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Abstract: Data augmentation, as a common technique in deep learning training, is primarily used
to mitigate overfitting problems, especially with small-scale datasets. However, it is difficult for
us to evaluate whether the augmented dataset truly benefits the performance of the model. If the
training model is relied upon in each case to validate the quality of the data augmentation and
the dataset, it will take a lot of time and resources. This article proposes a simple and practical
approach to evaluate the quality of data augmentation for image classification tasks, enriching the
theoretical research on data augmentation quality evaluation. Based on the information entropy,
multiple dimensional metrics for data quality augmentation are established, including diversity, class
balance, and task relevance. Additionally, a comprehensive data augmentation quality fusion metric
is proposed. Experimental results on the CIFAR-10 and CUB-200 datasets show that our method
maintains optimal performance in a variety of scenarios. The cosine similarity between the score of
our method and the precision of model is up to 99.9%. A rigorous evaluation of data augmentation
quality is necessary to guide the improvement of DL model performance. The quality standards and
evaluation defined in this article can be utilized by researchers to train high-performance DL models
in situations where data are limited.

Keywords: data augmentation; deep learning; data quality; big data; data mining

1. Introduction

Data-driven deep learning (DL) has achieved many significant achievements in the
past few years [1–3], and data augmentation has played an important role in it [4–6]. In
practical applications, often the scale of the available data is insufficient for model training,
which is the problem that data augmentation aims to solve [7]. Data augmentation is a
regularization technique that increases the size and diversity of datasets by transforming
and augmenting the original data [8]. Typically, data augmentation has a positive effect on
the training and performance of DL models, but in practice, phenomena such as decreased
precision or overfitting can occur after data augmentation [9]. Therefore, we need an
evaluation criterion for the quality of data augmentation to assess the effectiveness of the
employed data augmentation methods and their ability to improve model performance
and generalization. Most of the research on data augmentation focuses on enhancing the
generalization characteristics of the models, such as precision and F1 score [10,11]. Only
a few papers have proposed a general framework for explaining data augmentation by
studying its regularization effects [12–14], its influence on feature selection [15–17], rough
set [18–20], and invariance perspectives [21,22]. However, the evaluation methods based
on model performance cannot explain in which aspect data augmentation improves data
quality. Neither can it guide researchers to choose a more optimal data enhancement
strategy, even if a lot of time is spent on training the model. In order to determine to what
extent data augmentation can improve data quality, evaluation standards need to be more
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theoretical and comprehensive. By visualizing and analyzing the augmented data, we can
evaluate the effectiveness of data augmentation, observe whether the changes in data are
reasonable, and cover different categories and tasks. This intuitive and simple method
can efficiently evaluate the effects of data augmentation and quickly find suitable data
augmentation methods, which can help obtain the most suitable dataset for model training
in advance.

Studies [23,24] have shown that data quality is a multidimensional concept. Data
quality has different meanings in different contexts. For example, data quality can be about
measuring defective or outlier data in a general context [25–27], or describing whether the
data meet the expected purpose in a specific context [28]. In this paper, we define data
quality as a measure of data suitability for constructing a DL training set. Existing data
quality assessments consider both intrinsic data quality and contextual quality [29], but
the definitions of contextual quality vary. The most common idea is to divide contextual
quality into two parts based on the process of DL: diversity within the training set and
similarity between the training and testing sets. The main idea is to make the training
set complex enough to encompass all the features and be similar to the real distribution
represented by the testing set so that the DL model can learn adequately from this dataset.
However, they overlook the fact that the performance of deep learning models is not only
influenced by the problem space covered by the data. For instance, imbalanced classes
in the dataset may lead to model bias [30,31], and these imbalances can occur in terms of
quantity, features, or colors. Creating more dimensions based on the task and data features
can better describe the quality of the data and its value for deep learning models. We
hope to construct a universal, robust, and highly generalizable multidimensional quality
evaluation method by refining and differentiating the definition of quality metrics, which
can provide strong support for the quality evaluation of data augmentation.

In addition, due to the curse of dimensionality, such as in the case of image and text
data, there arise computational and statistical challenges, with computational complexity
growing exponentially. Hence, many works have used average similarity and minmax
similarity between samples to calculate these two dimensions [29,32]. Although average or
minmax similarity between samples can quickly assess the quality of a dataset, they cannot
accurately approximate the precision of models trained on that dataset. Information en-
tropy [33] can provide a comprehensive evaluation of data distribution, considering global
characteristics such as sample diversity, rather than just focusing on average differences
in the data [34]. Its feature as a non-linear measure based on probability distribution can
better capture non-linear relationships in data distribution, with less sensitivity to noise
and stronger interpretability [35]. Because of the low noise sensitivity, it is suitable to im-
prove the computational efficiency with dimension reduction technology. The computation
problem caused by a dimension disaster can be avoided. In summary, information entropy,
as a metric for evaluating the quality of data augmentation, possesses more comprehensive,
robust, and interpretable characteristics, making it more suitable for approximating the
precision of models.

Therefore, this paper proposes an information entropy-based method for evaluating
the quality of data augmentation. By attempting to deconstruct the dimensions of the data,
we assess the quality of the dataset and data augmentation. In our approach, the augmented
dataset is initially broken down into three dimensions, including diversity, class balance,
and task relevance. Furthermore, taking image data as an example, for each dimension,
numerous sub-dimensions are derived based on the task and data characteristics. Finally,
by considering the correlations between the metrics, we calculate the ultimate composite
metric score, providing insights into the impact of the current augmentation strategy on
model performance.

• In this paper, we design and implement a data enhancement quality evaluation
method, which can optimize and generate large-scale, high-quality data sets by disas-
sembling and balancing the quality dimensions of data sets.
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• This paper discusses the choice of mathematical tools for statistical analysis of data
dimensions, and determines that information entropy is more suitable than other
methods for evaluating the information content of data.

• This paper extensively evaluates the proposed method on various data augmentation
techniques, datasets, and models. There is a strong correlation between the experi-
mental results of the deep learning model and the evaluation results of the method,
which shows that the method can improve the performance of the model on related
tasks by evaluating the data enhancement quality.

2. Methods

In this work, we aim to explore the effectiveness of data augmentation in enhancing
datasets, with the hope of replacing expensive model training with more comprehensive
statistical metrics to evaluate the quality of augmented datasets. The primary goal of
data augmentation is to generate a diverse and balanced dataset that is highly relevant to
the task.

2.1. Preliminaries

Before presenting the details of our method, we give a brief overview of deep learning
and data augmentation, which provides the theoretical basis of our algorithm design. For
better illustration, some notations are summarized in Table 1.

Table 1. Some important mathematical notation.

Mathematical
Notation

Description

X, Y
The data and labels of the dataset, as well as the input and output space of the
model. X and Y represent the original training dataset. X′ and Y′ represent the

augmented training dataset. Xt and Yt represent the test dataset.

x, y
The x denotes an input data and the y denotes a label for the data. The x and y
represent the original training dataset. The x′ and y′ represent the augmented

training dataset. The xt and yt represent the test dataset.

P, p Both represent a probability function that describes the distribution of the
sample space.

R It represents the risk function. Its subscripts represent the computational ideas
used, empirical and expectation, respectively.

Q It represents a collection of data augmentation quality metrics. Each Qi ∈ Q
counts the different dimensions of the data.

pixel It represents the pixel of the image data.

D D denotes the dataset. D represents the original training dataset. D′ represents
the augmented training dataset. Dt represents the test dataset.

C, ci
C represents the number of classes in the dataset and ci represents the number

of samples in the ith classes of the training dataset.

N
It represents the number of samples in the dataset. N represents the original
training dataset. N′ represents the augmented training dataset. Nt represents

the test dataset.

2.1.1. Deep Learning

In machine learning, we formally refer to the sets of all possible values for the input
and output of models as the input space X and the output space Y, respectively. Each
specific input is an instance x, usually represented by a feature vector. In this case, the space
where all feature vectors exist is called the feature space. The specific output is denoted
as y, typically representing the label of the input X. At this point, the input and output
variables X and Y follow a joint probability distribution P(X, Y). The input space X and the
output space Y together form a sample space. For a sample (x, y) ∈ (X, Y) in the sample
space, it is assumed that there exists an unknown true mapping function f : X −→ Y, such
that y = f (x, θ), where θ ∈ Rm represents the parameters in the function space and m is
the number of parameters. In this case, we can measure the distance between the model
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and the data distribution P(X, Y) to train the model. Therefore, the expected loss of the
model f (x, θ) with respect to the joint distribution P(X, Y) is expressed as

Rexp(θ) = EP[L(y, f (x, θ))] =
∫

X×Y
L(y, f (x, θ))P(x, y) dx dy, (1)

since the L(y, f (x, θ)) represents the loss function, which quantifies the difference between
individual input and output instances. However, in reality, the data distribution P(X, Y) is
often unknown, and we only have knowledge of the distribution of samples in the training
set. Therefore, to deal with this situation, in DL, the approach is to minimize the expected
loss on the training set. As shown in Equation (2), the empirical distribution P̂(X, Y)
based on the training set is used instead of the true distribution P(X, Y) to calculate the
empirical loss Remp. This way, during the training process, the model performs parameter
optimization based on the sample distribution in the training set, aiming to approximate
the performance of the true distribution as closely as possible.

Remp(θ) =
1
N

N

∑
n=1

L(y, f (x, θ)). (2)

2.1.2. Data Augmentation

Data augmentation refers to any method that uses artificial transformations of data
and labels to expand the original training set. It can be represented as a mapping of the set.
This function is defined as

P(X
′
, Y
′
) = f ((X, Y)|β)

⋃
P(X, Y), (3)

where β represents the data augmentation strategy, f ((X, Y)|β) represents the augmented
part, and P(X

′
, Y
′
) represents the final augmented training dataset.

2.1.3. Benefits of Data Augmentation

To address the issue of unreliable empirical risk in situations with limited data, we
need to introduce prior knowledge. Prior knowledge is used to augment the dataset, even
in cases where data are scarce.

Lemma 1 (Chebyshev’s inequality). Let t be a random variable with finite expected value µ. And
there are n variables in total. Then, for any small positive number ε,

lim
n→∞

P(|∑ ti
n
− µ < ε|) = 1. (4)

According to the law of large numbers, Equations (2) and (4), as the sample size N
becomes sufficiently large, the empirical risk Remp tends to the expected risk Rexp. However,
when it comes to DL datasets, considering only the distribution of samples and labels is
insufficient. For instance, simply resampling data can lead to more severe overfitting of
the model. We also need to ensure that the features in the data align closely with the true
distribution, which is a key problem addressed by data augmentation. In general, data
augmentation is achieved by modifying the original data based on prior knowledge to
expand the dataset. The generated data may have the same labels as the original data,
but the features extracted by the model are different. This enables the model to more
easily recognize the critical features relevant to the task at hand. The parameters for data
enhancement need to satisfy the following expression:

arg min
β

distance(arg max
P()

quality(P(X
′
, Y
′
)), P(Xt, Yt)), (5)

where the distance is defined as a function of measuring distribution distance, such as
similarity, and quality is defined as a function that measures the distribution of data sets.
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The ideal scenario is that the dataset remains consistent with the true distribution for
all features P(Xt, Yt). However, this is an ideal situation and the true distribution is still
unknown. Therefore, we use the test set instead of the true distribution for the estimation.

Theorem 1. The expectation and variance of the original dataset are µ and σ, the expectation and
variance of the augmented dataset are µ

′
and σ

′
. Assuming that the expectation and variance of

true distribution are µt and σt. Equation (5) can be expressed as

f usion(distance(µ
′
, µt), distance(σ

′
, σ)). (6)

However, due to the randomness of data augmentation, the generated data may
not necessarily be more in line with the true distribution compared to the original data.
Therefore, we need to perform quality estimation on it.

Lemma 2. Expectation and variance are not mutually independent, only when the distribution
does not follow a normal distribution.

Therefore, the quality evaluation metric for data augmentation is defined as

QAugmentation = Qσ ×Qµ = Qσ ×QTaskRelevance, (7)

which is the product of the statistical values of expectation Qσ and variance Qµ . The
expectation of the dataset is primarily influenced by the target task, and the value obtained
from expectation is also referred to as task relevance.

Unlike expectation values, data can have different distributions based on different
feature selections, leading to varying variances. These variances can be mainly divided
into two categories. One is the distribution of semantic features that approximate a normal
distribution, and the other is the distribution of categories, which is mostly a uniform
distribution. The variances of these two distributions are independent of each other, so
statistical values of variances can be obtained using addition.

Theorem 2. Output space Y = (y1, y2, · · · , yn) ∼ U(λ), input space X is abstracted into
f eature = ( f eature1, f eature2, · · · . f eaturek1) ∼ N(µ1, σ1). So P(x, y) can be represented
by P( f eature, label). By delineating the distribution of label-independent features, we have the
semantici = (semantic1, semantic2, · · · , semantick2) ∼ N(µ2, σ2), semantick2 ∈ C, then

P(label, semantic) =
C

∑
i

P(label)× P(semantici) =
C

∑
i

P(semantici). (8)

Features are classified according to whether they have a relationship with the category,
and the same is true for data quality. So we have

Qσ = (Qlabel + Q(label, f eature)) + Qsemantic = QClassBalance + QDiversity. (9)

Finally, the augmented datasets quality evaluation formula is defined as

QAugmentation = (QDiversity + QClassBalance)×QTaskRelevance. (10)

2.2. The Overall Framework

The overall framework of the method proposed in this paper is shown in Figure 1
and Algorithm 1. The methodology of this paper will consist of the following components:
(1) Feature Extraction: The dataset will be processed using different data augmentation
strategies. And each sample in the datasets will be mapped to a high-dimensional feature
space. (2) Metric Scores Calculating: The quality metrics of the dataset will be divided
into three dimensions: diversity, class balance, and task relevance. Information entropy is



Electronics 2023, 12, 4077 6 of 26

primarily used to evaluate the diversity and class balance metric. (3) Result Statistics: The
scores of each augmented dataset will be ranked, and the datasets with higher quality will
be selected for model training and validation. The implementation code is available at:
https://github.com/ForestryIIP/ADQE (accessed on 20 August 2023).

Figure 1. The framework of the proposed method.

Algorithm 1: Calculation of all augmented datasets evaluations.

Data: The collection of augmented datasets D
′
= {D′0, D

′
1, · · · , D

′
s}, A test dataset

Dt, DL model NN
Result: the quality metric of the augmented dataset Q

1 Q← ∅;
2 cnt← 0;
3 for each dataset D

′
i ∈ D

′
do

4 Update Q4 based on Algorithm 4;
5 Update Q2 and Q3 based on Algorithm 3;
6 Extracting the feature vector V from D

′
i with help of NN;

7 Clustering feature vector V into k classes of V
′
;

8 Update Q5 based on Algorithm 5;
9 Update Q1 based on Algorithm 2;

10 Update Q6 based on Algorithm 6;
11 if cnt != 0 then
12 Q← result o f Equation (21)
13 end
14 end

https://github.com/ForestryIIP/ADQE
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2.3. Feature Extraction
2.3.1. Feature Selection

The selection of features is crucial for evaluating the quality of data augmentation,
as it impacts the effectiveness and comprehensiveness of metric calculations. In order
to obtain more effective image representations, this paper utilizes the pre-trained model
ResNet101 [36] to map images into high-dimensional feature vectors. Additionally, to
achieve more comprehensive metrics, we supplement the quality indicators by incorpo-
rating features such as pixel brightness, texture, and class sample counts based on the
characteristics of the images and the dataset itself.

2.3.2. Clustering

After data augmentation, we can proceed with the calculation of various metrics.
For diversity computation, calculating low-dimensional feature diversity simply requires
measuring the individual feature values of each image, which can be performed in O(n) time
complexity. However, in the case of high-dimensional features, the complexity increases
as we need to calculate the similarity between each pair of samples and compute the
eigenvalues of the nn similarity matrix, resulting in a time complexity of O(n3). Similarly,
for task relevance, we need to compute the similarity between sample pairs from the
training set and the test set, resulting in a high time complexity of O(n×m). To address
these challenges, this study adopts the FINCH clustering algorithm [37], which employs
pooling and sampling techniques to reduce the dimensionality and scale of the dataset,
thereby mitigating the computational cost and time overhead. In the calculation of class
balance, the clustering algorithm can directly compute the desired metrics.

2.4. Metric Scores Calculating
2.4.1. Diversity

The main benefit of data augmentation comes from increasing diversity. However, only
comparing the average similarity of data in the augmented dataset in high-dimensional
space has limitations. It just only indicates the pairwise distances between data points and
does not reflect the overall distribution of data in the high-dimensional feature space. The
Vendi score [38] introduces an ecological concept by using the entropy index of species dis-
tribution. This effectively measures the diversity of feature distributions in the training set
samples. The Vendi score is defined as the exponential Shannon entropy of the eigenvalues
of a similarity matrix K, such as

K(x, y) = {similarity(x, y)|x, y ∈ D
′}. (11)

This matrix is derived from a user-defined similarity function applied to the samples
under evaluation for diversity:

Q1 =
1
C

C

∑
i=1

exp(−
ci

∑
j=1

λjlogλj), (12)

where the λj represents the eigenvalues of the similarity matrix K. The K is a positive-
definite matrix obtained from a set of samples x and the similarity function. For all x,
similarity(x, x) = 1. This method , as shown in Algorithm 2, primarily quantifies the
effective number of distinct elements in the data. For example, after extracting features
from an image using a neural network, you typically obtain a 2048-dimensional vector. This
vector stores features across different dimensions of the image. Assuming the similarity
function is a cosine similarity, this metric measures whether the directions of two vectors
align. If the feature dimensions forming these directions are more similar, the metric value
is higher. Consequently, a similarity matrix K can be computed. Eigenvalues generally
represent inherent structural properties and patterns within the data [39]. Each eigenvalue
corresponds to a mode of variation or structure in the data. In the context of image similarity,



Electronics 2023, 12, 4077 8 of 26

they can indicate different similarity patterns or clusters among images. The magnitude of
eigenvalues also reflects the proportion of corresponding patterns in the data. Therefore,
computing the entropy of eigenvalues is equivalent to quantifying the richness of patterns
in the data. If a single pattern dominates the data, the style and content of the images
are highly certain, resulting in low information uncertainty. Conversely, when multiple
similar patterns share similar proportions, the style and content of the images become
less certain, leading to higher information uncertainty. In summary, the eigenvalues of
similarity matrix K and the entropy of these eigenvalues provide valuable insights into the
data’s structure and diversity. High entropy indicates complexity and diversity, whereas
low entropy suggests simplicity or uniformity in similarity patterns within the data. They
can guide overall data analysis in the context of diversity metrics.

Algorithm 2: Rapid calculation of diversity by clustering.

Data: A training dataset D
′
= {X1, X2, · · · , XN′ }, dataset size N

′
, DL model NN

Result: Diversity Metric Scores Q1
1 K ← 0[N′×N′ ];

2 Q1 ← 0;
3 Extracting the feature vector V from D

′
with help of NN;

4 Clustering feature vector V into k classes of V
′
;

5 D
′
clustered ← ∅;

6 for i← 0 to k do
7 D

′
clustered ← randomly select C data from different categories in V

′

8 end
9 for class index← 0 to C do

10 for each vector vi and vj ∈ collection of class index in V
′

do
11 K[i][j]← similarity(vi, vj);
12 end
13 λ← eigenvalue o f K;
14 Q1 ← Q1 + exp(−∑Si

j=1 λjlogλj);

15 end
16 Q1 ← Q1 ÷ C;

Ignoring the time of feature extraction and clustering part, the computation of Q1 is
mainly divided into two steps. They are the computation of similarity adjacency matrix
and its eigenvalues, respectively. For each pair of vectors, similarity computation, such
as cosine similarity, requires O(K) time complexity. Where K is the dimension size of the
image vector output by the model. Every element in the dataset needs to be computed,
then computing the adjacency matrix requires O(KN2) time complexity. The next step is
to solve for the eigenvalues, which are also usually O(N3). Generally, K � N, so the time
complexity is O(N3). Although the time complexity is high, the data size is reduced by
clustering in advance. The actual computation time is still within acceptable limits.

Furthermore, analyzing the diversity of data solely based on high-dimensional fea-
tures provides an abstract understanding of diversity, but it may not provide an intuitive
and clear understanding. Therefore, it is still necessary to define the diversity of data in
low-dimensional features. For example, in image data, models often learn texture fea-
tures extensively from the dataset [40]. To address this, we can calculate the occurrence
probabilities of different textures in all the data:

Q2 = exp(
NTexture

∑
i=1

pTexturei,j logpTexturei,j), (13)
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where NTexture is the number of different Texture and pTexturei,j represents the probability
that the value of Texturei,j will occur. The Texture is defined as a combination of pixeli,j
and adjacent pixels:

Texturei,j =

pixeli−1,j+1 pixeli,j+1 pixeli+1,j+1
pixeli−1,j pixeli,j pixeli+1,j

pixeli−1,j−1 pixeli,j−1 pixeli+1,j−1

. (14)

Due to computational complexity and memory limitations, this paper calculates the
information entropy of the average pixel values within a 3 × 3 window instead of the
information entropy of pixel combinations. Lastly, considering that brightness can have an
impact on the model [41], this paper also calculates the probability of brightness for each
pixel in the entire dataset and computes its entropy value:

Q3 =
1
3

3

∑
RGB=1

exp(
256

∑
level=1

plevel logplevel), (15)

where RGB represents the three color channels of an image and level represents the com-
ponent of the channel, up to a maximum of 256. Texture and brightness are counting the
pixels of the image, so the time complexity is O(PN) and P is the average number of pixel
points in the image. As shown in Algorithm 3, the variables for the Q2 and Q3 are similar
and can be run together in the feature extraction phase.

Algorithm 3: The calculation of image datasets’ color and brightness space.

Data: A training dataset D
′

Result: Diversity Metric Scores Q2 and Q3
1 P1 ← 0[3×256];
2 P2 ← 0[3×256];

3 for each image x ∈ D
′

do
4 for channelRGB ← 0 to 2 do
5 for each pixel ∈ x do
6 t← Average o f adjacent pixels;
7 P1[channelRGB][pixel]← P1[channelRGB][pixel] + 1;
8 P2[channelRGB][t]← P2[channelRGB][t] + 1;
9 end

10 end
11 end
12 Q2 ← 0;
13 Q3 ← 0;
14 for channelRGB ← 0 to 2 do
15 P1[channelRGB]← sum(P1[channelRGB]);
16 Q2 ← Q2 + exp(−∑255

j=0 P1[channelRGB][j]log(P1[channelRGB][j]));
17 P2[channelRGB]← sum(P2[channelRGB]);
18 Q3 ← Q3 + exp(−∑255

j=0 P2[channelRGB][j]log(P2[channelRGB][j]));
19 end
20 Calculate entropy;

2.4.2. Class Balance

From the perspective of data categories, real-world datasets often suffer from the
long-tail problems [42]. Models tend to overlook minority classes due to the majority of
samples being concentrated in a few categories, resulting in poorer predictive performance.
To measure class balance, the first aspect to consider is whether the number of samples
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in each class is equal, which is the most fundamental metric. The formula for balance of
number in class is as follows:

Q4 = 1− 1
C

C

∑
i=1

(ci − c̄), (16)

where the c̄ represents the average count of samples across classes. The variance of
the classes is computed with a time complexity of O(C).The algorithm is illustrated in
Algorithm 4.

Algorithm 4: The calculation of quantity balance between classes.

Data: A training dataset D
′
, The number of classes C

Result: Class Balance Metric Scores Q4
1 K ← 0[C×1];
2 for i← 0 to C do
3 K[i]← ci
4 end
5 Q4 ← 1− 1

C (∑
C
i=1(K[i]− average(K)));

Additionally, we need to assess the distribution differences between classes. When
performing a classification task, it is generally easier to distinguish between animals and
humans compared to distinguishing between males and females. If both labels are present
in the same dataset, the labels for males and females can easily be confused. This results in
poor data quality because the model cannot learn precise features to differentiate between
males and females accurately [43]. Unsupervised clustering can group similar samples
into the same class. In a dataset with balanced difficulty and granularity of classification,
the clustering results should align with the original labels. By calculating the mutual
information between the clustering results and the original labels, we can obtain the
classification difficulty of the samples, which serves as an indicator for the class feature
balance of the dataset. The basic definition of information entropy is

H(X) = −∑
X

p(x)logp(x), (17)

where H(X) represents the entropy of the classes. The basic definition of mutual informa-
tion is

I(X; Y) = ∑
X

∑
Y

p(x, y)log
p(x, y)

p(x)p(y)
, (18)

where I(X; Y) represents the mutual information and p(x, y) is the joint distribution be-
tween the clustering results and the ground truth. The p(x) and p(y) are the marginal
distributions of the ground truth labels and clustering results, respectively. Although mu-
tual information can also measure the degree of similarity between two clustering results,
its value is strongly influenced by the sample size. Normalized mutual information (NMI),
on the other hand, can better measure the degree of similarity between two clustering
results by normalizing the mutual information values to the same range of values. The
NMI is defined as

Q5 = 2
I(X; Y)

H(x) + H(y)
. (19)

The details are presented in Algorithm 5. Ignoring the time of feature extraction and
clustering part, the computational time complexity of the mutual information of the label
distributions before and after clustering is only O(N).
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Algorithm 5: The calculation of features balance between classes.

Data: A training dataset D
′

Result: Class Balance Metric Scores Q5
1 Extracting the feature vector V from D

′
with help of NN;

2 Clustering feature vector V into k classes of V
′
;

3 PD′ ← distribution o f V;
4 PD′clustered

← distribution o f V
′
;

5 PD′ ,D′clustered
← jointdistribution between Vand V

′
;

6 Update Q5 based on Equations (18) and (19);

2.4.3. Task Relevance

The most common issue that can occur after image augmentation is the loss of semantic
information, where important features, such as the pixels representing a dog in a dog image,
are completely erased. In such cases, even humans would struggle to determine the correct
label for the modified image. Therefore, assessing the relevance between the augmented
training set and the task at hand can provide insights into the quality of the dataset.
Considering that models are typically evaluated on a separate test set for various tasks, this
study compares the average similarity between the test set and the augmented training set
in the high-dimensional feature space:

Q6 =
1

Nt ∗ N′
Nt

∑
i=1

N
′

∑
j=1

similarity(i, j), (20)

where similarity(i, j) denotes the similarity function used to measure the similarity between
samples. Based on the Equation (20), we can get the Algorithm 6.

Algorithm 6: Rapid calculation of task relevance by clustering.

Data: A training dataset D
′
= {x1, x2, · · · , xN′ }, dataset size N

′
, The number of

classes C, A test dataset Dt, test dataset size Nt, DL model NN
Result: Task Relevance Metric Scores Q6

1 Q6 ← 0;
2 Extracting the feature vector V from D

′
and Vt from Dt with help of NN;

3 Clustering feature vector V into k classes of V
′
;

4 D
′
clustered ← ∅;

5 for i← 0 to k do
6 D

′
clustered ← randomly select C data from different categories in V

′

7 end
8 for class index← 0 to C do
9 for each vector vi and vj ∈ collection of class index in V

′
and Vt do

10 Q6 ← Q6 + similarity(vi, vj);
11 end
12 end
13 Q6 ← average(Q6);

Ignoring the time of feature extraction and clustering part, the computation of Q6 is
mainly divided into two steps. They are the computation of the similarity matrix and its
average, respectively. The similarity of all unordered pairs of the dataset and test set needs
to be computed, assuming that the dataset size is N and the test set size is M, then the
total number is N×M. The similarity matrix time complexity is O(KMN). Where K is the
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dimension size of the image vector output by the model. And calculating the mean only
requires O(NM). So the total time complexity is O(KMN).

2.5. Result Statistics

To combine various metrics, existing approaches often employ weighted fusion [44]
or rank fusion [45] to directly rank the augmented datasets. However, these methods are
not suitable in this case because the metrics from different dimensions cannot be directly
compared, and a comparison between the augmented training set and the original training
set is required. In this paper, a fusion approach is proposed that calculates the quality of
data augmentation by considering the ratio of quality before and after augmentation. All
metrics are shown in Table 2 and the fusion equation is defined as

Q =
Q
′
6

Q6
×

5

∑
i=1

wi
Q
′
i

Qi
/

5

∑
i=1

wi, (21)

where the Q
′
i represents the quality metric of the augmented dataset, Qi represents the

quality metric of the original dataset and wi represents the weight of each metric to the final
fusion metric Q. By assigning appropriate weight coefficients to the metrics of different
parts, the balance of influence of different factors in the metrics can be ensured. For example,
when you encounter high precision requirements of the task, task relevance metrics are
more critical and need to be assigned a higher weight.

Table 2. Data augmentation quality metrics.

Quality Metrics Full Name Category

Q1 diversity of features diversity
Q2 diversity of textures
Q3 diversity of brightness
Q4 balance of number between class class balance
Q5 balance of features between class
Q6 task relevance task relevance

3. Experimental
3.1. Datasets and Data Augmentation

In order to validate the effective evaluation of data augmentation quality, this study
selected different augmentation strategies, datasets at different granularities, and several
specific tasks as the objects of method evaluation. The CIFAR-10 and CUB-200 [46] datasets
were chosen as the experimental datasets for image classification tasks. The CIFAR-10 and
CUB-200 represent different areas of computer vision problems. CIFAR-10 is an image
classification dataset containing 10 different categories of common objects such as aircraft,
dogs, cars, and so on. The CUB-200, which focuses on bird identification, contains images of
200 different species of birds. The multi-domain coverage of these two datasets allowed us
to explore the impact of diversity and task relevance in different application contexts. They
also exhibit varying levels of image diversity and class balance. CIFAR-10 includes diverse
scenes, lighting conditions, angles, and variations. In contrast, CUB-200 exhibits limited
image diversity, with predominantly consistent backgrounds. Furthermore, both datasets
represent numerous practical application scenarios, such as image classification, object
detection, and object recognition. By conducting experiments on CIFAR-10 and CUB-200,
we gain a better understanding of the performance and applicability of our methods.

In the context of image data applications, data augmentation methods add noise to
the original data to simulate other real-world scenarios, thus creating augmented images
for model training. To evaluate the improvement in data quality brought by different
data augmentation methods, this study employs RandAugment’s data augmentation
search strategy [47]. Unlike RandAugment, which applies random transformations to
images during training, this study scales up the dataset by employing the RandAugment
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strategy prior to training. To generate data diversity, this study selects n transformations
from a set of k = 16 data augmentation transformations with uniform probability, where
the augmentation magnitude for each transformation is set to m. By varying these two
parameters, the strategy can express a total of m × 2n potential augmentation policies,
where n represents the strategy for selecting data enhancement and m represents the
intensity of data augmentation. Each parameter of the transformations is scaled using
the same linear scale, ranging from 0 to 30, where 30 represents the maximum scale for a
given transformation, and then mapped to the parameter range of each transformation.
Subsequently, during the expansion and generation of the augmented dataset, we uniformly
sample dataset samples with probability c for transformation. All generated images are
then merged with the original dataset to create the augmented dataset. However, image
data alone is insufficient for calculating quality metrics. Therefore, the image data needs
to be abstracted into 2048-dimensional feature vectors. In this study, a pre-trained model,
ResNet101, is utilized to extract features from the generated augmented dataset.

3.2. Baseline

In this paper, we will present the results of our proposed method on CIFAR-10 and
CUB-200 datasets to demonstrate how our approach captures the intuitive notion of data
augmentation and can be applied to assess the quality of data augmentation in DL. The
existing data augmentation evaluation work can be divided into two categories: model vali-
dation for assessing effectiveness and statistical analysis for improving data quality. Model
validation aims for the highest level of accuracy, as seen in approaches like AutoAugment.
However, due to the immense computational demands, it may not be practically feasible
in real-world applications. On the other hand, work in the field of statistical analysis for
enhancing data quality tends to focus on calculating dataset quality at a finer granularity
within a specific dimension [38,48]. Quality is multidimensional, and solely relying on a
single dimension for analysis can provide a limited perspective. These two articles are both
based on the intrinsic attributes of the data and the contextual tasks for analysis [29,32].
However, the mathematical tools chosen in statistical analysis cannot achieve the goal of
correctly assessing data quality. This paper divides data quality into multiple dimensions,
allowing researchers to comprehensively assess the quality of data and identify areas in
need of improvement. Since it focuses on enhancing data to improve model performance,
it is essential to clearly define their definitions and relationships, while having effective
methods for utilizing these dimensions to evaluate the effectiveness of data augmentation.
So, we will compare our method with two baseline approaches: diversity and task inde-
pendence calculated using the mean and min-max criteria. Since the criteria for quality
fusion differ among these methods, we will employ our proposed quality fusion method to
calculate the final scores for all the approaches. Baseline’s formula is shown in Table 3.

Table 3. The formula of baseline.

Baseline Metrics Formula

mean criteria mean_Q1 1− 1
N′

2 ∑N′
i ∑N′

j similarity(i, j)

mean_Q6
1

N′ ∗Nt
∑N′

i ∑Nt
j similarity(i, j)

mean_Q mean_Q1 ∗mean_Q6

minmax criteria minmax_Q1 1− 1
N′ ∑N′

i minj∈D′ similarity(i, j)

minmax_Q6
1

N′ ∑N′
i maxj∈Dt similarity(i, j)

minmax_Q minmax_Q1 ∗minmax_Q6

In this section, this study conducted two sets of experiments to validate the effective-
ness of the proposed method. The first set of experiments evaluated the correlation between
the model precision on the test set and the quality evaluation results of the generated aug-
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mented dataset using different parameters for data augmentation. Due to the enormous
search space of data augmentation strategies, it was challenging to define it precisely.
Therefore, this study randomly selected 7 sets of parameters as the comparative parameters
for the experiment. The second set of experiments involved generating augmented datasets
of different sizes using the same set of parameters for data augmentation. The performance
of the model on these datasets was observed to see if it aligns with the algorithm results.

3.3. Evaluation Index

For the purpose of achieving higher model precision, this study adopts model evalu-
ation metrics as the evaluation criteria for algorithm performance. After training on the
augmented dataset, the model’s precision is tested on the original test set. The model
training parameter settings are shown in Table 4.

Table 4. The hyperparameters of DL model.

Dataset Model Hyperparameters

CIFAR10 densenet161 Epochs = 90, Init lr = 0.1 divide by 5 at 40th, 60th, 80th, Batchsize = 256, Weight decay = 5 × 10−4,
momentum = 0.9

CUB200 NtsNet Epochs = 50, Lr = 0.001, Batchsize = 16, Weight decay = 1 × 10−4, Momentum = 0.9

Due to the different dimensions between the scores of the method and the baseline and
the accuracy of the model, we first divide all the model accuracies by the accuracy of the
model on the original training set, similar to how the scores are calculated. We refer to this
as the actual score of the augmented training set. Then, we consider using Cosine Similarity
(CS) to calculate the similarity between the estimated scores and the actual scores. We sort
the scores into a vector according to certain rules, such as enhancement magnitude or scale,
and then calculate the cosine value of the angle between them. This cosine value reflects
the similarity of the changing trends between the estimated scores and the actual scores.
However, we still need to know the absolute distance between the two scores. Therefore,
we also select Mean Squared Error (MSE) as our second metric. By combining these two
metrics, we can comprehensively analyze the strengths and weaknesses of the algorithm.
A larger CS and a smaller MSE indicate better results.

3.4. Ablation Study

This paper introduces an evaluation method for assessing the quality of data augmen-
tation in an image dataset, aiming to better select augmentation techniques. In order to
demonstrate the effectiveness of our proposed method in evaluating data augmentation
based on local independence and global correlation information, as well as to validate our
pipeline design, we conducted two ablation experiments. In Experiment 1, we focused
on metric adjustment to confirm the observed differences between method results and
estimation results from a statistical perspective. The Spearman’s rank correlation coefficient
contains a p-value to show the level of significance. The technique was statistically different
when and only when the P value was below 0.05. In Experiment 2, we replaced the compo-
nents in the framework to evaluate their impact on the results. Both ablation experiments
were conducted on the CIFAR-10 dataset, and the experimental setup described earlier was
used to train the network from scratch.

3.5. Case Study

In general, because different data types and different tasks require the machine learn-
ing model to learn different content, there is no absolute universal method for evaluating
data augmentation quality. This article sets up experimental datasets from the perspectives
of data types and downstream tasks. We will apply the methods described in this paper to
two different datasets selected from various domains and tasks: EuroSAT and IMDB.
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We have chosen datasets from significantly different domains—images and text, which
represent two major data types. We also ensure that the datasets are large enough to
facilitate meaningful augmentation and analysis. By calculating the score differences after
augmentation using ADQE, we evaluate and visualize the differences between the two
datasets with the largest score differences. EuroSAT, being an image dataset, undergoes
the same augmentation and evaluation methods as described in this paper. For the text
dataset IMDB, we apply data augmentation methods such as Optical Character Recognition
(OCR), semantic augmentation, and summarization. Since the data type is different, we
cannot directly use ADQE to calculate evaluation scores, and adjustments need to be
made to the methods. The text dataset also involves extracting feature vectors to calculate
diversity and task relevance, but text is composed of words rather than pixels. Q2 and Q3
need to be recalculated using words and characters. We combine these two metrics and
redefine them as the information entropy calculated from frequency of the top 10,000 most
frequent words.

4. Results and Discussion
4.1. Results of Comparative Experiments

The experimental results of the first group are presented in Figure 2. Figure 2 primarily
illustrates the performance of our method compared to state-of-the-art methods on two
different datasets, including the visual comparison and statistical analysis between the
evaluation scores and model accuracy, as well as the variation trend of scores under different
data augmentations. Figure 2a,b show the experimental results based on the CIFAR-10
dataset, while Figure 2c,d display the experimental results based on the CUB-200 dataset.
From the experimental results, it can be observed that the entropy-based method provides
the most similar quality results for all augmented datasets, which is further validated by
the model’s accuracy.

In Figure 2a,b, the entropy-based method shows the best fit to the model accuracy
curve. Meanwhile, in Figure 2e,f, our results are validated using statistical analysis. We
achieved excellent scores in both indicators, with CS approximately equal to 1 and MSE
close to 0, indicating that entropy effectively captures the data characteristics and estimates
corresponding evaluation scores. On the other hand, the evaluation results of methods
like the minmax criteria continuously increase with the magnitude of data augmentation,
deviating significantly from the trend of model accuracy. This is likely due to the noise
introduced by data augmentation, leading to an overestimation of the quality of augmented
datasets using the minmax criteria. This principle overlooks the overall distribution of the
dataset and approximates its quality by statistical extreme values, resulting in a significant
decrease in evaluation accuracy. Among all the figures, the minmax criteria consistently
performs the worst. This observation is also reflected in the evaluation results based on
the mean criteria in Figure 2b. The evaluation under overly strong data augmentation also
overestimates the quality of the augmented dataset. In CUB-200, where the original data
are scarce and very similar, with backgrounds mostly consisting of single skies, oceans,
and forests, and birds differing slightly in feather color and shape, data augmentation
significantly increases the diversity of the dataset. Changing a large portion of data
distribution without perfectly matching the actual data distribution amplifies the diversity
evaluation scores. The CS drops by one percentage point, and the MSE increases from
below 0.1 to 1.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Under the same scale and different data augmentation scenarios, our method achieves the
best quality evaluation results. (a) Evaluation of three algorithms and the model on the augmented
dataset using the CIFAR-10 dataset. (b) Evaluation of three algorithms and the model on the
augmented dataset using the CUB-200 dataset. (c) Partial indicator scores of the augmented dataset
by three algorithms on the CIFAR-10 dataset. (d) Performance evaluation of the three algorithms
using CS. (e) Performance evaluation of the three algorithms using MSE. (f) Partial indicator scores
of the augmented dataset by three algorithms on the CUB-200 dataset. In (a–c,f), the x-axis represents
the data augmentation strategies, including the selection probability of data augmentation and the
magnitude of data augmentation. The selection of these strategies is randomly chosen within the
given range. The word “mine” represents the methodology of this paper.
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In our data augmentation quality evaluation metric calculation, we partition the over-
all evaluation metric based on the mean and variance of the data augmentation quality.
The mean measures the distance between the augmented data and the target data distribu-
tion. The variance measures the distribution uniformity and diversity of the augmented
data. From the q6 curves in Figure 2c,d, for all methods, their mean calculation results
are relatively consistent. They accurately calculate the distance between all augmented
training data and the test set distributions. However, only the entropy method meets the
criteria for variance estimation. Since semantic information has multiple dimensions and is
not entirely related to labels, it is divided into class balance and diversity. Even through
augmentation, class-related semantics will not be changed or lost. By using clustering
dimensionality reduction, we can clearly understand the spatial distribution of the data,
which remains relatively unchanged before and after augmentation. However, within the
class, due to color changes, deformations, inversions, and other operations, these noises are
substantially supplemented. We need to assess the distribution balance of data label-related
features, and so on. The minmax criteria emphasizes the farthest distance of the data
distribution. Although the mean criteria is more balanced, it is also affected by extreme
values. Moreover, data augmentation methods are likely to inject many extreme values
due to their randomness, thus affecting the evaluation. Entropy can smooth these extreme
values, categorizing them together, and calculate the overall diversity evaluation value
by statistically counting the effective number of categories under different dimensions.
Experimental results demonstrate that our framework can effectively evaluate data aug-
mentation quality by incorporating entropy, visually and comprehensively showcasing the
improvements brought by data augmentation to the dataset.

From another perspective, Figure 2a–d illustrate that the model accuracy is signifi-
cantly enhanced primarily through the increased diversity of the data. However, as the
diversity increases, there is a bottleneck, and the task relevance decreases, resulting in
poorer performance than the initial state. This is primarily related to the data augmen-
tation techniques chosen in this paper. Most of the changes involve alterations in color
space, shape, and orientation, which enhance data diversity and model robustness. Fewer
enhancements focus on image quality or denoising, reducing the degree of association
between samples in the dataset and the task objectives, which increases the dimensions of
the data that need to be analyzed. The target variables become less understandable and
predictable. Therefore, the experimental results inevitably show a decrease in task relevance
and an increase in diversity. The intensity of data enhancement up to a certain point reduces
the benefits and loses more data quality. By clearly defining dimensions, researchers can
better guide the selection and implementation of data augmentation strategies. Using
data quality dimensions to evaluate the effectiveness of data augmentation in experiments
helps provide empirical evidence. This allows researchers to quantify improvements and
demonstrate that the measures taken have indeed enhanced model performance.

The results of the second group of experiments are shown in Figure 3. The evaluation
trends of the three methods are mostly consistent, showing an improvement in the quality
fusion score as the scale increases, although the rate of improvement decreases. The
minmax principle still exaggerates the quality of data augmentation. The model precision
also increases as the scale expands, but gradually starts to decline after reaching a four-fold
scale. This indicates that the repetition of data augmentation-generated images can have a
negative impact on model performance, leading to overfitting. It demonstrates that more
data are not always better. According to Figure 3b, our algorithm and the averaging method
have similar performance, which is superior to the minmax values.
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(a) (b)

Figure 3. Under the same data augmentation with different scales, our algorithm and the averaging
method exhibit similar performance. (a) Evaluation of the three algorithms and the model on the
augmented dataset of CUB-200 dataset. (b) Performance evaluation of the three algorithms using CS
and MSE. The word “mine” represents the methodology of this paper.

4.2. Results of Ablation Experiments

Table 5 presents four methods for metrics fusion. In the case of calculating metrics
using multiplication, if we continue to use multiplication for index weights, it would
lose the balancing effect of importance. Therefore, we chose to use power operations to
further enhance the balancing role of parameters. For each fusion method, we evaluate the
accuracy of the evaluation results using CS and MSE. The fusion method used in this study
achieved the best scores in all four indicators. The results in the second and third rows are
one order of magnitude higher than those in the first and fourth rows, with MSE increasing
from 0.1357 and 0.5363 to 5.6027 and 9.7748. This also confirms that in the estimation of
variance, the labels and semantic cannot be simply regarded as two sets of linearly related
variables. The semantic information needs further decomposition, and the final scores
need to be fused using addition for the unrelated parts. The first and fourth rows achieved
approximately the same excellent scores, with CS differing by less than 1 percentage point.
However, in the CUB dataset, the MSE differed by three times. The reason is the neglect of
the correlation between variance and mean. In large and relatively balanced datasets like
CIFAR-10, this effect is not evident. But for small datasets, data augmentation can easily
disrupt data semantics and introduce irrelevant noise, affecting model training. This is
reflected in the increase in variance evaluation results while the mean evaluation results
decrease. Therefore, using addition to fuse variance and mean cannot well reflect the
relationship between the two indicators.

In Tables 6 and 7, we can visually observe the correlations between indicators. One
notable observation is that the correlation between Q1 and Q6 is approximately −1. This
confirms that there is indeed a strong negative correlation between them, consistent with
the previous discussions. Surprisingly, we also found high correlations between Q1 and
Q4, as well as between Q2, Q3, and Q5. The high correlation between Q1 and Q4 may be
due to the random generation of augmented datasets. It results in different numbers of
samples for each class, causing Q4 and Q1 to increase synchronously and be considered
highly correlated. If the size of tests is larger and more diverse, this correlation will
gradually decrease. The high correlation between Q2, Q3, and Q5 may be due to manual
rule intervention, which leads to a more uniform color space distribution in the dataset
and reduces the use of color as a criterion for unsupervised clustering. This improves the
accuracy of clustering results. This also indirectly demonstrates that data augmentation
indeed helps the model learn from data.
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Table 5. Results of ablation experiments.

Fusion of Quality Metrics Formula CScub MSEcub CSci f ar MSEci f ar

(QDiversity + QClassBalance)×QTaskRelevance
Q′6
Q6
×∑5

i=1 wi
Q′i
Qi

/ ∑5
i=1 wi 0.9999 * 0.1357 0.9997 1.4841

QDiversity ×QClassBalance ×QTaskRelevance ∏6
i=1(

Q′i
Qi
)ri 0.9805 5.6027 0.9721 16.5365

QDiversity × (QClassBalance + QTaskRelevance) ∏3
i=1(

Q′i
Qi
)ri ×∑6

i=4 wi
Q′i
Qi

/ ∑6
i=4 wi 0.9727 9.7748 0.9916 98.9535

QDiversity + QClassBalance) + QTaskRelevance ∑6
i=1 wi

Q′i
Qi

/ ∑6
i=1 wi 0.9977 0.5363 0.9995 1.8736

* The bold values are the best.

Table 6. The correlation coefficient of each metric in CIFAR-10.

Metrics Q1 Q2 Q3 Q4 Q5 Q6

Q1 1
Q2 −0.05 1
Q3 −0.29 0.76 * 1
Q4 0.81 * 0.10 −0.10 1
Q5 −0.19 0.62 * 0.81 * −0.14 1
Q6 −0.92 ** 0.02 0.24 −0.57 0.07 1

* p < 0.05, ** p < 0.01.

Table 7. The correlation coefficient of each metric in CUB-200.

Metrics Q1 Q2 Q3 Q4 Q5 Q6

Q1 1
Q2 −0.23 1
Q3 −0.71 * 0.73 * 1
Q4 0.76 * 0.11 −0.24 1
Q5 −0.71 * 0.79 * 0.95 ** −0.19 1
Q6 −0.97 ** 0.36 0.79 * −0.66 0.8 * 1

* p < 0.05, ** p < 0.01.

However, there are slight differences in the experimental results between the two
datasets. For example, in CIFAR-10, Q6 is strongly correlated only with Q1. But in CUB-
200, Q6 is strongly correlated with not only Q1 but also Q3 and Q5. In particular, the
correlation with Q5 increased from 0.07 to 0.8, showing two extremes. From the perspective
of dataset properties, CIFAR-10 is a large-scale dataset with data from various scenarios
and weather conditions, and data augmentation has a limited impact on its basic image
feature distribution, and the distribution of each class changes little. Data augmentation
mainly affects semantic information in this dataset, such as object inversion not affecting
recognition. Therefore, only Q1 and Q6 show correlation. However, in the small dataset
CUB-200, most images have a single color and similar backgrounds. Image features have
a greater impact on the final results, which is also reflected in the correlation of indicator
results. Therefore, when using our framework to evaluate data augmentation quality,
analyzing the correlations of various indicators can help understand the strengths and
weaknesses of the dataset.

Figure 4 illustrates the impact of clustering algorithms on the framework results,
where only Q1 and Q6 are accelerated by clustering in the framework. Figure 4a,b show the
accuracy of the results before and after clustering. The original algorithm uses brute force
to compute the distance between pairwise image vectors to obtain evaluation results. In
Figure 4a, the clustered results show some differences compared to the original results, with
a similar trend but a decrease in evaluation scores after clustering. However, as Figure 4b
indicates, both indicators improve after clustering, proving that clustering actually helps
improve the accuracy of the evaluation results. Figure 4c displays the saved running time
through clustering. The x-axis represents the product of the number of classes and the
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number of samples in each class in the dataset. It is evident that when the number of classes
is large and the number of samples per class is small, clustering only saves about half of the
time. However, when the number of samples per class is much larger than the number of
classes, clustering can save over 90% of the time. This is because Q1 separates the dataset
based on classes, and the time complexity within each class is O(n2). After fast clustering,
since the number of classes is roughly the same, it can be considered a constant factor.
Therefore, the fewer the number of classes and the more samples per class, the more time
can be saved. In Figure 5, it can be observed that replacing different pre-trained models
does not significantly affect the evaluation results of this method. The more sufficient
the pre-training, the more accurate the grasp of image features, and the generated image
feature vectors also have certain discriminative power. The two pre-trained models selected
in this study, both trained on ImageNet, did not show significant differences.

(a) (b)

(c)

Figure 4. The clustering results have not only optimized the computation of the algorithm but also
improved its performance. (a) The running times of the unoptimized and optimized algorithms are
shown for different numbers of categories and samples within each category. The x-axis represents
the product of the number of categories and the number of samples within each category in the
dataset. (b) Partial scores of the original algorithm and the optimized algorithm are presented
for the CUB-200 dataset. The x-axis represents the total number of samples in the augmented
training set. (c) Performance evaluation of the original algorithm and the optimized algorithm in the
CUB-200 dataset.
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(a) (b)

Figure 5. Under the same data augmentation with different scales, our algorithm and the averaging
method exhibit similar performance. (a) Evaluation of the three algorithms and the model on the
augmented dataset of CUB-200 dataset. (b) Performance evaluation of the three algorithms using CS
and MSE.

4.3. Applicability and Potential Applications

In Figures 6 and 7, we assessed the quality of each dataset and visualized the scores
for the original dataset and the highest dataset. It can be seen that from a visual perspective,
there are significant differences between the two. Figure 6 presents a comparison of the
EuroSAT dataset. On the left, the original images within the same category mostly share a
similar color and content. On the right, due to the effects of data augmentation, there is
increased diversity in color and brightness. However, in some images, it becomes difficult
to discern their content with the naked eye. Figure 7 illustrates the dimensionality reduction
visualization of the IMDB dataset using the t-SNE algorithm. It is evident that the dataset on
the right, which has higher scores, exhibits better data separation. Most of the positive data
points are concentrated on the right. This indicates that the classes have good separability,
which can effectively enhance the model’s performance.

(a) (b)

Figure 6. This is a display of the EuroSAT dataset, each row is a different class. (a) Origin dataset.
(b) The augmented dataset with the highest score.
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(a) (b)

Figure 7. The t-SNE algorithm reduces dimensionality of all features in the IMDB dataset and
visualizes them. (a) Origin dataset. (b) The augmented dataset with the highest score.

The context of intrinsic data attributes and the intended use of the data in the evalua-
tion method cannot be balanced well, which limits its applicability. For example, remote
sensing images inherently have issues like low contrast, noise, and blurriness. Additionally,
remote sensing images often contain imprecisely shaped objects, unlike medical imaging,
which require precise target recognition. Therefore, remote sensing images are not highly
sensitive to task relevance, and optimizing intrinsic data attributes for quality improvement
results in more significant quality loss compared to the decrease in task relevance. In
contrast, medical imaging has sufficiently high image quality. In an attempt to enhance
diversity, it leads to a loss in data quality and task relevance, ultimately resulting in an
overall decline in quality. Different tasks have varying quality requirements for datasets,
and during the calculation, parameter variations in three areas—diversity, class balance,
and task relevance—need to be considered. This is also a direction we need to focus on
in the future. When our method is not tuned to the correct parameter resulting in poor
performance, a more well-performing parameter can be fitted by combining the evaluation
results of multiple augmented datasets with a small number of training results. Then try
evaluating a new augmented dataset again until the parameter is similar to most of the
training results.

Different downstream tasks have different priorities. The evaluation method may
succeed for the assumed task but fail for the target task. For example, in the case of object
recognition tasks, the optimal augmented dataset obtained using the method described
in this paper may be suboptimal for this task. This is because image similarity metrics
are better suited for classification tasks rather than object recognition, where the goal is
to detect similarity between small regions. Task relevance metrics, on the other hand, can
replace this by calculating the similarity between annotated regions and other regions.

Data can exhibit significant differences in terms of structure, format, complexity, size,
noise levels, and more. Evaluation methods tailored to one data type may fail when
applied to another data type. For image datasets, we calculate statistics on pixels and
textures. However, text datasets are composed of characters, words, and sentences, so the
intrinsic data quality of different data types needs rules established by domain experts
for measurement. In addition to this, this paper’s method reflects high applicability and
robustness in data diversity. The main reason is that no matter what type of deep learning
data can use neural networks to extract multi-dimensional feature vectors, which constitutes
most of the indicators of this paper’s method based on the calculation of feature vectors, so
to a certain extent this paper has the ability to adapt to most of the fields.
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In most real-world datasets, a certain degree of anomalies, noise, errors, and outliers
can be expected. Truly clean and pristine data are a rare find. This is particularly true for
sensor data, remote sensing data, and internet-derived data, which often exhibit higher
variability and a higher incidence of anomalies. The process of data augmentation can
introduce new error patterns. In this paper, we split the dataset into three attributes and
utilize techniques such as information entropy to effectively quantify the number of patterns
and task relevance. Excessive errors can lead to a decrease in task relevance, which can
manifest in the final results. However, because this paper employs unsupervised algorithms,
it is challenging to distinguish and optimize true anomalies from acceptable variations.

The diversity and complexity of real-world data make the development of universally
applicable data quality assessment methods inherently challenging. Thoughtful method
design, extensive evaluation, avoiding overfitting, and relaxing assumptions can enhance
applicability. In practical scenarios, the methods outlined in this paper can guide the con-
struction of datasets. If the collected sample dataset is insufficient for training deep learning
models, you can evaluate the effectiveness of data augmentation using quantitative metrics
defined based on the three dataset attributes and the ultimate goal, such as improving
classification accuracy, reducing error rates, or enhancing signal-to-noise ratios. Utilizing
data augmentation and assessment methods can address the long-tail problem in data,
improve data consistency, and reduce the labeling workload. As more real-world data
become available, it is essential to continuously reassess and enhance data augmentation.
The demand for augmentation may evolve over time. In summary, the methods described
in this paper contribute to the development of well-generalized models from limited and
imperfect real-world data.

Furthermore, the methods outlined in this paper are easy to implement and can be
seamlessly integrated into the deep learning workflow using popular frameworks like
TensorFlow or PyTorch. Leveraging the data pipelines within these frameworks and the
data monitoring integrated into them, it becomes straightforward to quickly compute
intrinsic data attribute metrics and feature vectors generated by pre-trained models after
generating multiple augmented datasets from the input data. Once the optimal dataset for
evaluation is obtained, you can proceed directly to training your model.

5. Conclusions

This study aims to enhance model performance through the improvement of data
quality. By categorizing data quality into three key dimensions, diversity, class balance,
and task relevance, and evaluating the effectiveness of data augmentation within these
dimensions, we have achieved the following key outcomes and conclusions.

Firstly, we have successfully deconstructed the complexity of data quality into three
essential dimensions. This aids in providing a more comprehensive understanding of data
quality. Diversity ensures the inclusion of various sample types in the dataset, class balance
helps address imbalances in class distribution, and task relevance ensures the alignment of
data with the actual task at hand.

Secondly, by assessing the impact of data augmentation methods across these three
dimensions, we can quantitatively measure the influence of different enhancement strate-
gies on data quality. Our experimental results demonstrate that, with reasonable selection
and adjustment of augmentation strategies, significant improvements can be made in data
diversity and class balance while maintaining a high degree of relevance to the task.

Most importantly, our work holds significant practical implications. In the modern
fields of machine learning and artificial intelligence, data serves as the foundation of
successful models. By elevating data quality, we can enhance model generalization, mitigate
overfitting risks, improve model robustness in real-world scenarios, and provide more
accurate predictive and decision-making support across various application domains.
This impact extends to critical areas such as medical diagnostics, financial risk analysis,
autonomous driving, and beyond.
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In the future, we aim to further explore the relationships among data quality dimen-
sions and strive towards the automatic selection of parameters tailored to specific domains
and tasks. The most notable improvement will be in terms of efficiency, as manual pa-
rameter selection and adjustment will no longer be necessary. Additionally, this approach
will reduce subjectivity and bias, ensuring the replicability and comparability of experi-
mental results. Most importantly, it will simplify experimentation, making this method
accessible to a broader range of researchers interested in understanding the principles of
data construction.

In summary, our research provides a systematic approach to enhancing data quality,
enabling researchers to better comprehend, evaluate, and enhance data for improved
machine learning model performance. This work offers robust guidance for future research
and applications, with the potential to make a positive impact in data-driven fields.
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