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Abstract: During the COVID-19 pandemic, the urgency of effective testing strategies had never
been more apparent. The fusion of Artificial Intelligence (AI) and Machine Learning (ML) models,
particularly within medical imaging (e.g., chest X-rays), holds promise in smart healthcare systems.
Deep Learning (DL), a subset of AI, has exhibited prowess in enhancing classification accuracy, a
crucial aspect in expediting COVID-19 diagnosis. However, the journey to harness DL’s potential
is rife with challenges: notably, the intricate landscape of medical data privacy. Striking a balance
between utilizing patient data for insights while upholding privacy is formidable. Federated Learning
(FL) emerges as a solution by enabling collaborative model training across decentralized data sources,
thus bypassing data centralization and preserving data privacy. This study presents a tailored,
collaborative FL architecture for COVID-19 screening via chest X-ray images. Designed to facilitate
cooperation among medical institutions, the framework ensures patient data remain localized, elimi-
nating the need for direct data sharing. Addressing imbalanced and non-identically distributed data,
the architecture is a robust solution. Implementation entails localized and fog-computing-based FL
models. Localized models utilize Convolutional Neural Networks (CNNs) on institution-specific
datasets, while the FL model, refined iteratively, takes precedence in the final classification. Intrigu-
ingly, the global FL model, fortified by fog computing, emerges as the frontrunner in classification
after weight refinement, surpassing local models. Validation within the COLAB platform gauges the
model’s performance through metrics such as accuracy, precision, recall, and F1-score. Remarkably,
the proposed model excels across these metrics, solidifying its efficacy. This research navigates the
confluence of AI, FL, and medical imaging, unveiling insights that could reshape healthcare delivery.
The study enriches scientific discourse by addressing data privacy in collaborative learning and
carries potential implications for enhanced patient care.

Keywords: smart healthcare; federated learning; COVID-19; convolutional neural networks;
fog computing

1. Introduction

The bare minimum list of essential smart healthcare services includes emergency,
inpatient, hospital, medical care, outpatient, and preventative medical services [1,2]. A
data leak can harm both doctors’ and their patients’ reputations. Cyberattack risk is de-
creased by enhancing the security of IT systems that store and process medical records.
To preserve medical information, laws establish security standards and place protections
around patient data and healthcare facilities. Regarding data storage, “on-premise” refers
to the healthcare provider’s data center [3]. Medical professionals use Artificial Intelligence
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(AI) (e.g., Machine Learning (ML) and Deep Learning (DL)) to assist with patient care and
clinical data management [4]. DL is progressively integrated into advanced systems with
notable clinical implications. Some of the most promising applications involve patient-
facing innovations and surprisingly mature approaches to enhancing the user experience
of health IT [5]. Among these, Convolutional Neural Networks (CNNs), a category of
DL, demonstrate remarkable proficiency in analyzing images, such as X-rays or findings
from MRI scans [6]. CNNs were intentionally designed by computer scientists at Stanford
University to excel in image processing, with the goal of enabling them to operate more
efficiently and manage larger images. Consequently, certain CNNs surpass human diagnos-
ticians in accurately identifying crucial details within diagnostic imaging assessments [7].
Federated Learning (FL) enables non-affiliated hospitals to participate without sharing
their rich datasets, alleviating the need to co-locate all the data in a central location and
enabling independent hospitals to gain benefits from them [8]. Significant problems, such
as data security, privacy, and access to diverse data, are solved by this method [9,10].

FL involves the collective sharing of data among multiple individuals to collabora-
tively train a singular DL model and progressively enhance its capabilities; it resembles a
collaborative group presentation or report [11]. Each participant receives the model from
a cloud data center, often starting with a foundational model that has previously under-
gone training. It is a good option for private information belonging to patients, persons,
businesses, or other sectors that must adhere to strict privacy regulations [12]. FL offers an
alternative to modeling problems by allowing numerous edge devices or organizations to
train a global model using various local data. FL mainly or partially supports data privacy
and security challenges [13,14]. However, there is a conflict when we discuss ML and pri-
vacy. Indeed, to perform well, ML in general—and DL models in particular—require access
to massive datasets. Unfortunately, due to privacy issues and liability risks, these data are
frequently maintained by many companies. Privacy, data ownership, legal, and technical
issues make it challenging to acquire most data, especially in the healthcare industry.

Furthermore, in the healthcare industry, data management strategies are severely
impacted by international regulations, such as the Health Insurance Portability and Ac-
countability Act (HIPAA) in the United States and the General Data Protection Regulation
(GDPR) in the European Union [15,16]. Data collection from clients in bulk without a clear
service goal is no longer an issue. The GDPR provides the legal framework to protect
personal data in the European Union. The GDPR increases corporate accountability by im-
posing additional requirements on service providers concerning data handling, specifically
emphasizing controlling its centralization. Privacy protection has assumed paramount
importance at the heart of data processing now more than ever [17]. These challenges pose
a serious concern for organizations and data enthusiasts dealing in the healthcare industry
to build AI healthcare applications. In other words, one must disclose data to utilize these
full diagnostics.

A distributed ML approach called FL, which Google first unveiled in 2017 [18], enables
cross-organization collaboration for training DL models without disclosing their datasets for
cases for which training data are to be maintained locally by device users (nodes) as opposed
to a centralized data center; FL emerges as a compelling ML approach [19]. These nodes
use their data to compute, and then they update a global model. Since these nodes can be
located in various geographical regions subjected to different regulations and with different
data generation and preparation techniques, the data distribution patterns across these
nodes can have a high level of variance. In a heterogeneous multi-node environment, some
clients may have more or different data than others. Therefore, identifying a data sample
that generalizes the entire data distribution is an unlikely event. Two primary features
that distinguish federated optimization problems from their distributed counterparts are
highlighted in this context. First, the data used by each user for training are non-identically
and independently distributed (Non-IID), eliminating the existence of a consolidated
representation of the entire population’s dataset. Second, data distribution is unbalanced,
with varying amounts of data held by each user compared to others. Leveraging the
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benefits of Federated Learning (FL), we have employed FL-based techniques to address a
compassionate issue in the healthcare sector: the coronavirus disease (COVID-19). This
infectious ailment, caused by the SARS-CoV-2 virus, was initially reported in Wuhan,
China, in December 2019 [20]. The outbreak spread rapidly throughout China and most
of the world’s nations. Stopping the virus is extremely difficult given the pandemic’s
rapid escalation (thousands of deaths and hundreds of thousands of infections). There are
currently numerous diagnostic techniques available for the identification of coronavirus.

Chest X-ray imaging and CT scans, which are widely utilized [21,22], play a pivotal
role. The lung damage caused by COVID-19, which targets respiratory tract epithelial cells,
is assessed through chest X-ray images [23]. Furthermore, the availability of X-ray imaging
equipment globally and its heightened diagnostic accuracy confers a notable advantage in
COVID-19 diagnosis compared to specialized testing kits. AI-based models for processing
chest X-ray images offer an expedient and cost-effective alternative for COVID-19 screening,
prompting substantial interest in the scientific community to develop ML-based strategies
for outbreak prediction and diagnosis [24]. This study’s objective—the cornerstone of the
article’s distinctive concepts—is to formulate and assess an FL-based system for identifying
COVID-19 through chest X-ray images. A pioneering effort, this research employs FL
techniques to detect COVID-19 in chest X-rays proficiently. The principal contributions of
this research encompass:

• This research proposes a collaborative and decentralized system specifically designed
to empower clinicians with valuable insights for diagnosing COVID-19 while ensuring
stringent safeguards are in place for patient data privacy.

• The study introduces a robust, decentralized fog-based Federated Learning model.
This model is unique in its ability to effectively handle dispersed and unevenly
distributed data, yielding results that are on par with those obtained from traditional
centralized ML approaches.

• To ensure clarity and facilitate future research, the mathematical equations and algo-
rithms used in this study are provided and explained in detail. These resources serve
as a valuable tool for readers who wish to further understand or build upon this work.

• A comprehensive analysis of the model’s performance has been conducted, demon-
strating high accuracy and precision. Further examination of the model’s performance
reveals equally impressive recall and F1-scores. Additionally, a detailed confusion
matrix is provided, offering an in-depth understanding of the model’s performance
across different scenarios. This demonstrates the model’s robustness and reliability,
underscoring the effectiveness of the proposed methodology.

The subsequent sections of the paper are structured as follows: Section 2 provides an
overview of the current state-of-the-art, delving into the latest advancements. The proposed
methodology is expounded upon in Section 3, alongside exploring the evaluation param-
eters employed. Section 4 furnishes details about the dataset, experimental procedures,
and the outcomes garnered from this study. Lastly, the paper concludes in Section 5 by
summarizing key findings and delineating avenues for future research.

2. Literature Review

This section discusses different FL-based models for detecting COVID-19.
Sadly, the dangerous COVID-19 virus caused a pandemic that spread worldwide.

Researchers, scientists, medical experts, and executives worldwide face a significant risk
if it requires future treatment. In a recent study by Kandati et al. [23] a comprehensive
strategy is recommended amalgamating Federated Learning (FL) with a Particle Swarm
Optimization algorithm (PSO). This fusion aims to accelerate the government’s respon-
siveness in addressing COVID-19-induced chest lesions. The Federated Particle Swarm
Optimization method’s efficacy is evaluated using a diverse dataset of images featuring
chest lesions associated with COVID-19 infections alongside pneumonia cases from Kag-
gle’s repository of chest X-ray images. In another innovative undertaking outlined in
Bian et al.’s work [20], the focus is on enhancing the efficiency and precision of global
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models during training through the incorporation of pre-trained models (PTMs) within
the ambit of Federated Learning (FL). This endeavor seeks to curtail computational and
communication demands, ultimately fostering improved outcomes. The user discusses
introducing a secure aggregation protocol that utilizes homomorphic encryption and differ-
ential privacy. The findings in reference [21] show better performance than several other
strategies already in use. This strategy is suitable and efficient for classifying COVID-19
chest X-rays. Reference [25] demonstrated that FL could aggregate COVID-19 information
from many participating centers while respecting patient privacy. Recently, it has been
demonstrated that other fields, such as cloud computing, can benefit from FL. The authors
in [24] proposed a method for identifying CT scans of COVID-19 patients utilizing data
from several hospitals to create a precise collaborative model.

The COVID-19 epidemic is one of the significant medical disasters that the entire world
is undergoing. Reference [26] presents a collaborative FL model that enables COVID-19
detection screening from CXR (chest X-ray) pictures by numerous medical institutions.
COVID-19 was classified as a pandemic by the World Health Organization in March 2020.
To slow the pandemic’s spread, practical testing is essential. In this regard, ref. [27] examines
recent issues using DL and FL approaches for COVID-19 detection, focusing on that. One
of the biggest challenges in detecting COVID-19 is the virus’s quick spread and the need for
valid testing models. For clinicians, this issue continues to be the most significant burden.
The study presented in [28] examined reducing medical imaging analytic techniques in
prediction, e-treatment, and data transfer to identify diseases as early as feasible. The
outcomes reveal that the proposed approach did best in accuracy and precision. In [29],
a proposed model focuses on COVID-19 data and creates a more accurate COVID-19
diagnosis model based on patient symptoms. The data are then reanalyzed using ML,
and a computational model for determining if a person has COVID-19 based only on
clinical data is be created. Taking advantage of FL’s quick, centrally managed experiment
start and enhanced data traceability and assessing the impact of algorithmic adjustments,
ref. [3] used FL to improve the prediction accuracy of the websites of testing sets.

The image classification job examines an algorithm’s capacity to identify the image’s
constituent elements without necessarily locating them. This study addresses the estab-
lishment of a standardized dataset and the ensuing possibilities in object recognition that
emerge as a consequence. In a related work by Dou et al. [14], the authors detailed the
extensive data collection procedure of ILSVRC (ImageNet Large Scale Visual Recognition
Challenge), presented a summary, and analyzed data and failure modes pertinent to these
algorithms. The challenges of procuring comprehensive ground truth annotations are
discussed. At the same time, noteworthy strides in categorical object recognition are under-
scored. “Object recognition” is employed inclusively to encompass both image classification
and object identification. Similarly, in [10], the authors aim to create a reliable, transferable
model to help with patient triage. They predicted that it would surpass regional models and
more truly describe healthcare systems. On the test data for each customer, they compared
the trained local models with the global FL model.

Due to substantial uncertainty and insufficient availability of requisite data, standard
models have exhibited restricted accuracy in long-term prediction. Several attempts to
tackle this problem have been made in the literature; however, optimizing current models’
essential applicability and robustness abilities is still important. To predict the detection
of the COVID-19 outbreak, the authors in [3] compare ML and computing models. To
gain knowledge about the probable progression and impact of infections, having access to
accurate outbreak estimation methods is essential. They examine and contrast ML and ML
methods to forecast the COVID-19 outbreak.

3. Methodology

This section outlines the methodology for identifying COVID-19 chest X-ray images
while excluding non-infected instances. Following a formal introduction, we delve into a
comprehensive overview of our proposed approach: including the architecture of the ML
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model integrated with FL, the model training process at the client end, and the mechanism
for aggregating trained models on the server.

3.1. Formal Description of the Proposed Framework

The proposed framework is tailored for classifying chest X-ray images into infected
and non-infected categories. The foundation of this approach is the FedAvg algorithm,
which facilitates efficient distributed training while safeguarding data privacy. Let N
denote the total number of participating clients in the FL process.

Let θglobal be the global model parameters, and θi
local represents the local model pa-

rameters of client i (1 ≤ i ≤ N).

1. Initialization: The central server initiates the global model parameters θglobal and
disseminates them to a subset of clients Ck ⊂ 1, 2, ..., N, where k signifies the commu-
nication round index.

2. Local Training: Each client, denoted as i, undertakes local training utilizing its own
dataset. The objective of this training is to minimize the local loss, Li(θ

i
local), which

is a function of the model parameters. In this context, θi
local represents the current

model parameters for client i. The process of minimizing the local loss is represented
mathematically in Equation (1) as follows:

θi,new
local = argminθlocaliLi(θ

i
local) (1)

In the above equation, θi,new
local represents the updated model parameters for client i

after the local training. These are obtained by finding the argument that minimizes
the local loss function Li.

3. Model Update: Subsequent to local training, each client i transmits its updated model
parameters θi,new

local back to the central server.
4. Aggregation: The central server aggregates the received local model parameters via

weighted averaging, as depicted in Equation (2):

θk+1
global =

1
|Ck| ∑

i∈Ck

|θi,new
local | (2)

3.2. Deep CNN Model

The classification model accepts an X-ray image X as input and generates the proba-
bility PCOVID-19 of being COVID-19 infected. Let fCNN(·; θglobal) denote the CNN model’s
mapping function parameterized by θglobal, as expressed in Equation (3):

PCOVID-19 = fCNN(X; θglobal) (3)

3.3. Overall Model Training Objective

Define the combined loss function using Equation (4):

Ltotal =
N

∑
i=1

|Ci|
∑N

j=1 |Cj|
Li(θ

i
local) + λLCNN (4)

Algorithm 1 starts with global model parameter initialization. A random subset of
clients is selected over a set number of communication rounds. For each client, local training
is executed iteratively until convergence, adjusting their local model parameters using
stochastic gradient descent. The updated local models are aggregated at the central server
through weighted averaging. The deep Convolutional Neural Network (CNN) model
processes X-ray images, and post-processing techniques, such as lung segmentation and
data augmentation, enhance robustness. The overall training objective involves a combined
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loss function incorporating local and CNN classification loss. Implementation details,
results, and conclusions provide further insights into the methodology’s effectiveness.

Algorithm 1: Federated Learning for COVID-19 classification.
Input: Client datasets {D1, D2, ..., DN}, communication rounds T, learning rate η,

regularization parameter λ
Output: Global model parameters θglobal

1 Initialize global model parameters θglobal;
2 for t = 1 to T do
3 Select random subset of clients Ck ⊂ {1, 2, ..., N};
4 for each client i ∈ Ck do
5 θi

local ← θglobal;
6 while not converged do
7 Compute local loss Li(θ

i
local) using Equation (1);

8 Compute local gradient ∇θi
local

Li(θ
i
local);

9 Update local model parameters: θi
local ← θi

local − η∇θi
local

Li(θ
i
local);

10 end
11 Send updated model θi

local to central server;
12 end
13 Aggregate local models: θk+1

global =
1
|Ck | ∑i∈Ck

θi
local;

14 end

3.4. Proposed Framework Overview

To address the task of differentiating images capturing distinct health conditions,
our approach revolves around exploring an FL structure rooted in a client–server setup
(depicted in Figure 1). This architecture is underpinned by the FedAvg algorithm, which
is renowned for its pivotal role. FedAvg operates as a communication-efficient mecha-
nism within distributed training, seamlessly integrating with localized models. In this
context, localized models maintain their data locally to uphold privacy, while a central
server facilitates communication between these localized counterparts. This framework
hinges upon a central parameter server tasked with orchestrating client alterations and
overseeing a standardized global model. Through collaborative efforts, clientele leverage
their distinctive datasets to formulate a robust model. Our proposition entails the design of
an intricate CNN model primed to undertake tasks encompassing classification and feature
extraction, particularly within the realm of chest imagery analysis. The model’s capacity
to gauge the likelihood of infection is grounded in scrutinizing input images. Elaborated
specifications regarding this CNN model’s architecture are presented in Section 3.5. The
learning phase of this CNN model encompasses multiple communication cycles between
clients and the central server. Before the commencement of training sessions, the CNN
model is initialized with random base weights. We assume that each privately stored local
X-ray image is accessible to clients. Each communication cycle comprises four distinct
steps:

Step 1: A global central architecture is maintained on the central aggregation server, which
is initially endowed with weights. These weights are then broadcast to a subset of
client devices selected at random (e.g., hospitals).

Step 2: Subsequent to receiving the initial parameters, each client embarks on training
using a subset of its data via mini-batch stochastic gradient descent (SGD) over
multiple epochs. This endeavor aims to minimize local gradients. Notably, the
convergence of each local model transpires at varying epoch counts. Clients
iteratively refine their models by minimizing classification loss via categorical
cross-entropy.
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Step 3: Users stationed at the client nodes update the server upon completion of their re-
spective local training iterations (involving SGD across epochs on local data points).

Step 4: After collecting data from all participating nodes and calculating an average model,
the central server updates the global model parameters.

Figure 1. Proposed model architecture.

A single Federated Learning (FL) round for our CNN model entails these four phases.
This sequence of actions is then repeated iteratively (across rounds). The server dispatches
the updated global model parameters from the preceding round during each new round.
Furthermore, if an abundant number of clients are available, the subset of participating
clients can be modified between rounds.

3.5. Preprocessing, Model Training, and Postprocessing

The Hounsfield units for each volume cut for preprocessing before their values show
at [1.0, 1.0]. Experimental observations show that standardizing the data to have a mean of
zero and unit variance and using individual volume statistics rather than global dataset
statistics helps improve the model’s generality. Furthermore, using three neighboring slices
as input for convolutional neural models after normalizing the data yields better results.
Every local client used the dataset to improve his or her model for one epoch during each
round of FL. All local clients used the Adam optimizer, which had a learning rate of 1× 104,
0.9, 0.999, and 1× 107 for beta1, beta2, and epsilon. Following the analysis of the biases of
the dataset, we observed that the classification algorithms are mainly based on the pixels at
the edge of the image to make their decision. Therefore, we aim to remove these edges and
focus only on the lungs with the information needed for the classification. This required
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using a U-Net neural network pretrained on CXR images and developed especially for
lung segmentation. After segmentation, the images were cropped around the lungs with a
margin of 10 pixels. The homogenized and cropped images were then used to build our
new dataset for training and testing the DL model [30].

A variety of data augmentation techniques, such as random horizontal and vertical
flips (with a probability of 50%), lucky clockwise rotations (with an amplitude ranging
from 0.1 to 0.1), random horizontal and vertical translations (with a range of 0.1 to 0.1 of the
input image’s length or width), and random shear and scaling were applied to the training
data (with a range of 0.1 to 0.1). Different Python libraries were used for data preprocessing
before giving the data to the model for training. In this research work, we also utilized
some of those libraries. Panda and Numpy libraries were used for data cleaning. Panda,
Numpy, and Matplotlib libraries were used for data processing. SKlearn was also used
for data augmentation purposes. The Numpy and TensorFlow programming frameworks
were used in order to put these strategies into action. The Keras library facilitated accessing
different layers of models for classification. A relatively small piece of the training data was
extracted at each process step to assess the model’s performance. If the global performance
of the model on the local test dataset did not improve for five federated rounds in a row,
we considered the training to have collapsed and the FL to have come to an end. The deep
CNNs were built using a single NVIDIA TitanXp GPU (graphics processing unit).

During the post-processing phase, we used non-maximum suppression30, a method
prevalent in image processing, to separate overlapping elements. We separated an overlap-
ping series of frames using non-maximum suppression to create bounding boxes with the
greatest anticipated probability. For more accuracy, we eliminated any bounding boxes in
an image with a chance lower than a certain threshold, which was determined by looking
at a collection of projected bounding boxes. Out of the remaining bounding boxes, we
chose the one with the greatest probability and eliminated those with an Intersection over
Union (IoU) value larger than 0.5. In addition, we used an open-source AI model for
lung segmentation31 to eliminate any false-positive detections that occurred outside of the
lung area.

3.6. Model Architecture

This research suggests a collaborative and decentralized architecture for chest X-ray
imaging-based COVID-19 screening. We aim to demonstrate that a deep CNN model can
perform federated learning to benefit from rich private data interchange while upholding
privacy. The specific design of the CNN is not the focus of this work because many different
architectural solutions could only slightly improve or worsen the overall performance.
The information exchange flow between the central server and federated clients is shown
in Figure 2. The parts that follow give information on these two parties as discussed
subsequently:

3.6.1. Client-Side Model Update

On the client side, training is carried out since every federated client has access to the
same dataset and has the computing capacity to carry out mini-batch Stochastic Gradient
Descent (SGD). Clients whose CNN architecture and loss functions are the same are ignored.
Algorithm 2 provides the steps used in training. At the beginning of the round, a copy of
the global model is sent to each client’s computer so that it may be initialized. Once the
client has finished the same number of iterations as there are local epochs, they compute
a gradient update to generate the new model, which is then shared with the aggregation
server. During this training process, the local data for each customer are treated as private
information and are never discussed with anyone else. This describes the procedure done
on the client side. The client side can be stated as local algorithms working on Hospitals A,
B, and C with local datasets. On the client side, the model is trained, and weights are sent
to the global model. During training, dataset Pk is divided into equal sizes of batch B. For
each batch B, the gradient is computed, and the weight of the local model is updated.
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Figure 2. Proposed model flow.

Algorithm 2: Client-side algorithm.
Input : loss function ls and local learning rate η

Result: number of local epochs and local training data
1 begin
2 Algorithm
3 Client update (wt)
4 w← wt

5 Bt ← Split k into batches of size Bt
6 for each local epoch j from 1 to E do
7 for each batch bt in Bt do
8 compute gradient gb

i ← ∆l(w; bt)
9 Update local model w← w− ηgb

i
10 end
11 end
12 end

3.6.2. Server-Side Model Aggregation

An aggregation server is responsible for managing the global model. This server also
ensures that each participating client receives the initial model and tracks the progression
of the training. The server receives synchronized updates from all clients at each federated
round and utilizes these changes to generate a new model with updated parameters
following Equation (2). Algorithm 3 describes the procedure done on the server side. The
server side can be stated as a global algorithm working on Hospitals A, B, and C with the
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global dataset. The model is trained on the server side, and weights are sent to the local
models. During training, weights are updated after each round t, i.e., 1, 2, 3, and so on. At
the end, the gradient value for the global model is computed.

Algorithm 3: Server-side algorithm.
Input : loss function ls and local learning rate η

Result: number of federated rounds
1 begin
2 Algorithm
3 Aggregating (C, K)
4 Initialize global model wo

5 for each round r = 1, 2, 3, ....R do
6 mc ← max(C× K, 1)
7 St ← random set of mc clients
8 for each client k belonging to St do
9 Send wt−1 to client k

10 Compute gradient gb
i ← ∆l(w : b)

11 end
12 end
13 end

4. Findings and Discussion

This section presents an evaluation, and the outcomes of our suggested paradigm are
described. The performance of our model was evaluated by simulation. The experimenta-
tion setup used to evaluate and train the model is also elaborated on here. Results show
that our model is better regarding accuracy, precision, and recall.

4.1. Description of the Dataset

The dataset used in this study comprises 2473 X-ray images from the COVID-19 CXR
dataset. This dataset is sourced from the COVID-19 Radiography Database, available on
Kaggle. It includes 1345 viral pneumonia images, 219 COVID-19 images, and 1341 regular
CXR images. The detailed dataset composition is presented in the following table.

4.2. COVID-19 Chest X-ray Database

A collaborative effort between researchers from the University of Qatar, Doha, Qatar;
Dhaka University, Bangladesh; Pakistan; and Malaysia resulted in a chest X-ray image
dataset. This dataset includes positive samples of COVID-19, regular X-rays, and viral
and bacterial pneumonia images. The dataset was released in multiple phases. The initial
release contained 219 COVID-19, 1341 regular, and 1345 viral chest X-ray images. The
COVID-19 class has since been expanded to 1200 CXR images. In a subsequent update,
the dataset was expanded further with the addition of 3616 COVID-19-positive cases,
10,192 normal cases, 6012 lung opacity non-COVID infections, and 1345 viral influenza
images. Regular updates are performed to incorporate new X-ray images of COVID-19
pneumonia cases as they become available. The details of datasets are provided in Table 1,
and the dataset distribution is outlined in Table 2.

Table 1. Dataset details for chest X-ray images.

Image Type Data Source Number of Images

COVID-19 PadChest database [31], Germany [32], SIRM, Kaggle,
GitHub, Twitter [33–35] 2473

Normal RSNA dataset [36] 10,192

Lung Opacity Radiological Society of North America CXR
dataset [37] 6012

Viral Pneumonia CXR (pneumonia) dataset [38] 1345
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Table 2. Dataset and number of images.

Dataset Number of Images

Dataset division Training (70%) and Testing (30%)

COVID-19 images 3616
Normal images 10,192
Lungs images 6012

Influenza images 1345
Total images 21,165

Images per hospital 7055

4.3. Experimentation Setup

In opposition to previous models built using TensorFlow version 1.8, the suggested
model was established with open-sourced TensorFlow federation version 2.1.0, with Keras
providing the backend in both cases. The use of TensorFlow 1.8 for previous models
was primarily based on the existing infrastructure and legacy models already built using
that version. However, TensorFlow 2.1.0, which we used for our proposed model, offers
several improvements over the older versions. It brings tighter Keras integration, easier
model exporting for deployment, and enhanced performance optimizations. These features
aligned well with the requirements of our proposed model, prompting us to transition
to the newer version. Different Python libraries were used for data preprocessing before
giving the data to the model for training. In this research work, we also utilized some of
those libraries. Panda and Numpy libraries were used for data cleaning. Panda, Numpy,
and Matplotlib libraries were used for data processing. SKlearn was also used for data
augmentation purposes. The Numpy and TensorFlow programming frameworks were
used in order to put these strategies into action. The Keras library facilitated accessing
different layers of models for classification. The experiment was run on a PC desktop
with an Intel i5 6th generation CPU, an NVIDIA Titan GPU, 16 GB RAM, and a 3.5 GHz
speed control. Each dataset was split into three portions: 70% for instruction, 20% for
evaluation, and 10% for validation. The proposed system was trained using TensorFlow
federation version 2.1.0, and the other classic model was trained using TensorFlow version
1.8; both used 70% of the three databases: 23,804, 31,501, and 2443 pictures. Python 3.9.1
was used to create these models. Table 3 summarizes the parameters and their values used
in this experiment.

Table 3. Experiment parameters and their values.

Simulation Parameters Value

CPU Intel i5 6th generation
RAM 16 GB

Processor frequency 3.5 GHz
GPU NVIDIA Titan

Federated Learning version 2.1.0
TensorFlow version 1.8

Python version 3.9.1

4.4. Evaluation Metrics

In this part, the discussion of the evaluation metrics is given and offers a thorough
analysis of the outcomes. The classified accuracy uses statistics for evaluating the classifica-
tion of the model. It is calculated by dividing the total number of examples (images) in the
database under examination by the set of instances (images) that were correctly categorized.
The numerical equivalent is:

Accuracy(Ac) =
T+ve + T−ve

T+ve + T−ve + F+ve + F−ve
(5)
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Here, T+ve stands for true positive, and the number of medical images properly defined
as true is counted. F+ve stands for false positive and is a count of medical photos wrongly
defined as false. T−ve stands for true negative and is the count of correct medical images
identified as true, and F−ve stands for false negative. It is the count of medical images
incorrectly identified as false.

In image classification systems, recall and precision are used for performance mea-
surement. The proportion of correct positive images to all classified images is known as
precision. The formula for precision (Pr) is:

Precision(Pr) =
T+ve

T+ve + F+ve
(6)

Along with precision (Pr), performance measurement is accomplished by Recall (Rc).
The proportion of correctly categorized images to all images in the database is known as
recall. It can be summed up as follows in formula form:

Recall(Rc) =
T+ve

T+ve + F−ve
(7)

The Harmonic mean of the recall and precision is the F-score; a greater number indicates
that the system has superior predictive capacity. The performance of systems cannot be
judged just based on precision or recall. The F-score can be calculated as follows:

F-score = 2(
Pr ∗ Rc

Pr + Rc
) (8)

4.5. Accuracy

Figure 3 explains the COVID-19 image classification by the two different models, i.e.,
the local and the global model. The accuracies of both software configurations varies for
different hospital models. As the figure explains, the accuracy of the local model was
moderate throughout all hospital models. In contrast, the FL model surpassed the local
model in all three hospitals in patient detection regarding accuracy and precision. The
figure also shows that the accuracy of the FL model constantly increased in the respective
hospitals, and the local model has the lowest accuracy in Model B hospitals.

Figure 3. Accuracy.
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4.6. Precision, Recall, and F1-Measure for Hospital A

Figure 4 represents the precision, recall, and F1-measure values for the local and
FL-based models for a particular dataset of Hospital A. The figure shows that the FL-based
model scored the best precision, recall, and F1-score, with respective values of 67%, 64%,
and 93%. At the same time, other CNN-based local models gained 61%, 56%, and 87%
precision, recall, and F1-measure scores, respectively. Models that are based locally often
necessitate longer training periods compared to those that employ FL. This is primarily due
to the distributed nature of local models, where the data and the computational resources
are scattered across multiple devices or locations. This distribution can complicate the
process and extend the time required for model training. On the other hand, Federated-
Learning-based models have proven to be more efficient. FL allows a model to be trained
across multiple decentralized devices or servers, which hold local data samples without
exchanging them. It allows for faster, more efficient training because it eliminates the need
for data centralization and, therefore, speeds up the entire process. Comparatively, when it
comes to efficiency and speed, FL-based models outperform local CNN-based models. The
latter often rely on local resources and data, which can limit their performance and extend
their training time. Hence, strategies that leverage FL are generally considered superior to
those based on a local CNN.

Figure 4. Precision, recall, and F1-measure for Hospital A.

4.7. Precision, Recall, and F1-Measure for Hospital B

Figure 5 represents the precision, recall, and F1-measure values for the local and
FL-based models for a particular dataset of Hospital B. The Figure shows that the FL-based
model scored the best precision, recall, and F1-score, with respective values of 69%, 63%,
and 91%. In contrast, other CNN-based local models gained 60%, 54%, and 84% precision,
recall, and F1-measure scores, respectively. Local models also require more time for training
than FL-based models due to their distributed nature. This demonstrates that approaches
based on FL are more efficient than those based on a local CNN.
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Figure 5. Precision, recall, and F1-measure for Hospital B.

4.8. Precision, Recall, and F1-Measure for Hospital C

Figure 6 represents the precision, recall, and F1-measure values for the local and
FL-based models for a particular dataset of Hospital C. The figure shows that the FL-
based model scored the best precision, recall, and F1-score, with respective values of 71%,
66%, and 94%. In comparison, other CNN-based local models gained 62%, 57%, and 88%
precision, recall, and F1-measure scores, respectively. Local models also require more time
for training than FL-based models due to their distributed nature. This demonstrates that
approaches based on FL are more efficient than those based on a local CNN.

Figure 6. Precision, recall, and F1-measure for Hospital C.

4.9. Confusion Matrix

The confusion matrix for the training phase is shown in Figure 7. The results show
that there were 10,946 true positives and 7860 true negatives. On the other hand, there
were 291 false positives and 624 false negatives. In contrast, the confusion matrix for the
validation phase is shown in Figure 8. The results show that there were a total of 608 true
positives and 2005 true negatives. On the other hand, there were 32 false positives and
87 false negatives. The analysis of our confusion matrix results reveals notable percentage
differences between the training and testing (validation) phases, shedding light on how
our COVID-19 screening model using chest X-ray images generalizes to unseen data. In
the training phase, we achieved a substantial count of 10,946 true positives, indicating the
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model’s proficiency in correctly identifying COVID-19 cases. However, during the testing
phase, the true positive count dropped significantly to 608, representing a percentage
difference of approximately 94.44%. This decline suggests a challenge in the model’s
ability to generalize effectively to new data, particularly in identifying COVID-19 cases in
real-world scenarios.

Figure 7. Confusion matrix for training.

Figure 8. Confusion matrix for testing.

Conversely, there was a noticeable decrease in false positives during testing, with a
percentage difference of around 89.02%. This is a positive development, as it indicates
a lower rate of false alarms when applying the model to unseen data. Additionally, the
false negatives decreased by approximately 86.10% during testing, implying a reduction
in missed diagnoses, which is crucial for patient care. The most pronounced percentage
difference is in the true positive rate, underscoring the need for further optimization to
enhance the model’s performance on unseen data. These findings highlight the critical im-
portance of rigorous model evaluation and validation, as they offer insights into the model’s
generalization capabilities and potential areas for improvement. Future work should focus
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on fine-tuning the model to achieve more consistent performance between the training and
testing phases, ultimately increasing its reliability in real-world healthcare applications.

4.10. Discussion

This research shows that it is possible to aggregate COVID-19 data across detailed
listings while respecting patient privacy using FL. During COVID-19, when no time is
available to set up complex material around institutions and countries, this decentralized
training strategy is a crucial scaling enabler of AI-based technologies. The application of
FL has recently been shown in different industries, such as edge computing for digital
equipment. Still, diagnostic imaging is getting more complicated. It involves common
challenges, such as data with high dimensionality and with improper cohort sizes, that
exert untested influences on the current FL methods.

This is the first study showing FL’s feasibility and efficiency for COVID-19 image
processing. In this field, teamwork is vital during crises around the world. According to our
experimental findings, FL outperformed single-site models and their ensembles regarding
generalization ability. This is an example of successful decentralized optimization using
various training with multidimensional data. In a solid evidence study, we demonstrate the
viability of a convolution neural federated DL system for identifying chest CT problems in
COVID-19 disease patients. Significantly, the AI model developed using cohorts of Hong
Kong performed well on outer, hidden, independent datasets gathered by institutions in
Europe and Asia in addition to internal testing cases.

These international centers used different scanner brands, imaging protocols, and
groups of patients, and the study participants’ COVID-19 pneumonia severity varied. The
diversity of the data in this comprehensive study shows that it is possible to create reliable
and generalized AI techniques for battling COVID-19 through image processing in diverse
healthcare situations. Our model may allow proper use in reality as it usually requires
40 ms to assess one CT volume. The unreliability of AI techniques was expected to be
improved by multicenter training, which has been proven in various medical rummaging
scenarios 25–27. The Individual-2-model trained on 4146 photos of CT slices outperformed
the two single-site systems trained on 958 and 660 data points, respectively, in our studies
on all three external testing sites. As a result, it was discovered that more extensive training
databases could enhance the model’s performance on new datasets.

Furthermore, merging all three main training sites might improve the test accuracy,
even if two areas contributed fewer cases. This indicates that larger data scales and the
diversity of richer data through imaging scanners and protocols are also crucial for lowering
model error and enhancing generalizability. In this view, a collaboration between various
clinical institutions is a necessary step in creating AI for broader adoption, particularly in
the case of the COVID-19 pandemic, when global cooperation is vital. Despite enrolling
patients from seven clinical centers in various regions, each participating institution only
had a modest amount of patients. There was an imbalance between the locations due to the
pandemic performance management system receiving more cases than other hospitals. This
reflected the real-world circumstance that most single sites had difficulty finding enough
COVID-19 patients to train their internal AI systems.

Therefore, multicenter research with collaborative data merging efforts is crucial and
helpful to handle the COVID-19 long-tail dispersion. More patients and institutions will
be involved in FL in upcoming work. However, it is essential to note that the current
solid evidence study’s tiny patient population cannot prevent the creation of a DL model
due to a sizable number of lesions identified by the CT volumes. The German cohort’s
model extended less effectively compared to those of other foreign affiliates. The patient
populations’ varied ethnicities could be one factor. The cohort of hand annotations is
not directly compatible through training examples due to the diverse lesion annotation
processes used at various clinical sites, known in computer vision as idea shift. For instance,
the training data noted floor occlusion and consolidating.
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In contrast, the German cohort had a small number of pleural effusion lesions—atypical
in COVID-19—that contrasted only slightly with healthy lung tissue. There were 15 cases
with mild lesions (difficult to visualize in the window of the lung), 5 cases with a diffuse
lesion that was inappropriate for detection processes that anticipate lesion bounding boxes,
and 1 case was disqualified due to no CT findings. Image characteristic of individuals elim-
inated from the German cohort are shown in Figure 3. This allowed the model to maintain
35 examples while achieving an AUC of 88.15% (95% CI 86.38–89.91). The model obtained
an AUC of 77.15% (95% CI 72.84–81.47) when tested on all 56 cases of the German data. The
tool for CT abnormality detection is meant to be applicable in conjunction with the typical
visual assessment performed by qualified radiologists. By providing quantifiable data
during clinical decision making, the AI tool helps the expert. The loop expert also serves as
a buffer against incorrect predictions, such as false positives in the scanning process, that
are not worrisome.

It is crucial to remember a shift in concepts, such as that seen in the cohort of Germans,
will prevent upcoming multinational trials that employ FL if each site follows a set protocol.
Following a set protocol was not feasible due to the random design of the study, which
comprised data from different websites and each cohort’s independent collection of data.
Despite these drawbacks, our multinational verification highlights the practical challenges
of conducting such research while demonstrating our strategy’s potential. In conclusion,
the CNN-based AI model is efficient for detecting CT anomalies of COVID-19 disease
patients after being trained using the confidential FL model. The work of AI in delivering
less cost and scalable methods for the burden of lesion estimation for enhanced treatment
of clinical diseases is demonstrated by the overall unreliability of regional and worldwide
cohorts as external, which is beneficial by adding various datasets.

Despite the significant contributions made with the fog-based FL model introduced in
this study, there are a few constraints to consider. Primarily, the model’s effectiveness is
heavily reliant on both the quality and quantity of data provided by the participating nodes.
If the data are insufficient or skewed, this could impact the model’s accuracy. Another
constraint lies in the decentralized nature of the FL model itself. While this decentralization
offers enhanced data privacy, it also introduces complexity in terms of coordination and
synchronization among nodes. These complexities could result in increased computational
time and resource usage. It is also worth noting that the model’s performance may vary
based on different datasets and real-world scenarios, which further underlines the impor-
tance of robust and diverse data sources. Future research should aim to address these
limitations to further improve the performance and applicability of the FL model.

5. Conclusions and Future Work

In order to construct predictive models using existing AI techniques, central data
storage and training are frequently required. This increases computational complexity and
threatens privacy. In order to solve the issue, this research suggests using a system based on
FL to improve the interpretation of heterogeneous CT scanners from many sources. While
preserving security and privacy, this method distributes the data among the hospitals.
Additionally, extreme learning machines and capsular networks are used to successfully
extract and classify characteristics from a number of publicly viewable heterogeneous CT
imaging datasets to identify COVID-19. Additionally, FL is used to train collaborative
institutions. Further, using chaotic encryption keys increases faith in maintaining confiden-
tiality and privacy during data retrieval and sharing. The algorithm was tested extensively
and compared with other DL methods. The findings reveal that the suggested model per-
forms better than the competition regarding accuracy, precision, recall, and high F1-scores.
It also beats the competition in terms of trust and data relevance. The proposed model
performed better than previous approaches but still requires innovation when managing
clinical datasets. Future efforts must be made to combine FL with blockchain to optimize
the solution’s cost effectiveness.
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