective when there are a large number of preferences. Although this
situation is relatively rare in practical application, it is still an urgent problem to be solved.
Improving our approach so that it could work well even with a large number of preferences
is also worth exploring in the future.
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