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Abstract: In neuromorphic computing, the coding method of spiking neurons serves as the foundation
and is crucial for various aspects of network operation. Existing mainstream coding methods, such
as rate coding and temporal coding, have different focuses, and each has its own advantages and
limitations. This paper proposes a novel coding scheme called activeness coding that integrates the
strengths of both rate and temporal coding methods. It encompasses precise timing information of
the most recent neuronal spike as well as the historical firing rate information. The results of basic
characteristic tests demonstrate that this encoding method accurately expresses input information
and exhibits robustness. Furthermore, an unsupervised learning method based on activeness-coding
triplet spike-timing dependent plasticity (STDP) is introduced, with the MNIST classification task
used as an example to assess the performance of this encoding method in solving cognitive tasks. Test
results show an improvement in accuracy of approximately 4.5%. Additionally, activeness coding
also exhibits potential advantages in terms of resource conservation. Overall, activeness offers a
promising approach for spiking neural network encoding with implications for various applications
in the field of neural computation.
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1. Introduction

In the field of neuromorphic computing, spiking neural networks have garnered
significant attention as a biologically inspired computational model and are regarded as
the fourth generation of neural networks [1]. This model is based on the spiking behavior
of biomimetic neurons, allowing for the processing of spatiotemporal information while
efficiently conserving energy. The representation of information by spiking neurons, known
as neural coding [2], is closely associated with the input encoding, information transmission,
learning algorithms, and output readout of spiking neural networks.

Currently, one of the predominant approaches for encoding the activity of spiking
neurons in spiking neural networks is rate coding [3]. This method is simple and robust, as it
considers the firing rate of neurons. However, rate coding suffers from slow information
transmission and lower processing efficiency due to the need for statistical calculations
over longer time windows. Additionally, rate coding only considers the firing rate of
neurons, disregarding the crucial impact of precise spike timing on network activity, which
contradicts relevant physiological findings [4].

Another widely adopted encoding approach is temporal coding, which utilizes precise
spike timing to represent information. Examples include time-to-first-spike (TTFS) cod-
ing [5] and relative spike latency (RST) coding [6]. These methods can speed information
transmission and offer energy-efficient single-spike requirements. However, they exhibit
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poorer robustness against interference, and the sparse firing rates make it challenging to
directly extend such networks to multiple layers. Moreover, other encoding methods, such
as phase coding [7] and burst coding [8], have been proposed to seek simple, efficient,
and robust encoding strategies for spiking neurons.

This paper proposes a novel spike-based encoding method called activeness, which
integrates the historical activity information of spiking neurons. Activeness quantifies
the discharge of spiking neurons using a single scalar value, effectively integrating the
historical firing rate and precise spike timing information of the neurons while maintaining
a limited resource cost. This encoding method can be directly applied to input encoding,
learning algorithms, and output decoding in spiking neural networks. It enables resource
savings, complexity reduction, and improved learning efficiency in network operations.

In the following sections, we begin by providing an exposition and analysis of the
definition and computation method of activeness. Subsequently, we explore the representa-
tion capability and robustness of Activeness through experimental investigations, as well
as its performance in classical classification tasks. Finally, we summarize and discuss the
potential applications of activeness.

2. Proposed Methods

In the biological brain, neurons process and transmit information through seemingly
instantaneous, stochastic, and disordered firing activities. Understanding the mechanisms
of neuronal firing in the biological brain is of great significance for cognitive neuroscience
and deciphering brain function. In spiking neural networks inspired by the brain, one of
the primary tasks is to represent information at the level of neurons, which is known as
neural coding.

A good neural coding scheme should accurately represent the input information of
neurons (accuracy), yield consistent coding outcomes for different signal frequencies or
intensities (robustness), maximize the inclusion of information to enhance coding efficiency
(efficiency), and provide an explanation for the encoding mechanisms that align with the
knowledge of neuroscience (interpretability).

Neuroscientific research has revealed that neuronal firing is a complex series of elec-
trochemical reactions triggered by excitation. Sustained neuronal firing leads to the ac-
cumulation of calcium ions within the cell [9,10], and calcium ions participate in various
processes of signal transmission and activity modulation [11]. Neuronal firing activity
also continuously regulates the synthesis and degradation of proteins within the cell [12],
and these proteins are involved in nearly all aspects of neuronal activity [13]. The changes
in calcium ions and proteins within the neuron have a significant impact on synaptic
plasticity and neuronal function. However, these changes are not instantaneous. They
occur gradually through the accumulation or degradation process, which is the result
of long-term neuronal activity. This is different from the rapid processes occurring in
synapses, such as the release of neurotransmitters controlled by the activity states of pre
and postsynaptic neurons, and the switching of ion channels. These rapid processes are
the transient activities of neurons. Nevertheless, there is a close relationship between these
two processes. The transient activities cause changes in regulatory substances (such as
continuous stimulation leading to the synthesis of transcription factors and new proteins,
which may result in the formation of new synapses [14]), and these changes in substances
then affect the intensity of each transient activity (such as the concentration of calcium
ions affecting the movement of synaptic vesicles and the release of neurotransmitters [15],
which directly influences the action of postsynaptic neurons).

The previous encoding schemes, including rate coding, temporal coding, phase coding,
and sequence coding, mainly reflect the transient activity of neurons and lack emphasis
on the historical context. To achieve an encoding scheme that captures both transient
changes and historical activity, this paper proposes a novel neural encoding scheme called
activeness coding. The specific definition is as follows.
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Activeness is a metric used to quantify the activity level of a neuron. When an action
potential arrives, the activeness, denoted as A, increases by R and subsequently decays
to zero with a time constant τA. The step size of activeness, R, is determined by the time
interval since the last discharge. When a neuron fires, R is updated to 1 and then decays to
zero with a time constant τR. The computation method is

dA(t)
dt

= − A(t)
τA

,

dR(t)
dt

= −R(t)
τR

.
(1)

{
A(t) = A(t) + R(t − ε),

R(t) = 1,
t = tf. (2)

where tf represents the moment of neuronal firing. The small positive constant ε in
Equation (2) is used to ensure that the activeness A of the neuron is updated before R
is set to 1. This guarantees that the increase in A is correlated with the time interval be-
tween neuronal firings. In other words, as the time interval between two firings becomes
shorter, R approaches 1, whereas for longer intervals, R approaches 0. The relationships
among the membrane potential V, the step size R, and the activity level A of the neuron
are illustrated in Figure 1.

Figure 1. Illustration of the definition of activeness. The first row shows the waveform of neural
membrane potential V over time, where each pulse represents a single discharge of the neuron.
The second row displays the variation of the step variable R, which is set to 1 upon neuron discharge
and decays with a time constant τR. The third row exhibits the waveform of activeness A, which is
obtained by adding R upon neuron discharge and decays with a time constant τA.

Activeness is a scalar value that is dimensionless. It is not only influenced by the
most recent discharge of the neuron but also takes into account the impact of all previous
discharges. The step size R reflects the precise timing of the most recent spike. When the
input remains constant, the cumulative sum of step sizes R can reflect the average number
of spike occurrences within a certain time period, which is consistent with the spike rate.
Therefore, we believe that activeness encompasses both spike rate information and precise
spike timing information. Detailed experimental validation and analysis are presented in
Section 3.

In the activeness formula (see Equation (1)), τR determines the influence of the most
recent spike on the activeness, while τA determines the influence of the historical spike
activity on the activeness. Typically, τR is not greater than τA, as otherwise, the activeness
encoding results would exhibit significant fluctuations.

It is worth noting that the activeness calculation model proposed in this paper exhibits
similarities with the output voltage waveform of an LIF (leaky integrate-and-fire) neuron’s
RC integrator in some intervals. However, their fundamental natures are entirely different
and they are not interchangeable. First and foremost, they address different problems. LIF
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neurons (with synaptic models included) deal with the dynamic relationship between input
spikes and the membrane potential of neurons. In contrast, activeness coding quantifies
the degree of neural activity. Furthermore, they correspond to different neurophysiological
processes. LIF neurons primarily simulate changes in the neuronal membrane potential,
whereas, as mentioned earlier, activeness coding abstracts the processes related to internal
substances like calcium ions and proteins within neurons. Moreover, they operate on
different time scales. The membrane time constant of LIF neurons typically falls in the
range of tens of milliseconds, while activeness coding integrates information over longer
time scales, typically in the hundreds of milliseconds, to more accurately represent the
activity characteristics of neurons. Finally, there are differences in computational details.
Although both LIF neurons and activeness involve nonlinear integrators, unlike the fixed
time constant of LIF’s RC circuit, the integration time constant in activeness is not constant
but varies depending on the input spike pattern. Activeness coding also does not require a
comparator similar to the membrane potential threshold used in LIF neurons.

3. Experiments and Evaluation
3.1. Basic Characteristics

As described in the previous section, activeness coding possesses a certain degree
of biological interpretability. The calculation method of activeness allows it to naturally
incorporate both the temporal information of the nearest spike and the activity information
from all previous spikes, thus achieving high encoding efficiency. However, the accuracy
and robustness of its encoding need to be examined through experiments.

To visualize the basic performance of activeness coding more directly, we conducted
tests using the encoding of input neuron activity as an example. The data processing
procedure for the testing system is illustrated in Figure 2.

Figure 2. Data processing workflow for basic characteristics testing of activeness.

In Figure 2, the input to the neuron, denoted as Din, is a real number, such as the pixel
value of a gray-scale image in image classification tasks. Firstly, based on the specified
peak firing rate fP, we calculate the firing rate of the neuron for the current input, which
determines whether the membrane potential V at the current moment is at the resting state
or action potential state. This enables the conversion of real-valued input into spiking
output. Subsequently, we calculate the activeness A using Equations (1) and (2). Finally,
we visualize the recorded membrane potential V and activeness A over the testing period.
The test results are shown in Figures 3 and 4.

Figure 3. Encoding results of activeness for the ideal neural activity. (a) The waveforms of neural
membrane potential V over time t are shown when the inputs are 63, 127, 191, and 255, and the
neurons fire spikes at constant rates. (b) The corresponding activeness-based encoding results
are presented.
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Figure 4. Encoding results of activeness for neurons with Poisson distributed activity. (a) The
waveform of neural membrane potential V over time t is shown when the inputs are 63, 127, 191,
and 255, and the neurons fire spikes with Poisson distribution. (b) The corresponding activeness-
based encoding results are presented, with solid lines representing the mean of 10 experimental trials,
and the semi-transparent regions of the same color indicating the range of data fluctuations.

Accuracy. When the input real numbers Din are set to 63, 127, 191, and 255, with
fP = 63.75 Hz, τR = τA = 100 ms, the neuron is configured to discharge at an ideal constant
rate. The membrane potential variations of the input neuron within 1000 ms are shown in
the four waveform segments in Figure 3a. Meanwhile, the activeness gradually increases
nonlinearly from an initial value of 0 over time, and after approximately 300 ms, it stabilizes.
The growth rate of activeness is positively correlated with the firing rate of the neuron,
i.e., with the input real values, as depicted by the four curves in Figure 3b, from bottom
to top representing the four increasing input values. On a microscopic level, influenced
by the stimulatory pulses, the activeness dynamically fluctuates between step increments
and decays, with the amplitude of the fluctuations related to the time constants τR and
τA. However, the overall trend of the activeness corresponds to the input values. In other
words, the activeness can accurately encode the input information. Even during the rising
period of activeness (0–300 ms), the relative magnitudes of activeness reflect the relative
sizes of the inputs. Although activeness is not as precise as temporal coding, it overcomes
the dependency of rate coding on large time windows, thereby improving the information
transmission rate.

Robustness. The actual firing patterns of biological neurons differ from the aforemen-
tioned ideal state and are characterized by inherent randomness. In neural computational
models, the firing process is often treated as a series of stochastic events related to the
input, which are commonly assumed to follow a Poisson distribution. Therefore, in this
experiment, Poisson random numbers were used to generate firing pulses. When the inputs
Din are set to 63, 127, 191, and 255, with fP = 63.75 Hz, τR = τA = 100 ms, the membrane
potential variations of the neuron after Poisson coding are shown in Figure 4a. It can be
observed that the generated discrete pulses have varying time intervals between them. Con-
sequently, the activeness also exhibits significant fluctuations. By averaging the results of
10 experiments and calculating the standard deviation, the curve representing the changes
in activeness is obtained, as depicted in Figure 4b. The solid lines in the figure represent the
mean activeness curves for different inputs, while the translucent areas of the same color
surrounding the lines indicate the range of data fluctuations. From the figure, it can be
seen that the activeness exhibits a substantial amount of random fluctuations, but its mean
values still demonstrate a strong correlation with the inputs. The four curves are clearly
distinct, without overlap or intertwining, indicating the robustness of the activeness coding.
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3.2. Classification Performance

To evaluate the performance of the spiking neural networks utilizing the activeness
coding in cognitive tasks, we used handwritten digit recognition as an example. Intro-
ducing activeness coding into the three-layer spiking neural network established by Diehl
and Cook [16], we investigated the changes in network performance. The architecture
outlined by Diehl and Cook [16] encompasses an input layer, where input pixel values are
encoded using Poisson-distributed spike trains. This is followed by an excitatory neuron
layer, fully connected to the input layer, utilizing leaky integrate-and-fire (LIF) neurons
along with conductance-based synaptic models. Subsequently, there is an inhibitory neu-
ron layer implementing lateral inhibition connections to establish competition among
excitatory neurons. The synaptic connection weights between the input layer and the
excitatory neuron layer are adjusted using unsupervised exponential-weight-dependence
spike-timing-dependent plasticity (STDP), coupled with an adaptive membrane potential
threshold regulation mechanism to achieve network homeostasis. They implemented
this network using the Python-based spiking neural network simulator Brian [17] and
trained the network with the Modified National Institute of Standards and Technology
(MNIST) [18] handwritten digit dataset, eventually achieving the best unsupervised SNN
test accuracy on MNIST at that time.

Based on the network architecture proposed by Diehl and Cook, the structure of the
network developed for this test is illustrated in Figure 5.

Figure 5. The network architecture for testing classification performance. It consists of three layers.
The first layer is the input layer, containing 784 neurons responsible for encoding the pixel values
of input images on a one-to-one basis. The second layer is the excitatory neuron layer, comprising
400 excitatory neurons, fully connected to the input layer, and with synaptic weights updated
using the activeness-based STDP rule. The third layer is the inhibitory neuron layer, comprising
400 inhibitory neurons, each receiving excitation from one neuron in the excitatory neuron layer and
reciprocally connected to the other 399 excitatory neurons.

The MNIST dataset, used as the input for the network, consists of 60,000 hand-written
digit images with a resolution of 28 × 28, as well as 10,000 test images with the same
resolution. The pixel values range from 0 to 255. Each input neuron receives the input
from one pixel and generates output spikes using Poisson random numbers, which are
then encoded using the activeness-based encoding scheme. Therefore, there are a total
of 784 input neurons, encoding the 784 pixels of the input. The input layer neurons are
excitatory and fully connected to 400 excitatory neurons. Each excitatory neuron drives one
inhibitory neuron, which in turn is recurrently connected to the other 399 excitatory neurons,
excluding the excitatory neuron that excites it, implementing a competitive mechanism.
The entire network was built and operated using the upgraded neural simulator Brian2 [19].

The recurrent connection weights between the excitatory and inhibitory neuron lay-
ers are fixed, while the excitatory synaptic connections between the input layer and the
excitatory neuron layer are plastic. In contrast to the approach in reference [16], this pa-
per introduced an improvement to triplet-STDP [20] by proposing an activeness-based
triplet-STDP rule for synaptic weight modification. The implementation method involves
replacing the synaptic trace in the triplet-STDP calculation formula with the activeness
of the presynaptic neuron and replacing the postsynaptic trace with the activeness of the
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postsynaptic neuron. Consequently, when a presynaptic neuron fires at time t = tf
pre,

the weight modification is given by ∆ω = γpre Apost(tf
pre). Similarly, when a postsynaptic

neuron fires at time t = tf
post, the weight update is ∆ω = γpost Apre(tf

post)Apost(tf
post). By in-

tegrating the above formulas, the synaptic weight update formulas are obtained as shown
in Equations (3) and (4).

ω(t) = ω(t − 1) + ∆ω(t) (3)

∆ω(t) =


γpre Apost(t), t = tf

pre,

γpost Apre(t)Apost(t), t = tf
post,

0, others.

(4)

where γpre represents the learning rate of the presynaptic neuron, and γpost represents the
learning rate of the postsynaptic neuron. Apre(t) denotes the activeness of the presynaptic
neuron at the time t, and Apost(t) represents the activeness of the postsynaptic neuron at
the time t.

Based on the above approach, the synaptic dynamics formula is defined in Brian2
as shown in Figure 6.

Figure 6. Synaptic dynamics simulation code.

The code executed when the presynaptic neuron fires is shown in Figure 7.

Figure 7. The simulation code executed when presynaptic neuron fires.

The code executed when the postsynaptic neuron fires is shown in Figure 8.

Figure 8. The simulation code executed when postsynaptic neuron fires.

The labeling assignment method during the model training phase and the classifica-
tion result determination during the testing and inference phase are consistent with the
method described in [16]. Therefore, a detailed description of these methods will not be
reiterated here.

In this test, fP was still set to 63.75 Hz. The determination of other parameters involved
multiple repeated experiments, searching for a set of parameter combinations that achieved
a relatively good classification performance. These obtained parameter values are shown
in Table 1. It is important to note that this set of values may not necessarily represent the
optimal parameter combination.
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Table 1. Parameters for the classification performance testing network.

Parameters Values

τR 20 ms
τA 100 ms
fP 63.75 Hz
γpre 0.0001
γpost 0.01

After three rounds of training, the synaptic weight matrix of size 784 × 400 con-
necting the input layer to the excitatory neuron layer is reshaped into a matrix of size
(28 × 20)× (28 × 20). The distribution of synaptic weights obtained from this rearrange-
ment is shown in Figure 9.

Figure 9. Synaptic weight matrix after training completion. The excitatory neuron layer comprises
400 neurons arranged in a 20 × 20 grid. Each neuron is fully connected to 784 input layer neurons
through synaptic connections. The synaptic weights, totaling 784, are rearranged into a 28 × 28 grid,
resulting in the weight distribution. The white color represents the minimum weight value of 0, while
the black color represents the maximum weight value of 1.

At this stage, a testing accuracy of 91.50% was achieved on the test dataset. The com-
parison between these test results and the results from [16] are shown in Table 2. The exper-
imental findings clearly demonstrate that by solely replacing the synaptic trace in STDP
with activeness, while maintaining all other conditions identical, the MNIST classification
accuracy is improved by 4.5%. This improvement validates the superiority of activeness
coding in the context of the MNIST task.

Table 2. Comparison of MNIST classification performance test results.

Works Learning Rule Accuracy

Diehl et al., 2015 [16] Spike-based triplet STDP 87%
This work Activeness-based triplet STDP 91.5%

When the number of training samples varies, the curve depicting the change in test
accuracy is shown in Figure 10.
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Figure 10. The test accuracy results for MNIST.

As shown in Figure 10, the test accuracy steadily increases with the number of training
iterations. It is observed that even after a single training epoch, the test accuracy achieved
is comparable to that of the reference experiment conducted for three epochs. This finding
further demonstrates the efficiency of activeness coding.

4. Discussion
4.1. Comparison

The activeness coding method is inspired by synaptic traces. Synaptic traces are a
classic mathematical model used in spiking neural networks to characterize the impact of
synaptic history on synaptic plasticity [21]. However, the two are fundamentally different,
primarily in the following aspects:

Structural differences. Synaptic traces record the impact of neural activity on synapses
and are typically defined as variables within the synapse. They include both pre-synaptic
and post-synaptic traces. In contrast, activeness coding mainly considers the potential
influence of a neuron’s own historical activity on itself and is only relevant to the neuron
(soma). It is simpler and more straightforward.

Computational differences. Synaptic traces can be either all-to-all or only consider the
nearest spiking event. Typically, constant values are accumulated in their calculations.
On the other hand, the dynamic changes in the accumulation of activeness amplify the
impact of precise discharge timing, thereby improving the efficiency of network operation.

Resource requirements. Learning based on synaptic traces requires maintaining two
to three trace variables per synapse. In activeness encoding, only two relevant variables
need to be maintained per neuron. Taking the classification performance test network
in Section 3 as an example, using triplet STDP, the network would require a total of
784 × 400 × 3 = 940, 800 trace variables. However, when using activeness coding, the net-
work would only require (784+ 400)× 2 = 2368 relevant variables, which is approximately
1/400th of the previous approach. As the network size increases, the resource savings from
this improvement become even more significant.

4.2. Potential Future Research

As a concise, macroscopic, efficient, and robust encoding method, activeness coding
holds promise beyond input encoding and can be applied to the learning algorithm and
network output inference.

Taking learning algorithms as an example, with the expressive power of activeness
coding in a macroscopic and robust manner, it is possible to improve weight update
strategies based on the precise discharge timing of pre- and post-synaptic neurons in
unsupervised learning, supervised learning, and reward-based reinforcement learning
algorithms. This improvement can be achieved by adopting rules based on activeness
difference, leading to more stable network activity and faster learning convergence.
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In terms of network output inference, many networks require additional classifiers or
statistical computations to obtain human-understandable operational results. However,
activity encoding provides a single quantized value that directly reflects the activity of
output layer neurons, making the network’s operational results readily interpretable.

In addition to using spiking neural networks with activeness coding for image classi-
fication tasks, we are also exploring its potential in cross-modal information perception
and integration. In the future, the proposed method could be further investigated to tackle
various cognitive tasks.

5. Conclusions

This paper introduces a novel encoding method for spiking neurons, termed active-
ness encoding. This method is inspired by the cumulative changes in calcium ions and
proteins within neurons that influence neural activity. Activeness combines precise timing
information of the most recent spike with the entire history of spike events, demonstrating
good encoding accuracy and robustness in basic characteristic tests. The results of image
classification tasks show that activeness-based learning improves the testing accuracy on
the MNIST dataset by approximately 4.5% compared to trace-based learning. Furthermore,
activeness exhibits potential advantages in terms of computational power and storage
capacity requirements.
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