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Abstract: In the era of Industry 5.0, effectively managing cognitive workload is crucial for optimizing
human performance and ensuring operational efficiency. Using an EEG-based Bi-directional Gated
Network (BDGN) approach, this study tries to figure out how to classify cognitive workload in
Industry 5.0 applications. The proposed approach incorporates LSTM (Long Short-Term Memory)
and GRU (Gated Recurrent Unit) models in a hybrid architecture to leverage their complementary
strengths. This research highlights the utilization of the developed model alongside the MQTT
(Message Queuing Telemetry Transport) protocol to facilitate real-time end-to-end data transmission.
The deployed AI model performs the classification of cognitive workload based on the received
data. The main findings of this research reveal an impressive accuracy of 98% in cognitive workload
classification, validating the efficacy of the suggested BDGN approach. This study emphasizes
the significance of leveraging EEG-based approaches in Industry 5.0 applications for cognitive
workload management.

Keywords: cognitive workload; Industry 5.0; electroencephalogram; bi-directional gated networks;
human–robot interaction; artificial intelligence

1. Introduction

Industry 5.0 is set to usher in a new era of seamless integration between advanced tech-
nologies and human–machine interactions [1], increasing productivity and efficiency [2].
This paradigm shift emphasizes the optimization of human–machine interactions to im-
prove overall performance [3]. A key aspect of this optimization is managing the cognitive
workload placed on individuals [4] during their interactions with machines. Cognitive
workload refers to the mental effort and resources required to accomplish a task or process
information [5] effectively. It is influenced by task complexity [6], time pressure, and
environmental demands [7]. Excessive cognitive workload can decrease performance and
lead to errors and safety hazards [8]. Therefore, accurately assessing and managing the
cognitive workload is crucial for optimizing human performance and ensuring safety in
Industry 5.0 applications [9].

For real-time cognitive workload classification, various methods have been explored [10],
including physiological measurements such as electroencephalography (EEG), which is a
test that records the electrical activity of the brain using scalp electrodes [11]; electrocardio-
graphy (ECG), a medical test to measure the electrical activity of the heart [12]; electromyo-
graphy (EMG), which is used to evaluate the electrical activity of muscles [13]; and eye
tracking, which is technology that monitors and records the movement of the gaze of a per-
son [14]. Task performance metrics [15], functional Near-Infrared Spectroscopy (fNIRS) [16],
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and multimodal integration contribute further. Among the array of methods, electroen-
cephalography (EEG) emerges as both a widely adopted and valuable approach [17]. EEG
signals provide insights into the temporal dynamics of cognitive workload [18], enabling
accurate assessment and classification in real-time scenarios [19].

Notably, EEG excels as a premier technique for real-time cognitive workload classifica-
tion due to its direct brain activity measurement, high temporal resolution that captures
rapid changes, noninvasiveness, portability, and sensitivity to nuanced cognitive states.
These inherent advantages position EEG as a valuable tool to unravel the intricate neu-
ral dynamics of cognitive processes, making it pivotal for accurate and timely workload
assessment across diverse real-world applications.

In the field of cognitive workload classification, there is a need for more research on
how to combine EEG-based methods with more-advanced neural network architectures.
While the significance of cognitive workload management is acknowledged, the existing
methods often lack the precision and real-time capabilities required to meet the intricate
demands of Industry 5.0 interactions. Most of the potential synergy between EEG signals
and recurrent neural networks like LSTM and GRU is not being used. This leaves a hole in
the field of efficient and accurate assessment of cognitive workload.

A research gap emerges in the realm of cognitive workload classification, specifically
concerning the amalgamation of EEG-based methodologies with advanced neural network
architectures. While the significance of cognitive workload management is acknowledged,
the existing methods often lack the precision and real-time capabilities required to meet the
intricate demands of Industry 5.0 interactions. The potential synergy between EEG signals
and recurrent neural networks like LSTM and GRU remains largely untapped, leaving a
void in the domain of efficient and accurate cognitive workload assessment.

In this study, we specifically focus on EEG as the primary method for cognitive work-
load classification. By leveraging EEG signals, we aim to extract meaningful features and
patterns that correlate with different levels of cognitive workload. EEG allows us to capture
the neural activity associated with cognitive processes [20], providing valuable information
for real-time cognitive workload classification. Furthermore, EEG-based classification
models have demonstrated promising performance in previous studies, showcasing their
effectiveness in accurately assessing cognitive workload levels. Artificial intelligence tech-
niques, such as Convolutional Neural Network (CNN) [21], Long Short-Term Memory
(LSTM) [22], and Bi-directional Long Short-Term Memory (Bi-LSTM) [23], have shown
promise in processing and analyzing EEG signals for cognitive workload classification.
These models capture temporal dependencies and extract meaningful features from EEG
data [24].

This research article presents a novel real-time cognitive workload classification ap-
proach in Industry 5.0 applications. We leverage Bi-Directional Gated Networks (BDGNs)
to accurately and efficiently classify cognitive workload levels. We intend to develop a
hybrid methodology integrating deep learning models, including LSTM and GRU [25,26],
as a BDGN framework. By leveraging these models and the STEW dataset [27], our goal is
to attain high accuracy in classifying various levels of cognitive workload.

To enable real-time classification in an industrial environment [28], our intended
model is deployed alongside the MQTT [29] protocol. MQTT ensures efficient data trans-
mission [30], facilitating timely cognitive workload classification. The north gateway
receives EEG data forwarded to the server for cognitive workload classification. The re-
sulting predictions are then transmitted to the south gateway for comprehensive analysis
and informed decision-making. The remarkable effectiveness of the BDGN approach in
real-time cognitive workload classification is emphasized by the findings of this research.
Achieving a high classification accuracy of 98% demonstrates the potential of this approach
to optimize industrial processes and enhance human–machine interactions. These findings
underscore the significance of cognitive workload classification in industrial applications,
emphasizing its impact on operational efficiency and safety. Effective cognitive workload
classification in Industry 5.0 can enhance human–machine interactions and efficiency in
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applications like manufacturing lines (task optimization) and telemedicine (accurate diag-
nostics), ensuring safer and more-productive operations [31]. By leveraging the power of
EEG signals and the capabilities of the BDGN model, this research contributes to advanc-
ing cognitive workload classification and provides a solid foundation for designing and
implementing intelligent systems that can adaptively respond to the cognitive demands of
Industry 5.0 applications.

The remainder of this paper is organized as follows: Section 2 provides an overview
of related work in cognitive workload classification. Section 3 describes the materials
and methods, including the EEG data acquisition process, preprocessing techniques, and
the architecture of the recommended BDGN model. Section 4 presents the results and
discussion. Finally, Section 5 concludes the paper and provides future research directions.

2. Literature Review

Cognitive workload classification is crucial for optimizing human–machine interac-
tions in various domains, including Industry 5.0 [32]. The reviewed studies highlight
the field’s advancements, methodologies, and limitations, providing valuable insights for
developing our research.

Shao et al. [33] proposed an EEG-based mental workload classification framework uti-
lizing a combination of Bi-LSTM and ResNet models in an IoT scenario. They employed the
STEW dataset and performed time–frequency analysis to extract informative features. The
scheme achieved an accuracy of 90.64% for different tasks, demonstrating the effectiveness
of their approach. Additionally, the authors evaluated the scheme for mental workload
valuation and achieved an accuracy of 82.85%.

Gupta et al. [34], in their study, presented a subject-specific cognitive workload clas-
sification approach using EEG and deep learning models, specifically conv-LSTM. Their
study involved 19 participants, and an accuracy of 93.75% was achieved. The researchers
organized their own experiment at the Department of Biomedical Engineering, Institute
of Nuclear Medicine and Allied Sciences, Delhi, India, showcasing the feasibility of their
advocated approach in a controlled setting.

Keeping in view the importance of recurrent neural networks (RNNs), Chakladar
et al. [23] introduced a novel framework for estimating different levels of mental workload
using the gray wolf optimizer algorithm and a deep BLSTM-LSTM neural model. Their
experiments involved “No task” and “multitasking activity” scenarios, achieving classi-
fication accuracies of 86.33% and 82.57%, respectively. However, it is worth noting that
their approach did not incorporate transfer learning to other types of tasks, limiting its
generalizability.

Kwak et al. [35] proposed an LSTM-based temporal attention technique to extract both
local and global structure information from EEG data for mental workload classification.
Their approach demonstrated remarkable accuracy, achieving 90.8% on their own dataset.
Although their study did not focus specifically on IoT scenarios, the findings highlight the
potential of temporal attention mechanisms for effective mental workload classification.

In another study, Wójcik et al. [36] focused on a three-class classification of cognitive
workload using EEG data. They conducted their own experiment with 12 participants,
analyzing the data from 11 subjects. Employing SVM, decision tree, k-NN, and random
forest models, they achieved accuracies of 82.9%, 70.4%, 91.5%, and 84.6%, respectively.

While significant progress has been made in EEG-based cognitive workload classifica-
tion for IoT scenarios, several research gaps need to be addressed. Firstly, there is a limited
focus on cognitive workload classification in industrial applications, highlighting the need
for tailored approaches to address the unique challenges and requirements of Industry 5.0.
Additionally, existing models such as CNN, LSTM, and Bi-LSTM may not be efficient for
real-time EEG data processing in resource-constrained IoT devices.

Furthermore, the transferability of models to different tasks and achieving high accu-
racy for industrial deployment require further investigation. Challenges related to varying
environmental conditions, electrode placement variability, and subject-specific factors in
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industrial scenarios also need to be explored to enhance the practical implementation of
cognitive workload classification systems.

3. Materials and Methods
3.1. The Proposed Framework

This research study presents a deep learning model for real-time data transmission and
classification. We utilized a publicly available dataset using IEEE DataPort [27] and con-
ducted preprocessing steps to enhance the data quality and prepare the data for training our
model [37]. Furthermore, we leveraged the MQTT (Message Queuing Telemetry Transport)
protocol to enable end-to-end data transmission and classification with the deployed deep
learning model. This section provides a comprehensive overview of the dataset, prepro-
cessing, time domain analysis, power spectral density (PSD) analysis, and the deployment
process, highlighting the critical steps involved in our research methodology.

Figure 1 depicts the proposed cognitive workload classification framework. The
process initiates with the acquisition of raw EEG data, followed by preprocessing involving
artifact removal, filtering, and segmentation. Post-preprocessing, the data undergo time
domain and power spectral density (PSD) analysis to extract valuable characteristics. The
preprocessed data are then fed into the BDGN model for classification. The model is
deployed on a server. Simultaneously, the North gateway obtains EEG data from the STEW
dataset, forwarding the data to an MQTT broker. The broker transmits the data to the
server for live classification, and the results are relayed back to the broker. Finally, the
broker shares the results, linking with the South gateway.
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3.2. Dataset Description

The STEW (Simultaneous Task EEG Workload) is a publicly available dataset compris-
ing EEG signals from 48 male subjects collected at Nanyang Technological University [23].
EEG data were captured using the Emotive EEG device. The recruited participants had no
history of neurological or brain-related conditions and had not participated in prior EEG
studies. The dataset encompasses EEG recordings in two distinct states: the rest state and
the task execution state.

The rest state indicates periods when no specific tasks were performed, while the task
execution state involved engaging in a multitasking test called SIMKAP. Each subject in the
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dataset comprises 19,200 samples in both rest and task execution states. During SIMKAP,
the participants were instructed to compare numbers in two windows, cross out matching
numbers, and answer accompanying questions simultaneously.

Participants were also requested to provide subjective ratings of their perceived work-
load during the rest state and SIMKAP tasks. Equal task completion was ensured among all
subjects during EEG data acquisition. SIMKAP, widely adopted for assessing multitasking
stress [38], serves as a valuable component of this dataset.

3.3. Preprocessing

Each subject in the STEW dataset recorded 14 channels of EEG signals and sampled at
a rate of 128 Hz, with a total recording time of 3 min per subject. To mitigate the influence
of intertask activity, the initial 15 s and final 15 s of each signal were discarded, resulting in
a final signal length of 2.5 min. The EEG signals dataset is preprocessed using the Python-
based jupyterlab toolbox, and only signals within the frequency range of 0.5–100 Hz were
retained for psychological load analysis [39].

The dataset categorized the EEG signals into two distinct tasks: the rest mode and the
SIMKAP task. Ratings of mental workload levels, obtained from the subjects themselves,
were used as labels for the different task phases. The ratings were classified into three
levels: low workload (ratings 1–3), average workload (ratings 4–6), and high workload
(ratings 7–9). The classification performance was assessed by comparing the predicted
workload ratings with the actual labels of the unseen data.

3.4. Time Domain Analysis

Time domain analysis serves as a critical component of our study, involving an in-
depth examination of EEG data acquired during both low-mode and high-mode condi-
tions [40]. This analytical approach delves into the temporal intricacies of the EEG data,
facilitating an exploration of distinctive patterns and fluctuations over time. To comprehen-
sively understand the underlying dynamics, EEG data from both low-mode and high-mode
conditions were leveraged for this analysis. Particularly, this method was applied across all
14 channels, offering a holistic overview of the temporal aspects and revealing potential
insights into the intricate neural responses characteristic of these distinct cognitive states.
This rigorous time domain analysis provides a foundation for elucidating the temporal
dynamics of EEG data and contributes to our comprehensive investigation of cognitive
workload classification.

Figure 2a,b depict the outcomes of our time domain analysis conducted on EEG data.
We chose to focus on two specific channels, namely Channel 1 and Channel 14, as repre-
sentative examples. While our comprehensive analysis encompasses all 14 channels, the
selection of these two channels is intended to offer a succinct overview of the overarching
trends observed in our study. Channel 1 represents the initial channel, while Channel
14 signifies the final channel in our dataset. This selection is not meant to diminish the
significance of the other channels but serves to illustrate key findings within the constraints
of this presentation. The analysis involved a comparison between two distinct conditions:
Low-Mode and High-Mode cognitive workload conditions. In these figures, the x-axis
corresponds to time, measured in seconds, while the y-axis represents the amplitude of the
EEG signals.

The purpose of this analysis was to investigate how the EEG signals from these two
channels vary over time under different cognitive workload conditions. Channel 1 and
Channel 14 were selected as representative examples to showcase the observed patterns.
By comparing the EEG signals between the Low-Mode and High-Mode conditions, we
aimed to identify any notable differences in terms of signal amplitude and fluctuations.
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3.5. Power Spectral Density (PSD) Analysis

The power spectral density (PSD) analysis is performed to understand EEG data’s
frequency characteristics and power distribution [41]. The raw EEG data for the low and
high modes were obtained, and relevant channels were selected for further analysis. The
sampling frequency of 128 Hz was used to process the data. Frequency bands of interest,
including Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma
(30–100 Hz), were defined to explore brain activity patterns. The FFT algorithm was applied
to compute the frequency components and their magnitudes. The power spectrum was
then calculated by taking the absolute value squared of the FFT output [42], representing
the distribution of power across different frequency components. Analysis was performed
within each frequency band to quantify the power present in each respective range.

Here is the equation for the PSD of EEG signals:

PSD( f ) =|FFT(x(t))|̂ 2/(T ∗ Fs) (1)

where PSD(f ) is the power spectral density at frequency f,
FFT(x(t)) is the Fast Fourier Transform of the EEG signal x(t),
|FFT(x(t))|ˆ2 represents the squared magnitude of the FFT,
T is the total duration of the EEG signal in seconds,
Fs is the sampling frequency of the EEG signal in Hz.
In Figure 3a,b, the power spectrum distribution analysis of EEG data is presented

for both the Low-Mode and High-Mode cognitive workload conditions. The x-axis of
these figures denotes different frequency bands, encompassing the Delta, Theta, Alpha,
Beta, and Gamma ranges. Meanwhile, the y-axis signifies the corresponding power values
associated with each frequency band. This analysis unveils how the power of EEG signals
is distributed across different frequency components, offering insights into the distinctive
neural activity patterns between the two cognitive workload conditions.
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3.6. Deep Learning Model for Cognitive Workload Classification

The Bi-directional Gated Network (BDGN) introduces an innovative framework that
effectively harnesses the synergistic capabilities of Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) neural networks to achieve precise cognitive workload
classification. In BDGN, the LSTM and GRU components play pivotal roles in capturing
and processing intricate temporal patterns within the EEG data.

3.6.1. BDGN Architecture

The architectural design of the BDGN model is meticulously sculpted within the
Keras framework, where layers are carefully sequenced to optimize the performance.
Beginning with an input layer, the architecture evolves into a 64-unit LSTM layer, adept at
capturing intricate long-range dependencies courtesy of its inherent memory mechanism.
After that, a GRU layer with 32 units is added without any problems. This makes the
model better at figuring out complex temporal relationships, which are key to cognitive
workload analysis. Culminating the architectural journey is a dense layer armed with
a SoftMax activation function, which translates into predicted class probabilities for the
distinct “low”, “normal”, and “high” workload categories. This architecture balances
complexity and efficiency, making it suitable for real-time cognitive workload assessment
and demonstrating competitive performance in experiments.

The architecture of our hybrid LSTM–GRU model for cognitive workload classification
is depicted in Figure 4. It shows the input layer, the hidden layers, and the output layer.
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3.6.2. BDGN Model Process

The input EEG data for the BDGN model consist of 96 files, divided into 48 low-mode
and 48 high-mode data files. Each data file is structured as a matrix with dimensions of
19,200 rows (samples) and 15 columns. These columns encompass 14 EEG channels, and
one additional column is allocated for ratings. The BDGN model processes the input EEG
data (Xt) through the LSTM and GRU components step by step. Each step is defined by a
mathematical equation as follows:

1. Input Gate (it):

The input gate (it) controls which values from the current input (Xt) and the previous
hidden state (HLSTM

t−1 ) should be incorporated into the cell state (CLSTM
t ).

it = σ
(

Wi ·
[

HLSTM
t−1 , Xt

]
+ bi

)
(2)

Here, σ represents the sigmoid activation function, Wi is the weight matrix for the
input gate, and bi is the bias vector for the input gate.

2. Forget Gate ( ft):

The forget gate ( ft) determines what information from the previous LSTM cell state
(CLSTM

t−1 ) should be retained and what information should be discarded.

ft = σ
(

W f ·
[

HLSTM
t−1 , Xt

]
+ b f

)
(3)

W f is the weight matrix for the forget gate, and b f is the bias vector for the forget gate.

3. Output Gate (ot):

The output gate (ot) determines what the next hidden state (HLSTM
t ) should be. It

decides which parts of the current cell state (CLSTM
t ) should be revealed as the output.

ot = σ
(

Wo·
[

HLSTM
t−1 , Xt

]
+ bo

)
(4)

Wo is the weight matrix for the output gate, and bo is the bias vector for the output
gate.

4. Update Cell State (Ccandidate
t ):

The update cell state (Ccandidate
t ) represents the candidate values that could potentially

be updated in the cell state (CLSTM
t ).

Ccandidate
t = tanh

(
Wc ·

[
HLSTM

t−1 , Xt

]
+ bc

)
(5)

Here, tanh is the hyperbolic tangent activation function, Wc is the weight matrix for
the candidate cell state, and bc is the bias vector for the candidate cell state.

5. Update Cell State (CLSTM
t ):

The update cell state (CCandidate
t ) is combined with the forget gate ( ft ) and the input

gate (it ) to compute the updated cell state (CLSTM
t ):

CLSTM
t = ft ·CLSTM

t−1 + it·Ccandidate
t (6)

6. Hidden State (HLSTM
t ):

The final step in the LSTM layer computes the hidden state (HLSTM
t ) by applying the

output gate (ot) to the cell state (CLSTM
t ) after applying the hyperbolic tangent activation

function:
HLSTM

t = Ot ·tanh
(

CLSTM
t

)
(7)
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Now, using HLSTM
t as the Input to the GRU Layer to Compute HGRU

t , we obtain the
following:

7. GRU Update Gate (zt) and Reset Gate ( rt):

The GRU component employs the update gate (zt) and the reset gate ( rt) to control
how much of the previous hidden state (HLSTM

t ) is retained or updated and how much is
forgotten when computing the candidate new hidden state.

zt, rt = σ
(

Wz ·
[

HLSTM
t , Xt

]
+ bz, Wr ·

[
HLSTM

t , Xt

]
+ br

)
(8)

8. GRU Candidate Hidden State (Hcandidate
t ):

The candidate hidden state (Hcandidate
t ) is calculated by applying the hyperbolic tangent

activation function (tanh) to a weighted sum of rt·HLSTM
t and Xt.

Hcandidaate
t = tanh

(
Wh·

[
rt·HLSTM

t , Xt

]
+ bh (9)

9. Updated Hidden State of GRU (HGRU
t ):

The final updated hidden state (HGRU
t ) of the GRU layer is computed as a linear

combination of (1− Zt)·HLSTM
t and Zt·HCandidate

t :

HGru
t = (1− zt)·HLSTM

t +Zt·Hcandidaate
t (10)

The input EEG data Xt are initially processed by the LSTM layer to obtain HLSTM
t ,

and then HLSTM
t is used as input to the GRU layer to compute the final updated hidden

state HGRU
t .

10. Output Prediction (Yt ):

The final prediction (Yt ) is computed using the updated hidden state (HGRU
t ) as input,

followed by a SoftMax activation to obtain class probabilities.

Yt = Softmax
(

Wy·HGRU
t + by

)
(11)

These LSTM and GRU gates work synergistically in the BDGN, allowing the network to
capture and process temporal dependencies at various time scales. The LSTM gates enable
the model to manage long-term dependencies, while the GRU gates excel at capturing
shorter-term patterns. The collaborative operation of these gates enhances the network’s
capacity to precisely classify cognitive workload levels based on EEG data, making the
BDGN a promising advancement in cognitive workload assessment.

3.6.3. Data Partitioning and Model Training

To ensure both impartial evaluation and effective model training, a meticulous dataset
partitioning scheme was devised, demarcating distinct subsets for dedicated training,
validation, and rigorous testing. The partitioning strategy thoughtfully assigns 60% of the
dataset to training, allocates 20% for validation, and carefully reserves 20% for the critical
testing phase. For the training, we employed the Adam optimizer with a learning rate
of 0.001, a popular choice for optimizing deep learning models. The sparse categorical
cross-entropy loss function was used, which is well suited for multiclass classification
tasks. Minimizing this loss function allows the model to assign high probabilities to the
correct workload category during training. During the training process, the model was
exposed to the training data for 50 epochs, this iterative learning process facilitates the
model’s progressive mastery of accurately classifying cognitive workload levels, resulting
in heightened precision. The culmination of this iterative training led to the model’s
comprehensive evaluation, executed with rigor on the meticulously reserved testing set.
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3.7. Evaluation Metrics and Measures

This research employed multiple evaluation metrics, including the confusion ma-
trix. The confusion matrix provided a tabular representation of the model’s performance,
consisting of true labels (low, average, high) and predicted labels (low, average, high)
obtained from the BDGN model. To assess the performance of the learning models, we
employed key evaluation metrics, including accuracy [43], precision [44], recall [45], and
F1-score [46]. These metrics provide comprehensive insights into the effectiveness of the
models in classifying cognitive workload levels.

Accuracy is measured as follows:

Accuracy =
True Positives + True Negatives

Total Predictions
(12)

Precision can be calculated as follows:

Precision =
True Positives

True Positives + False Positives
(13)

To calculate the Recall, the below equation is used:

Recall =
True Positives

True Positives + False Negatives
(14)

The F1-Score is measured as follows:

F1Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(15)

3.8. Real-Time Cognitive Workload Classification

To achieve a comprehensive end-to-end solution encompassing data transmission and
classification, the deployment seamlessly integrated the MQTT protocol with the BDGN
model, harnessing MQTT QoS version 0, MQTT protocol 3.1.1, and the MQTT version
EMQ X Broker Version 4.3.5. Through the MQTT protocol, efficient and reliable data
communication [47] was facilitated between the North Gateway and South Gateway. The
process unfolds as follows: the North Gateway acts as the data source, publishing EEG
data to the MQTT broker, which, in turn, forwards the data to the AI script for real-time
classification. Subsequently, the MQTT broker receives the classification results from the AI
script. Concurrently, the South Gateway subscribes to the relevant topic, thereby receiving
the classification results. Figure 5 shows the classification workflow, ensuring seamless
data exchange across the network.
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protocol.

In the experimental scenario, the North Gateway continuously collected real-time EEG
data at 128 Hz. These data were transmitted to the MQTT broker for immediate processing
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and classification using the deployed BDGN model. The resulting classification labels,
representing the cognitive workload levels (low, average, high), were sent to the South
Gateway, enabling real-time access to the classified cognitive workload information.

This experimental setup allowed for the real-time monitoring and analysis of cognitive
workload levels using the BDGN model and MQTT broker integration. By leveraging the
BDGN model’s power and the MQTT protocol’s efficiency, this approach provided a robust and
scalable solution for end-to-end cognitive workload classification in industrial applications.

4. Results and Discussion

This section presents the results obtained by implementing the BDGN model for
real-time cognitive workload classification. Our study investigates the performance and
effectiveness of the BDGN model in this specific task. We utilized performance metrics to
evaluate the model’s classification accuracy. Additionally, we compared our results with
existing studies to assess the novelty and effectiveness of our approach. The presented
findings contribute to our understanding of the BDGN model’s capabilities and its potential
for practical implementation in real-time cognitive workload classification.

4.1. Performance of Bi-Directional Gated Network (BDGN) Model

The BDGN (Bi-directional Gated Neural Network) model, which combines the LSTM
(Long Short-Term Memory) and GRU (Gated Recurrent Unit) architectures, was imple-
mented and evaluated for cognitive workload classification in real-time industrial applica-
tions. The model demonstrated exceptional performance, achieving a remarkable accuracy
of 98%. Figure 6 presents the model accuracy plot, which provides insights into the perfor-
mance of the BDGN model during training. The plot showcases consistently high accuracy
across the training epochs, indicating the model’s ability to classify cognitive workload
levels accurately. The model achieved and maintained a remarkable accuracy level of 98%,
highlighting its effectiveness in capturing the underlying patterns and characteristics of
the data.
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Figure 7 depicts the model loss plot, demonstrating a steady decline in loss over
the training iterations. The descending trajectory of the loss curve signifies the model’s
ability to learn effectively and minimize errors. The model loss reached a minimal value of
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0.5%, highlighting the robustness of the BDGN model in capturing intricate patterns and
optimizing cognitive workload classification.
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The confusion matrix provides valuable insights into the BDGN model’s classification
performance across the different cognitive workload classes. The matrix comprises both
diagonal elements, representing correctly classified instances, and off-diagonal elements,
indicating misclassified instances. The confusion matrix is shown in Figure 8 to further
evaluate the model’s performance.
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Analyzing the specific values of the confusion matrix, we observe the following:
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• The BDGN model accurately classified 96,086 instances as “Low Workload”.
• For the “Medium-Workload” class, the model correctly classified 172,263 instances.
• In the “High-” class, the BDGN model achieved accurate classifications in 91,416 instances.

The confusion matrix values reveal the misclassifications as follows:

• The model misclassified 392 instances, assigning them to the neighboring “Medium-
Workload” class, which should have been classified as “Low Workload”.

• Similarly, there were 271 instances misclassified as “Low Workload” when they should
have been classified as “Medium Workload”.

• Additionally, the model misclassified 3558 instances as “Medium Workload” that
should have been classified as “High Workload”.

• Lastly, there were 475 instances misclassified as “Low Workload” instead of being
classified as “High Workload”.

The evaluation metrics presented in Table 1 provide a comprehensive analysis of the
BDGN model’s classification performance. These metrics include precision, recall, and
F1-score, which offer insights into the model’s accuracy, ability to capture relevant instances,
and the balance between precision and recall.

Table 1. Evaluation metrics.

Labels Precision Recall F1-Score

High 0.96 0.96 0.96
Low 0.99 1.00 1.00

Normal 0.96 0.95 0.96

The precision values obtained for each class are as follows:

• For the “High” class, the model achieved a precision of 0.96, indicating that 96% of
instances classified as “High” were correctly identified.

• Similarly, the “Low” class attained a precision of 0.99, suggesting that 99% of instances
classified as “Low” were accurately identified.

• For the “Normal” class, the model achieved a precision of 0.96, indicating that 96% of
instances classified as “Normal” were correctly identified.

The recall values obtained for each class are as follows:

• The “High” class achieved a recall of 0.96, indicating that the model correctly identified
96% of the actual “High” workload instances.

• The “Low” class achieved a recall of 1.00, indicating that the model successfully
identified all “Low” workload instances.

• The “Normal” class attained a recall of 0.95, signifying that 95% of the actual “Normal”
workload instances were correctly identified.

The F1-scores obtained for each class are as follows:

• The “High” class achieved an F1-score of 0.96, indicating a balanced performance in
terms of precision and recall.

• The “Low” class attained a perfect F1-score of 1.00, highlighting the model’s ability to
achieve a harmonious balance between precision and recall.

• The “Normal” class achieved an F1-score of 0.96, signifying a balanced performance
similar to that for the “High” workload class.

4.2. Comparison with Existing Studies

We conducted a comparative analysis with existing studies in the field, as summa-
rized in Table 2. Our study surpasses previous works in terms of accuracy, demonstrating
the superiority of the BDGN model for cognitive workload classification. This compari-
son provides strong evidence of the model’s effectiveness and reinforces its potential for
practical implementation.
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Table 2. Comparison with existing studies.

Paper Year Dataset Classifier Metric Metric Value

[23] 2020 STEW BLSTM-LSTM Accuracy 82.57%

[33] 2023 STEW Bi-LSTM and ResNet Accuracy 90.64%

[34] 2021 Lab Experiment Conv-LSTM Accuracy 93.75%

[35] 2020 Lab Experiment LSTM Accuracy 90.8%

[36]

SVM 82.9%

2019 Lab Experiment
Decision Tree

Accuracy
70.4%

KNN 91.5%
Random forest 84.6%

This Study 2023 STEW Bi-directional Gated
Network Accuracy 98%

4.3. Real-Time Transmission and Classification

We implemented a data transmission system utilizing the MQTT (Message Queuing
Telemetry Transport) protocol, maintaining a precise 1- to 3-millisecond transmission
latency. MQTT (Message Queuing Telemetry Transport) protocol offers low-latency data
transmission, typically with latencies ranging from 1 to 5 milliseconds, depending on
network and implementation factors [48]. Our classification process involves accurately
analyzing 128 signals across 14 channels, with each signal introducing a 1 s delay. The
classification model operates within a 3 to 5 s timeframe. Thus, the entire classification
procedure spans 132 to 134 s, showcasing our commitment to efficient and accurate analysis
within this system.

The system consisted of a North Gateway, an MQTT broker, a Server, and a South
Gateway. Figure 9 illustrates the MQTT Explorer with the Predicted Label set at high.
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In Figure 10, the North Gateway shows the live reception of EEG (electroencephalog-
raphy) data, ensuring a continuous flow of real-time data for classification.
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Figure 10. North Gateway showing live reception of EEG data.

The Server is a vital system component for performing real-time classification of
cognitive workload levels. Leveraging the trained BDGN model, the Server processes the
incoming EEG (electroencephalography) data and generates accurate predictions in real
time. Figure 11 presents the integration of the Server within the MQTT-based system, which
enables efficient cognitive workload classification. It receives live EEG data transmitted by
the North Gateway and applies advanced algorithms to classify the cognitive workload
levels of the users in real time.
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The South Gateway presents the classification results received from the server. Figure 12
visualizes the successful transmission of real-time classification information from the
server to the South Gateway. The displayed results facilitate timely decision-making and
intervention based on the user’s cognitive workload level.
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These visualizations collectively illustrate the effectiveness and real-time nature of
the proposed system. Integrating the BDGN model with the MQTT infrastructure en-
ables continuous data transmission, real-time classification, and efficient dissemination
of classification results. The real-time classification process ensures the prompt identi-
fication and monitoring of cognitive workload levels, enabling proactive measures to
optimize performance, ensure safety, and enhance overall productivity in various Industry
5.0 applications. This simulation-based framework, uniting the BDGN model with MQTT
technology, presents an avenue to practical implementation in real-world scenarios. While
our study unfolds within a simulated environment, it beckons an exploration of its viability
beyond digital confines. Our simulation identifies key metrics that extend their significance
from simulation to reality. Table 3 provides a way of comparison and metrics including
latency, classification accuracy, speed, and message loss rate serve as pivotal benchmarks
for feasibility.

Table 3. Way to compare with real-world scenarios.

Metrics This Study Real-World Scenario

Latency in Data Transmission 1–3 ms More than 100 ms

Accuracy of Classification 98% Fed real-world data

Classification Speed 133 s Data transmission delay will increase the
classification time

Message Loss Rate 0 Depends on factors like distance, obstacles,
interference, and signal strength
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Our simulation reveals a latency of 1 to 3 milliseconds, whereas real-world latencies
could surpass 100 milliseconds due to network dynamics. Classification accuracy at 98% in
simulation aligns with real-world potential, though classification speed may change due to
transmission delays. Additionally, our simulation reports a zero message loss rate, even
though real-world rates hinge on factors like distance and signal strength. These metrics
illuminate our framework’s initial potential, while further validation through real-world
data, comparative analysis, and sensitivity testing will bridge the gap between simulation
and reality.

5. Conclusions and Future Research

In this study, our successful attempt at the classification of cognitive workload using
EEG data yielded an impressive accuracy of 98% through the implementation of the BDGN
model. The STEW dataset underwent preprocessing and was subjected to both time
domain and power spectral density (PSD) analysis to enhance its suitability. Employing the
MQTT protocol, the BDGN model was deployed to achieve real-time cognitive workload
classification. These results underscore the potential of EEG-based cognitive workload
classification utilizing the BDGN model. The achieved high accuracy substantiates the
effectiveness of this approach in precisely discerning cognitive workload levels. Notably,
our comparative analysis against state-of-the-art methodologies highlights the superiority
of the recommended approach.

This research significantly advances the field of cognitive workload assessment and
simultaneously unveils a roadmap for future exploration. Among the potential avenues,
one promising trajectory involves deploying this classification system within industrial
settings. We advocate for the integration of EEG devices endowed with Bluetooth-based
wireless communication capabilities [49] for continuous real-time EEG data collection. In
this envisioned direction, Raspberry Pi modules emerge as optimal hardware gateways [50],
facilitating the streamlined transmission of EEG data from the source to the MQTT broker.
Subsequently, the BDGN model deployed on the server effectively classifies the EEG data,
and predictions are relayed by the MQTT broker. These predictions serve as the basis for
instructing machines or robots via gateways, thus orchestrating work tasks in response to
cognitive workload dynamics. This solution presents an economical means to implement
cognitive workload classification within the Industry 5.0 context, promising enhanced
operational efficiency and adaptability. As we embark on these promising trajectories, the
fusion of advanced technology and cognitive assessment holds the potential to reshape
industrial processes in impactful ways.

However, this study acknowledges several limitations. Firstly, the reliance on a specific
dataset could limit the broader applicability of findings across diverse populations and
contexts. Variations in electrode placement during EEG data collection may introduce
inconsistencies, impacting model robustness. While the focus is on cognitive workload,
external factors influencing EEG signals, like environmental conditions, remain under-
explored. The hybrid architecture of the BDGN approach, while accurate, might pose
implementation and interpretability challenges due to complexity. Although emphasizing
Industry 5.0 relevance, the direct transferability of findings to other domains necessitates
further investigation. Addressing these limitations in future research could yield a more
universally applicable cognitive workload classification approach. Additionally, exploring
BDGN model generalizability and scalability across diverse datasets, domains, and popula-
tions, as well as integrating other physiological and contextual features, will enhance the
understanding of cognitive workload.
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