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Abstract: Face data have found increasingly widespread applications in daily life. To efficiently
and accurately extract face information from input images, this paper presents a DF-Net-based face
detection approach. A lightweight facial feature extraction neural network based on the MobileNet-v2
architecture is designed and implemented. By incorporating multi-scale feature fusion and spatial
pyramid modules, the system achieves face localization and extraction across multiple scales. The
proposed network is trained on the open-source face detection dataset WiderFace. The hyperparame-
ters such as bottleneck coefficients and quality factors are discussed. Comparative experiments with
other commonly used networks are carried out in terms of network model size, processing speed, and
network extraction accuracy. Experimental results affirm the efficacy and robustness of this method,
especially in challenging facial poses.

Keywords: face detection; deep learning; DF-Net; lightweight; spatial pyramid module

1. Introduction

With the continuous development of societal technology, an increasing number of
fields are utilizing facial data with authentic scale information, which offers higher ro-
bustness and richer details. These applications span domains such as film production,
facial recognition, virtual reality, and medical fields [1–4]. The utilization of facial data is
expanding, with the foremost and critical step being face detection. In any facial applica-
tion system, the accuracy and speed of face detection directly affect the overall system’s
performance [5].

Facial detection can be categorized into two research directions [6]. The first is the
traditional approach, which involves manually extracting features for facial detection. For
instance, the Viola–Jones method [7] employs Haar feature extraction algorithms (linear
features, edge features, center features, and diagonal features). However, traditional
detection algorithms are not only time-consuming and labor intensive due to the need for
manual feature extraction, but they also have limited feature representation capabilities. In
complex environments, they often lack robust detection performance. With the introduction
of convolutional neural networks (CNNs) in 2012 [8], led by Hinton and others, more
and more researchers have delved into studying and innovating upon this technology.
As a result, facial detection has seen significant advancements with the advent of deep
learning. Facial detection algorithms based on deep learning can be divided into two main
categories: (1) Two-stage methods, which first generate candidate regions and then use
convolutional neural networks to predict the targets. These methods are known for their
high accuracy but tend to be slower in terms of detection speed. (2) Single-stage methods,
which directly predict targets using neural networks. These methods strike a balance
between speed and accuracy. These advancements in deep learning have contributed
to significant improvements in facial detection technology. However, facial detection is
affected by factors such as environmental conditions and obstructions, which still present
numerous challenges for achieving both speed and accuracy in detection.
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Addressing the current challenges of cumbersome deployment and sluggish network
inference in face detection, this paper presents a novel facial extraction algorithm named
Detection Face Net (DF-Net). It devises and implements a streamlined facial extraction
neural network rooted in the MobileNet-v2 architecture. This network is endowed with
multi-scale feature cascading and spatial pyramid modules, which collectively culminate
in a proficient and precise face detection mechanism.

The ensuing sections are structured as follows: Section 2 elucidates the architecture
of the designed DF-Net network, expounding upon the intricate details of its constituent
modules. Section 3 verifies the proposed approach through experimentation, contrasting
its outcomes with those of other methodologies. This comparative analysis substantiates
the efficacy of the proposed algorithm. Finally, Section 4 concludes the manuscript.

2. Related Work
2.1. Face Detection Method

Due to the pivotal role of face detection, numerous researchers have proposed a
range of related algorithms. In the early stages, most face detection algorithms relied on
traditional feature extraction and classifier training processes. For instance, Viola and
Jones introduced a face detection algorithm in 2001 capable of detecting front-facing faces,
although its effectiveness on side profiles was limited [9]. Felzenszwalb et al. [10–12]
presented a component-based object detection algorithm, known as Deformable Part Model
(DPM), in 2008. While versatile in detecting faces of varying orientations and poses, the
algorithm’s complexity resulted in prolonged runtime. With the evolving landscape of
deep learning in computer vision and the advancements in convolutional neural networks
within ImageNet classification tasks [13–15], neural networks have progressively become
the mainstream technology for target detection [16,17]. One noteworthy approach, the
cascade CNN, blended traditional techniques with deep learning [18]. It built upon the
foundation of the Viola–Jones algorithm [19], enhancing the classifier with convolutional
networks to attain robust face detection outcomes. Expanding on this, the Multi-Task
Convolutional Neural Network (MTCNN) extended the cascade CNN concept, employing
multiple cascaded convolutional neural networks for face detection [20]. This method,
while effective, presented deployment challenges due to its multi-cascade architecture.
Face RCNN, an evolution of Faster RCNN proposed by Wang et al., further refined face
detection [21]. By introducing online difficult sample mining and multi-scale training mech-
anisms, the network’s face detection prowess was significantly augmented. Nonetheless,
the introduction of several modules in the network somewhat compromised its inference
speed. Researchers have subsequently introduced various approaches to enhance detection
speed, such as the YOLO series (YOLOv6 [22], YOLOv7 [23]), RetinaFace [24], and more.
Li et al. [25]. Proposed an improved anchor box matching method by integrating new data
augmentation techniques and anchor design strategies into a dual-camera face detector,
which provides better initialization for the regressor and consequently enhances face de-
tection performance. Qi et al. [26]. Improved detection performance by using the Wing
loss function and replacing the Focus module in the Backbone with the StemBlock module,
building upon YOLOv5. While these methods improve detection speed, it is important to
note that they often come at the cost of a decrease in accuracy.

The introduction of deep learning has significantly improved the effectiveness of facial
detection and has become the mainstream approach in contemporary facial detection. It
has found widespread applications in various domains.

2.2. Multi-scale Feature Fusion Module

Multi-scale feature fusion is an essential research direction in the field of computer
vision, aiming to effectively combine image features from different scales to enhance the
performance of image analysis and understanding. With the advancement of deep learning,
architectures such as convolutional neural networks (CNN) have taken a dominant role in
computer vision tasks. Deep networks can automatically learn multi-scale features from
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data, but how to fuse features from different levels remains a research focus. In the realm
of computer vision, addressing the issue that CNNs require fixed input image sizes leading
to unnecessary accuracy loss, researchers such as Kaiming He et al. introduced the concept
of pyramid pooling [27]. By incorporating pyramid pooling layers into CNNs, it becomes
possible to perform pooling on features at different scales, thereby achieving multi-scale
information fusion. Multi-scale feature fusion holds significant practical value. For example,
Qian Wang et al. combined deep CNNs and multi-scale feature fusion to propose a method
for detecting multiple classes of 3D objects [28]. This method enables the detection of
various objects of interest within a single framework. Another innovation comes from Han
et al., who introduced a novel convolutional neural network called MKFF-CNN [29]. This
network combines multi-scale kernels with feature fusion and is capable of recognizing
gestures, serving the purpose of human-computer interaction. In a similar vein, Chen et al.
devised a model named MSF-CNN for multi-scale fusion [30]. This model is employed to
train a facial detection system, achieving accurate face detection. Later, Lin et al. integrated
the concepts of pyramid structures and multi-scale feature fusion, resulting in the Feature
Pyramid Network (FPN) [31]. FPN combines low-level and high-level features to create an
object detection system that excels in accuracy, localization, and detection speed. Due to
the advantages of FPN in object detection, this paper opts to utilize the FPN module for
facial detection when conducting their research.

3. DF-Net Network Design

To enhance the face detection model’s inference speed, this paper introduces a lightweight
face detection algorithm. By adopting MobileNet-v2 as the foundational framework, the entire
network’s inference speed is optimized, ultimately enabling real-time face detection and
extraction. The algorithms presented herein are executed on a CPU, utilizing test images with
a resolution of 1280 × 1240 pixels. Notably, the algorithm achieves an impressive processing
speed of 57 fps (frames per second), thereby attaining real-time performance. As depicted
in Figure 1, the overarching architecture of the network is depicted. DF-Net predominantly
comprises the MobileNet-v2 backbone network, a multi-scale feature cascade module, a
spatial pyramid module, and a combined loss function.
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3.1. Backbone Network

The role of the neural network’s backbone network is to extract a sequence of high-
dimensional features from the input data. Due to the feature extraction demands of the
backbone network and its inherently elevated dimensionality and depth, the processing
speed of this network directly influences the overall neural network’s performance. To
adhere to the real-time requirements of face detection, this paper employs MobileNet-v2
as the backbone network, leveraging the specialized attributes of MobileNet-v2’s depth
separable convolution to ensure real-time efficacy for the entire face detection algorithm.
We chose MobileNetV2 instead of MobileNetV3 for a reason. When conducting research
experiments, the main goal is to maintain a small size while achieving real-time perfor-
mance and deployment on mobile devices. These two advantages are also required in many
practical engineering applications. However, MobileNetV3 is generally more complex than
MobileNetV2, accompanied by larger model sizes and higher computational costs. Since
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the performance requirements of the tasks in this paper are not very high, and considering
limited computing resources, we chose to use MobileNetV2 as it provides a better trade-off
between speed and model size. Table 1 presents a comparison between the algorithm
DF-Net’s use of the MobileNet-v2 backbone network and the conventional MobileNet.
This paper omits the fully connected layer in the rear of MobileNet. In the table, “Input”
represents the input feature map’s dimensions, encompassing image height, width, and
channels. “Conv” and “Depthwise Conv” denote traditional convolution and depthwise
separable convolution, respectively. “C” signifies the number of processing channels for
convolution or depthwise separable convolution, while “n” indicates the repetitions in the
current layer. “S” represents the stride of convolution or depthwise separable convolution.
As the entire backbone network employs depthwise separable convolutions, it attains swift
processing speed. Additionally, MobileNet-v2’s bottleneck structure is dynamic, allowing
its scaling factor to be adjusted as per specific requirements.

Table 1. MobileNet-v2 network structure.

Input Operator c n s

640 × 640 × 3 Conv3 × 3 16 1 2
320 × 320 × 16 Depthwise Conv3 × 3 32 2 2
160 × 160 × 32 Depthwise Conv3 × 3 64 3 2

(S3)80 × 80 × 64 Depthwise Conv3 × 3 128 3 2
40 × 40 × 128 Depthwise Conv3 × 3 128 3 1

(S2)40 × 40 × 128 Depthwise Conv3 × 3 256 1 2
(S1)20 × 20 × 256 Depthwise Conv3 × 3 256 1 1

3.2. The Multi-Scale Feature Cascade Module

Given the diverse requirements of face detection encompassing varying sizes, po-
sitions, and feature attributes, establishing a capacity for multi-scale processing within
the algorithm becomes essential. As such, three distinct output feature maps of varying
scales are derived from the backbone network and subsequently utilized as inputs, with
each scale capturing face information at different magnitudes. This approach concurrently
extends the network’s receptive field towards faces, thereby enhancing the accuracy of
facial information extraction.

In the context of a deep convolutional neural network, as it transitions from one input
feature map to the next, irrespective of whether the convolution employs a stride of 1 or
2, the convolutional kernel comprehensively scans the entire feature map. However, this
traversal process gives rise to a challenge. During convolution, targets occupying a larger
pixel space inherently receive better feature representation than those encompassing fewer
pixels. Consequently, the subsequent input feature map tends to emphasize features of more
spatially extensive targets. Furthermore, the deep convolutional neural network entails
numerous convolution operations, each potentially leading to some degree of information
loss, especially for smaller targets. Notably, convolution with a stride of 2 tends to retain
pixels from larger targets while inadvertently discarding those from smaller ones. In this
context, facilitating multi-scale feature extraction across the feature map stands as a pivotal
task for the network itself.

As illustrated in Figure 2, the diagram depicts a multi-scale feature cascade module.
To begin with, three distinct scale output feature maps, denoted as FeatureMap1, Fea-
tureMap2, and FeatureMap3, are extracted from the output of the backbone network. Post
the high-dimensional feature extraction accomplished by the backbone network, each of the
three-scale feature maps holds their individual scale-related information. Specifically, Fea-
tureMap1’s resolution is rectified through linear interpolation to align with FeatureMap2,
ensuring that their feature information on different scales does not intersect. Following
this alignment, FeatureMap1 and FeatureMap2 are channel-wise merged, culminating in
a consolidated feature map, subsequently subjected to a 1 × 1 convolution to manage
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channel transformation. This convolution is characterized by parameters acquired through
network learning, with an identical cascading process for FeatureMap3 and FeatureMap2.
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In the ensuing steps, FeatureMap3 undergoes a convolution operation, succeeded by
a stride-2 convolution. The latter operation is intended to harmonize FeatureMap3’s reso-
lution with the cascaded FeatureMap2, thereby enabling a channel-wise fusion devoid of
any intermingling of feature information across scales. Following this fusion, another 1 × 1
convolution is executed to adjust channel numbers. The resultant FeatureMap3 encom-
passes three distinct scale-specific feature maps. This process mirrors that of FeatureMap1
and FeatureMap2. Consequently, following the traversal of the multi-scale feature cascade
module by the three diverse-scale feature maps, the output feature maps collectively encom-
pass diverse scale-associated feature information. Additionally, to cater to the network’s
imperative reasoning speed, this study has opted to substitute all convolutions within
the multi-scale feature cascade module with deep separable convolutions. This strategic
substitution translates to reduced computational overhead and enhanced calculation speed.

3.3. The Feature Pyramid Module

The convolution operation in a convolutional neural network involves a weighted
summation process between a sliding window and the feature map. Consequently, the di-
mensions of the convolution kernel dictate the quantity of features the ongoing convolution
operation can extract from the feature map. When a 3 × 3 convolution kernel traverses the
feature map, the resultant output feature map contains high-dimensional features achieved
through weighted summation of every 3 × 3 section of the input feature map. Likewise,
when performing convolution operations of 5 × 5 or 7 × 7, the features in the output
feature map represent high-dimensional attributes of the 5 × 5 or 7 × 7 segment of the
input feature map, constituting the receptive field of the convolution kernel. The ability to
extract features within a certain neighborhood size of the feature map is contingent upon
the use of convolution kernels of varying sizes, which correspond to distinct receptive
fields. In instances where the target within the current feature map is relatively large, the
relatively small receptive field derived from the application of diminutive convolution
kernels may not adequately encompass the target’s characteristics. Conversely, employing
large-sized convolution kernels might fall short in encapsulating intricate target details.
Faces, for instance, incorporate both minute details such as eyes, nose, and mouth, along
with overarching information that relates to the holistic facial structure. Consequently,
relying solely on a single-sized convolution kernel for extracting facial features would fail
to comprehensively incorporate all pertinent information.

To comprehensively capture target features spanning from intricate details to overar-
ching context, this paper employs the feature spatial pyramid structure depicted in Figure 3.
Within this structure, three convolution kernels with distinct receptive fields, namely, 3 × 3,
5 × 5, and 7 × 7, are employed. Given that convolution operations can potentially com-
promise some original information, the outputs of these three convolutional processes
are merged with the initial input feature map in the channel domain. This approach
ensures a fusion of feature extraction results from diverse receptive fields. While larger
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convolution sizes can expand the receptive field, they also introduce more parameters
and computations. Therefore, employing multiple smaller convolutions as replacements
can yield equivalent outcomes as larger convolutions but with reduced parameter count.
Alternatively, dilated convolutions can be utilized to augment the receptive field without
increasing the parameter count.
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3.4. Definition of Loss Function

Equation (1) represents the loss function adopted by DF-Net. The essence of this loss
function can be segmented into three key components. Firstly, the classification loss is
employed to ascertain whether an object is a face. Secondly, the regression loss gauges the
accuracy of the face detection frame. Lastly, the face feature point detection regression loss
contributes to the precise localization of the face detection frame.

totalLoss = Lossclass + Lossbbox + a× Losskeypoint
Lossclass = CE(p, y) = −(y× log(p) + (1− y)× log(1− p))

Lossbbox = IoU(A, B) = 1− A∩B
A∪B

Loss_keypoint = Smooth_L1_Loss(x) = f (x) =
{ 1

2 x2, i f |x| < 1
|x| − 1

2 , otherwise

(1)

The classification loss, denoted as Lossclass, serves to discern whether an entity is
a face or not. ‘p’ signifies the network’s predicted value, while ‘y’ stands for the true
value from the dataset. To accomplish this classification distinction, the two-class cross-
entropy loss function is applied. This facilitates the network in discerning the disparities
between a face and its surroundings, with the objective of minimizing the cross-entropy
loss. Conversely, for forecasting the regression loss of the face detection bounding box,
an IoU (Intersection over Union) loss function is employed. Here, ‘A’ symbolizes the face
detection box predicted by the network, and ‘B’ signifies the actual face detection box. The
network endeavors to minimize the disparity between the predicted outcome and the actual
outcome by reducing the intersection and union ratio between the two bounding boxes.
This progressive approach helps the network gradually converge towards the genuine face
detection box.

4. Experimental Result and Analysis
4.1. Experimental Environment

The training environment setup for this paper is outlined in Table 2. The compu-
tational setup includes an Intel Core i5-11260H CPU, an NVIDIA RTX 3050 GPU, and
32 GB of memory. The algorithm is developed using the Pytorch deep learning framework
and implemented using the Python programming language. During subsequent experi-
mental and algorithmic tests, the deployment and execution of the algorithm on the CPU
are undertaken.
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Table 2. Experimental environment configuration.

Item Parameter

Operating system Windows11
CPU Intel Core i5 11260H

CPU frequency 3.90 GHz
GPU NVIDIA RTX 3050

Memory 32 GB
Deep learning framework Pytorch
Programming language Python

4.2. WiderFace Dataset

The WiderFace dataset is employed in this paper. The inception of the dataset dates
back to 2015, originated by the Chinese University of Hong Kong [32]. This dataset holds
a more comprehensive and inclusive classification of facial images. With a voluminous
compilation of nearly 400,000 instances of facial detection data, it encompasses 61 intricate
classifications to capture diverse facial attributes. In this data set, an instance of this
diversity is exemplified in the “Scale” category, encapsulating multiple faces within a
larger scene. Similarly, the “Occlusion” category solely consists of faces subjected to
occlusion circumstances. Expanding beyond facial classification, the WiderFace dataset also
encompasses facial feature points. These points consist of five salient facial features—two
eye pupils, the nose tip, and two mouth corners. To elaborate on the dataset division,
90% of the data are allocated for training purposes, while the remaining 10% is dedicated
to the test set.

Given the dataset’s inclusion of facial feature point information, these points can be
incorporated into the detected faces, introducing a supplementary constraint to the face
detection process. This integration necessitates the inclusion of a quality factor denoted as
α, taking values within the range of 0.25, 0.5, 0.75, and 1. This strategic selection of α values
prevents excessive interference with the core face detection loss, effectively preserving its
primacy. This auxiliary loss framework enforces the constraint and integration of facial
feature points within the larger context of the face detection algorithm.

4.3. Network Training

During the training phase, the images in the training set are resized to a uniform size.
To preserve the inherent texture and contextual details of the images, grayscale filling is
employed. This approach ensures that the image’s inherent information remains intact
while achieving size uniformity. Training employs the Adam optimizer, and the pre-trained
MobileNet-v2 backbone network from ImageNet is used. The learning rate is set to 0.001,
with a rate decay mechanism implemented. After every 50 training iterations, the learning
rate is reduced by a factor of 10. The training batch size is configured as 5. The DF-Net
algorithm in this study undergoes 150 training iterations. Figure 4 illustrates the loss
convergence following network training, revealing that network convergence is achieved
within approximately 120 iterations.

4.4. Results and Analysis

The DF-Net network described in this paper utilizes both the Multi-Scale Feature
Cascade Module and the Feature Pyramid Module. The Multi-Scale Feature Cascade
Module allows multiple feature maps of different scales to pass through it, resulting in
output feature maps that carry feature information of various scales. This greatly en-riches
the semantic information of the feature maps, making it easier to obtain more accurate
facial information. The Feature Pyramid enables multi-scale detection, as faces in different
images may have different scales. The Feature Pyramid allows the detector to perform
face detection at multiple scales. Regardless of the distance of the face or the scale within
the image, the detector can recognize faces. This significantly enhances the robustness
and accuracy of face detection. To validate the roles of these two modules, we conducted
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experiments by removing each module individually and then training and testing on
the WiderFace dataset. We compared the detection results with ground truth data and
found that removing either module resulted in a decrease in accuracy of approximately
2~3%. Therefore, experimental validation confirms that both the Multi-Scale Feature
Cascade Module and the Feature Pyramid Module contribute to improving the accuracy of
face detection.
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To further enhance the model’s performance, a backbone network comparison between
MobileNet-v1 and MobileNet-v2 is conducted, as depicted in Table 3. In the MobileNet-v2
version, the incorporation of a bottleneck structure enables dynamic adjustment of the
channel count transformation ratio, referred to as the bottleneck coefficient. This coefficient
is explored at values of 0.25, 0.5, 0.75, and 1. Notably, train and test directly from scratch
using the WiderFace dataset. Neither of the two backbones is pre-trained via ImageNet,
and identical parameters are maintained. These parameters include a fixed number of
training iterations at 50, a learning rate set at 0.001, and consistency in the loss function. The
observations from Table 3 indicate that while the bottleneck structure can reduce model size,
it entails a channel number transformation that might lead to information loss. Given that
the operational speed of the entire network framework in this paper aligns with real-time
requirements, a bottleneck coefficient of 1 is adopted in the algorithm.

Table 3. DF-Net comparison of different backbones.

Network
Backbone

Easy Accuracy
(%)

Medium
Accuracy (%)

Hard Accuracy
(%)

Model Size
(Million Bytes)

MobileNet v1 78.32 73.45 44.64 4.34
MobileNet v2

with 1 82.43 77.21 47.65 4.34

MobileNet v2
with 0.75 79.92 74.88 45.84 4.22

MobileNet v2
with 0.5 79.19 73.25 43.06 4.14

MobileNet v2
with 0.25 79.46 69.28 41.10 3.90

In the formulation of the loss function, this paper introduces a quality factor to the
auxiliary loss function, which integrates facial feature point information to constrain facial
attributes. As the facial feature points loss function predominantly assumes an auxiliary
role, the calibration of the quality factor demands testing. Similar to the bottleneck coeffi-
cient, the quality factor is variably set at 0.25, 0.5, 0.75, and 1. As demonstrated in Table 4,
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the assessment of DF-Net under distinct quality factors remains constant during experi-
mentation. All other parameters remain fixed, with the bottleneck coefficient set at 0.25 to
ensure expedited overall training pace. The outcomes outlined in Table 4 elucidate that
a decrease in the quality factor corresponds to an augmented accuracy in network-based
facial extraction. This phenomenon is primarily attributed to the dwindling proportion of
auxiliary loss from facial feature points, enabling the network to better prioritize the core
task of facial detection. Consequently, the diminished influence of facial feature points loss
can paradoxically serve as a supplementary constraint on facial detection.

Table 4. DF-Net with different quality factors.

Quality Factor Easy Accuracy (%) Medium Accuracy (%) Hard Accuracy (%)

1 74.97 68.82 41.21
0.75 75.92 69.61 39.06
0.5 76.21 69.18 41.22

0.25 76.73 70.83 42.67

Upon defining the aforementioned parameters, the evaluation of the DF-Net facial
detection network primarily revolves around a singular facial classification. Consequently,
the evaluation is predicated solely upon the utilization of the Average Precision (AP), a
standard gauge within the domain of target detection. As depicted in Table 5, a compre-
hensive comparison is conducted between DF-Net and other renowned face detection
networks such as MTCNN, Faster-RCNN, and RetinaFace. The comparative experiment
is conducted under consistent conditions, utilizing an identical dataset for training and
maintaining uniform learning rates. The face detection performance of the DF-Net network
was evaluated on different levels of complexity within the dataset: easy, medium, and hard
patterns. The detected faces were compared against the ground truth labels in the dataset.
From the data presented in Table 5, it is evident that the DF-Net achieved an accuracy of
90.15% on easy patterns, 85.63% on medium patterns, and 74.89% on hard patterns. In
comparison to the other three methods, our approach significantly improves the accuracy of
face detection. Additionally, the processing speed of DF-Net reached 57 fps, with a model
size of 4.34 M. This not only ensures real-time performance but also maintains a compact
model size, making it well suited for deployment on mobile devices while retaining its
real-time capabilities.

Table 5. Comparison of DF-Net with other networks.

Network
Model

Processing
Speed (fps)

Model Size
(M)

Easy
Accuracy (%)

Medium
Accuracy (%)

Hard
Accuracy (%)

DF-Net 57 4.34 90.15 85.63 74.89
MTCNN [20] 63 2.8 61.54 64.76 40.75
Faster-RCNN

[33] 12 18.2 71.63 68.31 61.37

RetinaFace [24] 67 1.9 69.62 64.49 58.43

As shown in Figure 5, the results of face detection using the method proposed in this
paper include wearing masks, sunglasses, side faces, and the presence of objects on the
face. It can be seen that the detection results are all accurate.
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5. Conclusions

To address the existing challenges of cumbersome deployment and sluggish net-
work inference rates in contemporary face detection systems, this study introduces a
face detection algorithm founded on DF-Net. To expedite the overall network inference,
MobileNet-v2 is employed as the foundational framework. Additionally, the integration of
a multi-scale feature cascade module and a spatial pyramid module facilitates comprehen-
sive multi-scale feature extraction from the feature maps. The algorithm is trained on the
publicly available WiderFace dataset for face detection, followed by evaluation on a distinct
test set post-training. This research extensively scrutinizes the network model’s dimensions,
processing velocity, and extraction precision. A comparison with three other classic face
detection networks reveals a significant improvement in face detection accuracy with DF-
Net. Furthermore, it conducts a meticulous exploration of each network hyperparameter
through experimental analysis, affirming the efficacy of the proposed algorithm. Ultimately,
these endeavors culminate in the achievement of rapid and accurate face detection. DF-Net
offers real-time performance without compromising on a compact model size, making it
suitable for deployment on mobile devices. These two advantages align well with practical
engineering applications. DF-Net can be applied in scenarios such as pedestrian detection
in autonomous driving and facial payment in mobile transactions. These scenarios often
require face detection on platforms with limited memory and computing capabilities, de-
manding low-latency and real-time responsiveness. Hence, this method holds substantial
application potential. After effectively extracting facial regions, we will further analyze
facial features, which is our future research content.
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