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Abstract: Elevated levels of fine particulate matter (PM2.5) in the atmosphere present substantial risks
to human health and welfare. The accurate assessment of PM2.5 concentrations plays a pivotal role in
facilitating prompt responses by pertinent regulatory bodies to mitigate air pollution. Additionally, it
furnishes indispensable information for epidemiological studies concentrating on PM2.5 exposure. In
recent years, predictive models based on deep learning (DL) have offered promise in improving the
accuracy and efficiency of air quality forecasts when compared to other approaches. Long short-term
memory (LSTM) networks have proven to be effective in time series forecasting tasks, including
air pollution prediction. However, optimizing LSTM models for enhanced accuracy and efficiency
remains an ongoing research area. In this paper, we propose a novel approach that integrates the
novel binary chimp optimization algorithm (BChOA) with LSTM networks to optimize air pollution
prediction models. The proposed BChOA, inspired by the social behavior of chimpanzees, provides
a powerful optimization technique to fine-tune the LSTM architecture and optimize its parameters.
The evaluation of the results is performed using cross-validation methods such as the coefficient of
determination (R2), accuracy, the root mean square error (RMSE), and receiver operating characteristic
(ROC) curve. Additionally, the performance of the BChOA-LSTM model is compared against eight
DL architectures. Experimental evaluations using real-world air pollution data demonstrate the
superior performance of the proposed BChOA-based LSTM model compared to traditional LSTM
models and other optimization algorithms. The BChOA-LSTM model achieved the highest accuracy
of 96.41% on the validation datasets, making it the most successful approach. The results show
that the BChOA-LSTM architecture performs better than the other architectures in terms of the R2

convergence curve, RMSE, and accuracy.

Keywords: air pollution; particulate matter (PM2.5); long short-term memory; novel binary chimp
optimization algorithm

1. Introduction

Air pollution has emerged as one of the most pressing environmental and public health
challenges of our time. As urbanization, industrialization, and transportation continue to
grow, so does the release of harmful pollutants into the atmosphere [1]. The consequences
of air pollution are far-reaching, impacting both the environment and human health. From
causing respiratory illnesses and cardiovascular diseases to contributing to climate change,
the detrimental effects of air pollution are undeniable [2]. In this context, the accurate
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forecasting of air pollution has become an imperative endeavor that is vital for safeguarding
our planet and promoting the well-being of its inhabitants [3].

The motivation to advance air pollution forecasting goes beyond reactive measures; it
embodies the spirit of preventive action. Armed with reliable forecasts, communities can
engage in targeted public awareness campaigns, encouraging people to adopt eco-friendly
practices and reduce their carbon footprint. By raising awareness and fostering a sense
of environmental responsibility, forecasting air pollution fosters a culture of sustainable
living where individuals become active participants in preserving the quality of the air they
breathe [2,3].

Furthermore, forecasting air pollution is a scientific pursuit driven by technological
advancements and innovative methodologies [4]. Researchers, environmentalists, and data
scientists are continually refining atmospheric models, integrating machine learning (ML)
algorithms, and harnessing the power of satellite technology to enhance the accuracy of
predictions. This multidisciplinary collaboration serves not only to improve forecasting
capabilities, but also to deepen our understanding of the intricate interplay between human
activities, weather patterns, and air quality [5].

In recent years, deep learning (DL) has emerged as a revolutionary approach in various
fields, and now, it holds the promise of transforming air pollution forecasting into a power-
ful tool for environmental protection [6]. The importance, necessity, and motivation behind
forecasting air pollution using DL lie in its potential to revolutionize our understanding
of atmospheric dynamics, improve prediction accuracy, and empower decision makers
with intelligent insights. At the core of the DL paradigm lies the ability to analyze vast and
complex datasets, revealing hidden patterns and correlations that traditional forecasting
methods may overlook. By leveraging neural networks and sophisticated algorithms,
DL models can assimilate diverse sources of information, including meteorological data,
satellite observations, and emission inventories, to create a comprehensive understanding
of air quality dynamics. As a result, these models offer a more nuanced and precise rep-
resentation of air pollution levels, enabling a proactive rather than reactive approach to
environmental management [4–8].

Long short-term memory (LSTM) networks have demonstrated promising results in
various time series forecasting tasks, including air pollution prediction [8–10]. However,
optimizing LSTM models to enhance their performance and accuracy remains an ongoing
research area. One of the key weaknesses of LSTM networks lies in the optimization
of network weights and biases during training [9–13]. Like other DL models, LSTM
networks rely on optimization algorithms to adjust their parameters (weights and biases)
in order to minimize the difference between the predicted outputs and actual targets.
The most commonly used optimization algorithm in DL is gradient-based optimization,
such as stochastic gradient descent (SGD). Gradient-based optimization possesses some
disadvantages [14–17].

LSTM networks are susceptible to vanishing and exploding gradient problems [7].
During back propagation, gradients are propagated through time, and in deep networks
or for long sequences, these gradients can become extremely small (vanish) or extremely
large (explode). This hampers the learning process as the network struggles to adjust its pa-
rameters effectively. Gradient-based optimization can lead to slow convergence, especially
in cases where the LSTM network has a large number of parameters and is dealing with
complex sequential patterns. Optimization algorithms can sometimes become trapped in
local minima, where they find suboptimal solutions instead of the global optimum. This
can lead to a subpar LSTM model that fails to generalize well on unseen data. LSTM
networks, with their recurrent connections, require substantial memory and computational
resources. Gradient-based optimization adds to this overhead, making it more challenging
to train large LSTM models on limited hardware [7,10–13].

In recent years, nature-inspired optimization algorithms have gained popularity in
solving complex optimization problems [18–25]. One such algorithm, the binary chimp
optimization algorithm (BChOA), has shown potential in addressing optimization chal-
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lenges in various fields [20]. The main objective of this paper is to optimize LSTM networks
for air pollution prediction using the innovative BChOA. The BChOA draws inspiration
from the social behavior of chimpanzees and their ability to solve complex problems
through cooperation and collaboration. By mimicking the behavior of chimpanzee com-
munities, the BChOA explores the search space more effectively, leading to improved
optimization results.

This novel approach aims to improve the accuracy and efficiency of air pollution
prediction models by fine-tuning the LSTM architecture and optimizing its parameters. The
proposed methodology involves integrating the BChOA into the training process of LSTM
networks. The algorithm optimizes the network’s weight values and hyper-parameters
to enhance its ability to capture and predict air pollution patterns accurately. This paper
addresses the limitations of existing air pollution prediction models by leveraging the
power of the BChOA. To evaluate the performance of the proposed approach, extensive
experiments will be conducted using real-world air pollution data from various monitoring
stations. The results will be compared with traditional LSTM and DL models and other
optimization algorithms to assess the effectiveness of the BChOA-based optimization. The
major contributions of this paper can be summarized as follows:

• This paper introduces a novel BChOA aimed at fine-tuning the optimization parame-
ters of LSTM models to enable more precise and dependable air pollution predictions.

• In the proposed BChOA, a novel approach for updating the positions of the chim-
panzees is introduced. In the proposed BChOA, the equation for position updating is
formulated as Equation (10). To accomplish this, a new sigmoid function, serving as
the transfer function, is employed.

• In this paper, the data regarding the concentration of PM2.5 pollutants were obtained
for the period between 2006 and 2016. Meteorological data for a period of 10 years
were obtained. These data encompass various parameters such as the maximum
temperature, minimum temperature, pressure, wind speed, wind direction, and air
humidity. The data were collected on a daily basis. To prepare and refine the mete-
orological and air pollution data, this paper employs the Fourier series method and
utilizes the Savitzky–Golay filter to eliminate noise from the data.

• The evaluation of the results is performed using cross-validation methods such as the
coefficient of determination (R2), accuracy, the root mean square error (RMSE), and
receiver operating characteristic (ROC) curve. Additionally, the performance of the
BChOA-LSTM model is compared against eight DL architectures.

• The simulation results show that the proposed algorithm has a better performance
compared with other algorithms. The BChOA optimizes the values of the weights
and biases in the LSTM network, enabling the LSTM network to better capture and
represent the underlying patterns and dependencies in the data.

2. Literature Review

Utilizing ML algorithms to predict PM2.5 levels represents a novel approach within
the realm of air pollution investigation. In a notable study, Harishkumar et al. [1] harnessed
predictive ML models to anticipate the concentration of particulate matter in the atmosphere
using data gathered from monitoring Taiwan’s air quality spanning the years 2012 to
2017. These newly developed models were pitted against conventional counterparts,
revealing superior predictive capabilities. Particularly, the Gradient Boosting regression
model outshone its counterparts in terms of predictive accuracy and overall performance.
Tian et al. [2] assessed the effectiveness of six different ML models in predicting PM2.5
levels in the Pearl River Delta (PRD) region from August 2014 to December 2019. They
employed a diverse set of data sources, including meteorological information, vegetation
data, topographical details, and points of interest (POIs), to ensure accurate daily PM2.5
concentration estimations. The findings indicate that, overall, the random forest (RF) model
outperformed the other models in terms of prediction accuracy. On the other hand, the
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generalized additive model (GAM) exhibited the least favorable performance, followed by
the support vector machine (SVM) model.

Xayasouk et al. [3] created predictive frameworks for estimating fine PM levels through
the utilization of LSTM and deep auto-encoder (DAE) techniques. The outcomes of these
models were assessed using the RMSE metric. These models were then employed to analyze
hourly air quality information from 25 monitoring stations situated in Seoul, South Korea.
The data spanned from 1 January 2015 to 31 December 2018. The findings demonstrate
that the suggested models proficiently anticipated the fine PM concentrations, with the
LSTM model exhibiting a marginally superior performance. Naz et al. [4] conducted
a comparative examination of distinct DL-driven one-step prediction models aimed at
forecasting five different air pollutants, including LSTM, gated recurrent unit (GRU), and
a statistical model. To empirically assess their performance, they employed a publicly
accessible dataset obtained from an air quality monitoring station located in the central
area of Belfast, Northern Ireland. The findings indicate that the DL models consistently
outperformed the statistical models, demonstrating a minimal RMSE of 0.59. Moreover, the
DL approach exhibited the highest R-squared score of 0.856.

Shu et al. [5] introduced a novel approach known as the discrete wavelet and con-
volution-based auto-encoder (DW-CAE) model. This innovative model combines the
principles of DL and signal processing by leveraging the discrete wavelet transform to
extract both high- and low-frequency characteristics from the target sequence. The DW-CAE
was applied to predict outcomes in the Beijing PM2.5 dataset and the Yining air pollution
dataset. The R-squared values for each variable exceed 93%, indicating strong predictive
capability across all six air pollutants in the comprehensive prediction. By observing
the studies mentioned above, it is evident that the significance and effectiveness of DL
algorithms in forecasting air pollution have been acknowledged. However, a foundational
challenge lies in fine-tuning the hyper-parameters of these DL algorithms. Presently, meta-
heuristic algorithms [26] are employed to fine-tune network parameters [27–29].

Ghandourah et al. [27] introduced an improved artificial neural network (ANN) to
forecast the displacement in composite pipes subjected to impact from a drop weight
with varying velocities. They incorporated the Jaya algorithm and an enhanced version
known as E-Jaya to optimize the ANN’s training and prediction capabilities. The outcomes
demonstrate that the E-Jaya algorithm significantly outperformed the original algorithm in
terms of training and prediction accuracy. Aghakhani et al. [10] introduced an innovative
hybrid algorithm based on artificial bee colonies. This algorithm was employed to enhance
the architecture of a deep convolutional neural network (DCNN) with the goal of improving
the detection capabilities of backscatter communication systems. The outcomes of their
study demonstrate a noteworthy enhancement in detecting backscattered signals compared
to previous methodologies.

In the study by Baniasadi et al. [11], they introduced an original approach called
neighborhood search-based particle swarm optimization (NSBPSO) to effectively fine-tune
the parameters of a DCNN designed for intrusion detection within IoT systems. The
NSBPSO-DCNN framework demonstrated superior performance in terms of accuracy,
sensitivity, and specificity across both the training and testing datasets. Remarkably, the
NSBPSO-DCNN model achieved accuracy rates of 99.41% and 98.86% on the testing and
training datasets, respectively. Sadeghi et al. [12] designed an innovative DL framework
aimed at improving the classification of X-ray images related to COVID-19. They intro-
duced a new approach called the multi-habitat migration artificial bee colony (MHMABC)
algorithm to effectively train the DCNN. The performance of the MHMABC-DCNN model
outperformed the other models. Teaching DL models is a computationally complex task,
and the rising trend involves utilizing meta-heuristic methods to refine their parameters.
Adapting a balance between exploration and exploitation to address intricate optimization
challenges poses a difficulty. In response to these hurdles, this paper presents an innovative
BChOA approach for training an LSTM network.
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3. Proposed BChOA

In this section, we first present the standard version of the ChOA algorithm. Following
that, we will explain the concepts of the improved binary algorithm.

3.1. Standard ChOA

The ChOA is a meta-heuristic optimization algorithm inspired by the behavior of
chimpanzees in the search for food and resources. The ChOA was introduced by Khishe
and Mosavi in 2020 [26]. It was proposed as a nature-inspired algorithm for solving
optimization problems. The ChOA mimics the foraging behavior of chimps, incorporating
their social interaction and learning mechanisms. The ChOA divides the hunting process
into four main phases: driving, blocking, chasing, and attacking. The algorithm begins
by generating a random population of chimps to initiate the optimization process. These
chimps are then randomly classified into four distinct groups: barrier, attacker, driver, and
chaser. Each group plays a specific role in simulating the hunting behavior of chimps.

• Driver Chimps: The driver chimps closely follow the prey without attempting to reach
it directly. Their purpose is to track the movements of the prey and gather information
about its location.

• Barrier Chimps: Barrier chimps position themselves strategically, typically in trees, to
create obstacles that block the progress of the prey. They act as barriers to divert the
prey from reaching certain areas.

• Chaser Chimps: Chaser chimps are quick and agile, moving swiftly to catch up with
the prey. Their primary objective is to pursue the prey closely and increase the chances
of capturing it.

• Attacker Chimps: Attacker chimps analyze the behavior of the prey and predict its
potential escape routes. They strategically position themselves in a way that forces the
prey back towards the chasers, increasing the likelihood of a successful capture.

By emulating these distinct roles within the chimp population, the ChOA aims to
effectively search for the optimal solution to the given optimization problem. The behaviors
exhibited by each group during the hunting phases contribute to the exploration and
exploitation of the search space. Equations (1)–(5) represent the formulations for driving
and chasing the prey.

d =
∣∣∣c·Xprey(t)−m·Xchimp(t)

∣∣∣ (1)

Xchimp (t + 1) = Xprey (t)− a·d (2)

a = 2·f·r1 − f (3)

c = 2· r2 (4)

m = Chaotic_value (5)

where Xchimp(t) denotes the chimp’s position vector; Xprey(t) is the prey’s position vec-
tor; a, c, and m are the coefficient vectors; t presents the current iteration; r1 and r2 are
the random vectors ∈ [0, 1]; f is the dynamic vector ∈ [0, 2.5]; and m denotes a chaotic
vector. Figure 1 provides a visualization of the position vector in three dimensions and
demonstrates the impacts of Equations (1) and (2). The figure also illustrates the presence
of multiple neighboring positions. From the figure, it is evident that a chimp positioned at
(X, Y, Z) has the ability to modify its location relative to the prey’s position. By considering
its current location and adjusting the values of the vectors a and c, the chimp can explore
different positions surrounding the most suitable agent. In Figure 1

(
X*, Y*, Z*

)
is the

new position.
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Figure 1. The position vectors and their possible next locations.

The initial step of locating the prey during the hunting phase involves the collaboration
of the blocker, driver, and chaser chimps in identifying its position. Subsequently, the
position of the prey is determined through calculations performed by the barrier, attacker,
chaser, and driver chimps, with the remaining chimpanzees adjusting their positions based
on the prey. Equations (6)–(8) encapsulate the formulations for these phases.

dAttacher = |c1·XAttacher −m1·X|
dBarrier = |c2·XBarrier −m2·X|
dChaser = |c3·XChaser −m3·X|
dDriver = |c4·XDriver −m4·X|

(6)


X1 = XAttacher − a1(dAttacher)

X2 = XBarrier − a2(dBarrier)
X3 = XChaser − a3(dChaser)
X4 = XDriver − a4(dDriver)

(7)

X (t + 1) =
X1 + X2 + X3 + X4

4
(8)

where XAttacher presents the best search agent, XBarrier is the second-best search agent,
XChaser denotes the third-best search agent, XDriver is the fourth-best search agent, and
X (t + 1) is the updated position of each chimp (Figure 2).

Figure 2. Position updating in ChOA.
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Furthermore, in order to facilitate the exploration phase, the a parameter is introduced,
where values greater than 1 or less than −1 cause the chimps and preys to diverge. Con-
versely, parameter values between +1 and −1 aid in converging the chimps and preys,
enhancing exploitation. Additionally, the parameter, c, plays a role in promoting the explo-
ration process within the algorithm. Figure 3 demonstrates that the inequality condition
compels the chimps to engage in attacking the prey.

Figure 3. Position updating mechanism of chimps and effects of |a| on it.

Moreover, it is worth noting that all chimps engage in attacking the prey, and are
driven by the desire for social rights (sexual incentives), regardless of their specific roles in
the hunting process. To model this social behavior, chaotic maps are employed, as indicated
in Equation (9).

Xchimp(t + 1) =
{

Xprey(t)− a·d i f µ < 0.5
Chaotic_value i f µ ≥ 0.5

(9)

where µ is the random number∈ [0, 1]. In the continuous version of the ChOA, chimpanzees
constantly change their positions at any point in space.

3.2. Novel BChOA

The motivation for developing a new BChOA stems from the need for efficient opti-
mization techniques that can handle binary decision variables. Many real-world problems
can be modeled using binary variables, such as binary-coded integer variables or binary
flags representing the presence or absence of certain features or constraints. Traditional opti-
mization algorithms are primarily designed for continuous variables, and their application
to binary optimization problems often leads to suboptimal results or high computational
complexity. The binary ChOA aims to address these limitations by specifically targeting
binary optimization problems.

The effectiveness of binary meta-heuristic algorithms depends on the particular prob-
lem they are applied to. This means that not all binary meta-heuristic algorithms work
equally well for every engineering optimization problem. Furthermore, the No Free Lunch
(NFL) theorem suggests that there is no one-size-fits-all solution, implying that no single
binary meta-heuristic algorithm can universally excel at all engineering optimization prob-
lems. Consequently, there are still many unresolved engineering optimization problems
that could benefit from the development of novel binary meta-heuristic algorithms. As
a result, researchers have maintained a strong interest in creating new binary algorithms
specifically tailored to address discrete problems [30].

Binary encoding simplifies the representation of variables, particularly in optimization
problems where variables can take on discrete values. By representing variables in a binary
format, BChOA eliminates the need for continuous parameter tuning, making it easier
to apply to various problem domains. BChOA’s binary encoding often leads to reduced
computational complexity compared to ChOA, which relies on continuous variables. This
reduction in complexity can result in a faster convergence and a lower computational over-
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head, making the BChOA more convenient for solving optimization problems, especially
those with large solution spaces. BChOAs are often more amenable to parallelization due
to the discrete nature of binary variables. This means that the BChOA can take advantage
of modern parallel computing architectures, further enhancing its convenience in solving
complex and computationally intensive optimization problems [30–32].

Operators employed in meta-heuristic methods that deal with binary variables are
limited to shifting 0 to 1 and 1 to 0, only allowing for movement towards closer or farther
corners of the hypercube. Consequently, in the design of BChOA, the equation responsible
for updating the positions needs to be adjusted. To achieve this, a transfer function becomes
essential, as it maps the continuous space onto a discrete one. This transfer function plays
a crucial role in determining the probability of switching the elements of the position
vector from 0 to 1 or vice versa. The transfer function serves as a guide for exploring and
exploiting the search space, controlling the movement of the search agents (symbolized as
chimps) as they transition between different solutions. Its functionality relies on evaluating
the fitness value of each solution and considering the current state of the algorithm to
determine the likelihood of selecting a particular solution as the next candidate solution.

In numerous research endeavors, scientists have employed the creation of binary
algorithms to tackle optimization challenges. Mirjalili and Hashim [30] presented a binary
version of the magnetic optimization algorithm (MOA), utilizing both V-shaped and S-
shaped transfer functions. To assess the BMOA’s performance, they evaluated it against
PSO and a genetic algorithm (GA) on four benchmark functions. The results indicate that
the BMOA was more accurate and faster in finding global minimums compared to the PSO
and GA. These studies collectively highlight the advantages of using binary algorithms to
address discrete problems. They also emphasize the use of transfer functions as a common
approach in developing binary versions of meta-heuristic algorithms, as demonstrated in
the studies mentioned. For reference, Table 1 provides a list of various binary algorithms
and their associated transfer function types.

Table 1. A selection of binary algorithms and their transfer functions in the literature review.

Binary Algorithms Transfer Functions Equation

BMOA [30] V-shaped T(x) = |Tanh(x)|

Binary Grey Wolf Optimizer [31] S-shaped (sigmoid) T(x) = 1
1+e(−10x−0.5)

Binary Gravitational Search Algorithms [32] V-shaped T(x) = |Tanh(x)|

Based on the information provided in Table 1, it can be concluded that the transfer
function holds paramount significance within binary algorithms. Consequently, in this
paper, we employ both well-established transfer functions (S-shaped) and an innovative
binary approach for the binary adaptation of the ChOA. In this section, a novel approach
for updating the positions of the chimpanzees is introduced. In the proposed BChOA,
the equation for position updating is formulated as Equation (10). To accomplish this, a
sigmoid function, serving as the transfer function, is employed as depicted in Equation (11):

Xt+1
d =

{
1 i f sigmoid

(
X1+X2+X3+X4

4

)
≥ R

0 otherwise
(10)

Sigmoid (x) =
1

1 + e−µ(x−λ)
(11)

where Xt+1
d is the updated binary position at the iteration t; Sigmoid (x) represents the

S-shaped functions; µ is a threshold number ∈ (18, 19, 20, 21, 22); λ is a random num-
ber ∈ [0.45, 0.65]; R is a random number ∈ [0, 1]; and X1, X2, X3, and X4 denote the
chimpanzees’ movements towards the attacker, barrier, chaser, and driver chimps, respec-
tively. The fundamental procedures of the BChOA are depicted in Figure 4. This illustration
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highlights that the BChOA introduces distinct elements when compared to its continuous
counterpart, the ChOA. These distinctions primarily involve the integration of a novel
transfer function and a modified approach to updating positions.

Figure 4. The structure of the proposed BChOA.

This transfer function serves as a critical bridge between the continuous search space
and the binary search space. It facilitates the transformation of continuous variables into
binary values, which is a fundamental requirement for addressing optimization problems
involving binary decision variables. This transfer function plays a pivotal role in guiding the
algorithm’s exploration and exploitation processes, effectively controlling the probability
of transitioning between binary states (0 and 1). By introducing this function, the BChOA
harnesses the benefits of binary encoding while maintaining the continuous representation
for enhanced adaptability.

Unlike continuous optimization algorithms, where solutions evolve smoothly within
a continuous domain, binary optimization algorithms must navigate the discrete landscape
of binary variables. The position update method in the BChOA accounts for this binary
nature, enabling the algorithm to efficiently explore the binary solution space. This mod-
ification contributes to reduced computational complexity and faster convergence rates,
particularly when dealing with large solution spaces or problems with binary constraints.
These innovations collectively empower the BChOA to excel in tackling optimization prob-
lems that involve binary decision variables, offering a promising alternative to traditional
continuous optimization algorithms.

4. Research Method

In this section, we will begin by introducing the proposed hybrid architecture. Fol-
lowing that, we will explore the study area and the data that are utilized for predicting
air pollution.

4.1. Evolutionary LSTM Network

LSTM networks have gained significant popularity and have been widely applied in
various fields as one of the most promising DL techniques. An LSTM network is a type of
recurrent neural network (RNN) architecture that is designed to effectively process and
model sequences of data. It was introduced by Sepp Hochreiter and Jürgen Schmidhuber
in 1997 and has since become one of the most popular and powerful models for sequential
data analysis, such as natural language processing, speech recognition, and time series
prediction [33,34].
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LSTM networks are specifically designed to address the limitations of traditional
RNNs, which struggle to capture long-term dependencies in sequences. Traditional RNNs
suffer from the “vanishing gradient” problem, where the gradients diminish exponentially
as they propagate back in time, making it difficult for the network to retain information from
distant past steps. In contrast, LSTM networks are capable of learning and remembering
information over longer time spans, making them more effective in modeling sequences
with long-term dependencies [8,34].

LSTM networks have been successfully applied in fields such as natural language
processing (NLP), speech recognition, time series analysis, image captioning, machine
translation, sentiment analysis, and many others. Their ability to handle sequential and
temporal data makes them particularly effective in tasks that involve processing and
understanding sequences. In NLP, LSTM networks have been used for tasks like text
classification, named entity recognition, sentiment analysis, machine translation, language
modeling, and text generation. They excel in capturing the contextual information and long-
range dependencies that are present in natural language sequences. In the field of speech
recognition, LSTM networks have been employed to model acoustic features and predict
phonemes or words from audio signals. Their ability to capture long-term dependencies
helps to improve the accuracy of speech recognition systems [7,33–35].

LSTM networks have also been applied in time series analysis, where they are used to
forecast future values based on historical data. They have been used in financial forecast-
ing, stock market prediction, energy load forecasting, and various other time-dependent
prediction tasks. Overall, the success of LSTM networks can be attributed to their ability to
capture long-term dependencies, handle sequential data, and model complex relationships.
Their versatility and effectiveness in a wide range of tasks have made them a popular
choice in the DL community [36].

The key component of an LSTM network is its memory cell, which is responsible for
storing and updating information over time. The memory cell consists of three main parts:
an input gate, a forget gate, and an output gate. These gates are learned through training
and control the flow of information into, out of, and within the cell. When processing a
sequence, the LSTM network takes the current element in the sequence, along with the
previous hidden state and memory cell state, as an input [37]. The input gate determines
how much of the current input should be stored in the memory cell. The forget gate
decides what information to discard from the memory cell, allowing for the network to
forget irrelevant information. The output gate determines how much of the memory cell’s
content should be output as the current hidden state. By using these gates, LSTM networks
can selectively store and retrieve information over multiple time steps, enabling them to
capture long-term dependencies in sequences. This makes them particularly useful for
tasks that involve understanding and generating sequences of data.

Overall, this paper’s main contribution is the application of the enhanced BChOA to
train LSTM networks. By treating the weights and biases as optimization parameters and
using the BChOA, this paper demonstrates a more efficient and effective training method for
LSTM networks, potentially leading to enhanced performance in various tasks and problem
domains. Traditionally, LSTM networks have been trained using the backpropagation (BP)
algorithm, which adjusts the weights and biases of the network based on the gradient of
the error with respect to these parameters. However, this paper proposes a shift from the
conventional BP algorithm to the BChOA.

By utilizing the BChOA, this paper shows that the vector of weights and biases in
the LSTM network can be efficiently updated. This updating process is performed in a
way that satisfies the specific requirements of the problem being addressed. The BChOA
optimizes the values of these parameters, enabling the LSTM network to better capture
and represent the underlying patterns and dependencies in the data. Figure 5 shows the
structure of the proposed BChOA-LSTM.
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Figure 5. The structure of the proposed BChOA-LSTM.

4.2. Study Area and Dataset

As the capital of the country, Tehran holds great significance as the most important
metropolis and serves as the political and commercial center of Iran. It is home to over 20%
of the country’s population. The climate of Tehran is influenced by its geographical location.
While the northern areas of Tehran, which are close to the mountains, experience milder
and more humid conditions, the weather in other parts of the city tends to be hot and dry,
with slightly cold winters. The presence of the Alborz mountain range acts as a barrier,
hindering the entry of many air masses into Tehran, similar to a dam. As a result, the city
exhibits a relatively dry climate. However, being surrounded by mountains on three sides
also creates a challenge when it comes to air pollution. The mountains trap pollutants
within the city, preventing them from dissipating easily. Additionally, the excessive use
of vehicles and the expansion of industries contribute significantly to the air pollution
problem in Tehran.

Air pollution in the city of Tehran is primarily of anthropogenic origin, meaning it is
caused by human activities. One of the major contributors to air pollution in the city is
vehicular emissions. The high volume of vehicles on the roads significantly contributes
to the city’s air pollution levels. At times, the level of air pollution in Tehran exceeds the
standard limits, leading to the complete shutdown of the city in severe cases. Given the
severity of the issue, it becomes crucial to forecast and model air pollution in Tehran. By
doing so, necessary measures can be implemented to control pollution effectively, and areas
facing hazardous levels of pollution can be identified for targeted interventions. Further-
more, informing the public, particularly individuals with pre-existing health conditions,
can help to prevent the spread of diseases associated with air pollution. To achieve these
objectives, the entire city of Tehran has been selected as a study area for predicting air
pollution levels and implementing appropriate measures. This comprehensive approach
aims to tackle the complex issue of air pollution and its detrimental effects on public health
and the environment. Figure 6 shows the geographical location of Tehran.

Air pollution is a phenomenon that is influenced by various factors. To make accu-
rate forecasts, it is essential to correctly identify the parameters that affect air pollution.
Generally, there are three main categories of parameters that have a significant impact
on air pollution. These categories include pollutant concentration data, meteorological
data, and spatial parameters. In this paper, data regarding the concentration of PM2.5
pollutants were obtained from the Tehran Municipality Air Quality Control Company for
the period between 2006 and 2016. The concentration of these pollutants was measured
and recorded on a daily basis by the company. Meteorological data for a period of 10 years
were obtained from the Meteorological Research Center of Tehran Province. These data
encompass various parameters such as the maximum temperature, minimum temperature,
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pressure, wind speed, wind direction, and air humidity. The data were collected on a
daily basis. This paper also employed geographic information system (GIS) techniques to
incorporate spatial and descriptive parameters into our modeling process. This involved
the integration of geographical features (X, Y, Z) and characteristics of the study area,
such as pollutant concentration data (PM2.5) and meteorological data. These spatial data
layers were used to create additional input features for our predictive model. Furthermore,
we employed a GIS analysis to visualize and interpolate maps.

Figure 6. The geographical location of the 22 districts of Tehran.

Overall, the preparation and refinement of meteorological and air pollution data are
essential for developing reliable and effective air pollution forecasting models. By analyzing
and refining meteorological data, researchers can identify correlations and patterns between
specific weather parameters and air pollution levels. This enables the models to make more
precise predictions of how air pollutants disperse and interact with the atmosphere. Proper
data preparation and refinement allow for the validation and evaluation of air pollution
forecasting models. Figure 7 illustrates the time series of the wind speed parameter at the
Chitgar station as an example over the course of the ten-year period (with time measured
in days).

Figure 7. The time series of the wind speed parameter.

In Figure 7, the change in the color of the lines indicates the presence of missing data. It
is evident from the figure that neither the Fourier series nor the spline alone can adequately
fit the data points due to errors and the lack of a suitable curve-fitting structure. Therefore,
prior to fitting a curve, it is necessary to remove the noise, which, in this research, was
achieved using the Savitzky–Golay filter. This filter was chosen because it is particularly
effective in analyzing irregular or rapidly changing waves, as evident from the shape of the



Electronics 2023, 12, 3985 13 of 21

sine and wavelet waves. Figure 8 displays the time series with the noise removed using the
Savitzky–Golay filter. As can be observed, the filter provides a suitable fit for points with
sudden changes in the data.

Figure 8. Refined wind speed image with Savitzky–Golay filter.

As depicted in Figure 8, the Savitzky–Golay filter successfully eliminated the irregular
signals and sudden changes in the data. However, the issue of missing data in the signal still
persists, as the Savitzky–Golay filter considers the signal as zero in the places where data
are not available. To address this, the Fourier series and spline functions were employed
in this research to compensate for the missing data. These mathematical techniques, such
as the Fourier series and spline functions, aim to approximate the missing values based
on the surrounding data points. By fitting curves or functions to the available data, they
provide estimates for the missing portions of the signal, thereby mitigating the impact of
the data gaps. By incorporating these techniques, researchers can enhance the continuity
and completeness of the wind speed signal, enabling a more comprehensive analysis and
interpretation of the data.

5. Simulation Results

This section assesses the effectiveness of the BChOA-LSTM method. To gauge its per-
formance, five established and cutting-edge algorithms, namely ChOA, genetic algorithm
(GA), ant colony optimization (ACO), black widow optimization (BWO), and improved
crow search algorithm (I-CSA), were employed. Additionally, the performance of the
BChOA-LSTM method was compared against three ML architectures: standard LSTM,
RNN, and ANN. All of these algorithms were implemented in MATLAB.

Calibrating the parameters of meta-heuristic algorithms is essential but requires careful
consideration. Hence, it is important to determine the best combination of parameters
before assessing the algorithm’s performance. In this paper, a trial-and-error method was
employed to adjust the parameter calibration. Each parameter was tested with different
values while keeping the other variables unchanged. The fitness function was used as the
main measure for evaluating and fine-tuning the algorithm’s parameters. Although a wide
range of values were tested for each calibration parameter, only a selected set of instances
is chosen and presented in Table 2.

Table 2. Parameter calibration achieved through the trial-and-error approach.

Algorithm Parameter Value

BChOA

a [−1, 1]

f Linearly decreased from 2 to 0

Threshold number (µ) 19

The probability range (λ ) 0.52

Number of scout bees (population size) 120

Iteration 300
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Table 2. Cont.

Algorithm Parameter Value

ChOA

a [−1, 1]

f Linearly decreased from 2 to 0

Number of scout bees (population size) 120

Iteration 300

I-CSA

Flight length (fl) 2

Awareness probability (AP) 0.1

Population size 120

Iteration 300

BWO

Procreate rate (PP) 0.65

Mutation rate (PM) 0.21

Cannibalism rate (CR) 0.47

Population size 120

Iteration 300

ACO

β 2

ρ, α 0.11

q0 0.89

Population size 120

Iteration 300

GA

Elitism percent 12%

Mutation rate 0.13

Crossover rate 0.92

Population size 120

Iteration 300

Interpolation is necessary to determine the pollutant values at the user position. In this
paper, after data preparation, the Kriging interpolation method was employed to model
the air pollution of Tehran city, and the interpolation map is presented in Figure 9.Electronics 2023, 12, x FOR PEER REVIEW 15 of 22 
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Figure 9. The PM2.5 pollutant level map in Tehran using the Kriging interpolation method.

Kriging is a geostatistical interpolation method used to estimate values at unmeasured
locations based on known data points. It is commonly used in various fields, including
environmental science, geology, and spatial data analysis. The method takes into account
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the spatial correlation or variability of the data to make predictions. In Kriging, the idea is
to create a weighted average of the known data points, where the weights are determined
based on the spatial distance and correlation between the points. Kriging is considered
advantageous over some other interpolation methods because it incorporates both the
spatial information and the spatial autocorrelation structure of the data.

In this paper, the evaluation of the results was performed using the cross-validation
method and three parameters: the coefficient of determination (R2), accuracy, and the
root mean square error (RMSE). The coefficient of determination measures the correlation
between the observed values and the calculated values, ranging from 0 to 1. A value of one
indicates a perfect correlation, while a value of zero indicates no correlation between the
observed and calculated values. Equations (12)–(14) can be used to calculate the R2, RMSE,
and accuracy.

R2 =

[
1
N

∑ N
i=1
[(

Pi − P
)(

Oi −O
)]

σpσo

]2

(12)

RMSE =

(
1
N

N

∑
i=1

[Pi −Oi]
2

) 1
2

(13)

Accuracy =
TP + TN

TP + FN + FP + TN
(14)

where N is the number of observations, Oi is the observed parameter, Pi is the calculated
parameter, O is the average observations parameter, P is the average calculation parameter,
σo is the standard deviation of observations, σp is the standard deviation of calculations,
TP = true positive, FN = false negative, TN = true negative, and FP = false positive.

Table 3 presents the R2 values and accuracy results of different evolutionary archi-
tectures developed to forecast air pollution. The data in the table clearly show that the
BChOA-LSTM architecture performs better than the other architectures in terms of both R2

and accuracy, not only in the training set, but also in the validation set. The BChOA-LSTM
architecture achieved accuracies of 96.41% and 98.19% in the testing and training sets,
respectively. By stating that the BChOA-LSTM architecture has the best R2 value, it means
that this particular architecture demonstrates the highest level of accuracy in capturing and
explaining the variances in the air pollution data. In other words, it provides the best fit to
the actual data points and has the most reliable predictive power among all the architectures
being evaluated. Figure 10 illustrates the generated map of the PM2.5 concentration using
the proposed BChOA-LSTM architecture in December 2009. As depicted in the figure, it is
evident that the northern region of Tehran has experienced relatively healthier air quality.

Table 3. The results of proposed architectures in the testing and training datasets.

Architectures
Training Testing

R2 (%) Accuracy (%) R2 (%) Accuracy (%)

BChOA-LSTM 96.19 98.19 94.31 96.41

ChOA-LSTM 91.08 93.29 90.06 90.98

I-CSA-LSTM 92.34 94.46 90.24 91.28

BWO-LSTM 89.76 91.29 86.95 87.76

ACO-LSTM 86.39 90.76 83.60 85.19

GA-LSTM 81.46 87.84 78.27 82.39

Standard LSTM 75.82 81.19 71.53 76.18

RNN 72.91 77.08 67.73 74.46

ANN 69.08 73.71 63.81 70.73
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Figure 10. The generated map of PM2.5 concentration using the proposed BChOA-LSTM model.

Figures 11 and 12 present a comparison of different architectures in the training and
validation datasets. The architectures were ranked in order of performance, with the
BChOA-LSTM architecture being the highest ranked, followed by I-CSA-LSTM, ChOA-
LSTM, BWO-LSTM, ACO-LSTM, GA-LSTM, Standard LSTM, RNN, and ANN. These
findings indicate that the suggested architectures were effectively trained using meta-
heuristic algorithms. In other words, the algorithms used to train these architectures
successfully optimized their performance. Additionally, the accuracy of these architectures
remained consistent across different hybrid DL architectures in both the testing and training
datasets. This suggests that the meta-heuristic algorithms employed during training yielded
reliable and consistent accuracy across various models and datasets.

Figure 11. A graphical depiction illustrating the comparison of algorithms by utilizing training
datasets.
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Figure 12. A graphical depiction illustrating the comparison of algorithms by utilizing validation
datasets.

In summary, the results highlight the strong performance and consistent accuracy
of the suggested architectures, which were trained using meta-heuristic algorithms. This
indicates that these architectures are capable of achieving high accuracy and maintaining
consistency across a range of hybrid DL models.

Figure 13 presents a visual comparison of the ROC curve for various architectures.
The ROC curve is a graphical representation that demonstrates the performance of a binary
classifier, such as by distinguishing between two classes (e.g., positive and negative), as the
discrimination threshold is adjusted. The ROC curve illustrates the trade-off between the
true positive rate (sensitivity) and the false positive rate (1—specificity) across different
threshold values. Sensitivity represents the proportion of actual positive instances that
were correctly identified, while specificity represents the proportion of actual negative
instances that were correctly classified.

Figure 13. A visual comparison of the ROC curve for various architectures.

By examining the graph in Figure 13, it becomes apparent that the area under the curve
(AUC) for the BChOA-LSTM, a specific architecture, outperforms the other architectures.
The AUC is a metric that measures the overall performance of a classifier, indicating the
probability that a randomly chosen positive instance will be ranked higher than a randomly
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chosen negative instance. In this case, the higher AUC for the BChOA-LSTM architecture
suggests that it achieves better classification accuracy and discrimination ability compared
to the other architectures being evaluated.

The RMSE criteria are utilized to compare the proposed models listed in Table 4. It is
evident that the BChOA-LSTM architecture outperforms the other architectures, signifying
the effectiveness of this approach for the given problem. By incorporating the BChOA, the
results demonstrate efficient updates to the LSTM network’s vector of weights and biases.
The BChOA optimizes the parameter values, leading the LSTM network to better capture
and represent the underlying patterns and dependencies within the data. As shown in
Figure 14, the BChOA-LSTM architecture exhibits faster convergence compared to the other
architectures. At epoch = 130, the BChOA-LSTM architecture achieves nearly the lowest
RMSE value, while the other architectures still have higher RMSE values. Moreover, the
BChOA-LSTM architecture demonstrates remarkable stability and rapid convergence as
the epoch increases.

Table 4. The RMSE values of the different algorithms.

Algorithm
RMSE

Training Datasets Validation Datasets

BChOA-LSTM 0.98 1.21

ChOA-LSTM 1.72 2.35

I-CSA-LSTM 1.47 2.19

BWO-LSTM 2.13 3.32

ACO-LSTM 2.43 4.62

GA-LSTM 4.19 6.29

Standard LSTM 5.34 8.85

RNN 5.87 9.18

ANN 6.74 11.52
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In order to make a precise comparison of the algorithms with respect to their stability,
we calculated the normalized variance of the optimal cost function across multiple runs
for each method, and these values are presented in Table 5. For typical data, the variance
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typically falls within the range of 0 to 1, with values closer to 0 indicating a more consistent
and stable procedure. As depicted in Table 5, the BChOA-LSTM and ChOA-LSTM algo-
rithms exhibit lower variances compared to the other algorithms, signifying their superior
stability in performance.

Table 5. The normalized variance of different algorithms.

Algorithm
Run

10 15 20

BChOA-LSTM 0.0125 0.0049 0.0007

ChOA-LSTM 0.1056 0.0452 0.0063

I-CSA-LSTM 0.5698 0.2451 0.0452

BWO-LSTM 0.7452 0.4475 0.1236

ACO-LSTM 0.9521 0.8452 0.4596

GA-LSTM 1.1275 0.9521 0.7541

Standard LSTM 2.2514 2.0253 1.5486

RNN 2.3214 2.1210 1.9632

ANN 3.9125 3.0965 2.8652

6. Conclusions

Air pollution is a pressing environmental issue that poses severe health risks and
ecological challenges worldwide. The accurate prediction of air pollution levels is crucial
for implementing effective pollution control measures and public health interventions. This
paper presents a novel approach to optimize LSTM networks for air pollution prediction
using a novel BChOA. In the proposed BChOA technique, an innovative method was intro-
duced to update the positions of chimpanzees. To achieve this, a new sigmoid function was
utilized as the transfer mechanism. The study collected PM2.5 pollutant concentration data
from 2006 to 2016, alongside 10 years of meteorological data, including parameters like max-
imum and minimum temperatures, pressure, wind speed, wind direction, and air humidity.
By combining the strengths of LSTM networks and the BChOA, we aimed to address the
challenges in air pollution prediction and provide more accurate and reliable forecasts.

The assessment of outcomes involved employing cross-validation techniques, in-
cluding metrics like the R2, accuracy, RMSE, and ROC curve. Additionally, the perfor-
mance of the BChOA-LSTM model was contrasted with seven different DL architectures.
Through an experimental analysis using real-world air pollution data, the proposed BChOA-
LSTM model demonstrated superior performance when compared to the other algorithms.
Among these, the BChOA-LSTM model attained the highest accuracy at 96.41% on the vali-
dation datasets, marking it as the most successful approach. The findings of this research
have significant implications for environmental management, public health, and policy
making in combating air pollution. Furthermore, some unresolved issues concerning the
BChOA and DL are outlined, motivating further research in this area.

The future of research in the BChOA involves a thorough investigation into optimiz-
ing the specific parameters and thresholds embedded within the algorithm’s equations.
This endeavor could encompass a comprehensive analysis of how variations in these pa-
rameters impact the algorithm’s convergence rate, solution quality, and computational
efficiency. Researchers could explore techniques such as metaheuristic parameter tuning
or adaptive parameter adjustment strategies to dynamically adapt the parameters during
the optimization process. The application of the BChOA across a wide spectrum of do-
mains represents a compelling avenue for future research. The evolution of DL models is
expected to shift towards addressing the challenge of limited labeled data availability. This
transition could manifest in an increased emphasis on semi-supervised and unsupervised
learning approaches. Future research might explore how the BChOA can be integrated into
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these learning paradigms to enhance the utilization of unlabeled data and improve the
performance and generalization of DL models.

Future studies could focus specifically on predicting the influence of industrial emis-
sions on air pollution, using emission data, industrial location data, and emission dispersion
modeling techniques. Extending the research to predict other pollutants like PM10, Ni-
trogen Dioxide (NO2), Sulfur Dioxide (SO2), and Ozone (O3) would certainly represent a
valuable direction for future research. However, it would require a new research initiative
accompanied with its own unique set of challenges and considerations.
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