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Abstract

:

Federated learning (FL) has been broadly adopted in both academia and industry in recent years. As a bridge to connect the so-called “data islands”, FL has contributed greatly to promoting data utilization. In particular, FL enables disjoint entities to cooperatively train a shared model, while protecting each participant’s data privacy. However, current FL frameworks cannot offer privacy protection and reduce the computation overhead at the same time. Therefore, its implementation in practical scenarios, such as edge computing, is limited. In this paper, we propose a novel FL framework with spiking neuron models and differential privacy, which simultaneously provides theoretically guaranteed privacy protection and achieves low energy consumption. We model the local forward propagation process in a discrete way similar to nerve signal travel in the human brain. Since neurons only fire when the accumulated membrane potential exceeds a threshold, spiking neuron models require significantly lower energy compared to traditional neural networks. In addition, to protect sensitive information in model gradients, we add differently private noise in both the local training phase and server aggregation phase. Empirical evaluation results show that our proposal can effectively reduce the accuracy of membership inference attacks and property inference attacks, while maintaining a relatively low energy cost. blueFor example, the attack accuracy of a membership inference attack drops to 43% in some scenarios. As a result, our proposed FL framework can work well in large-scale cross-device learning scenarios.
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1. Introduction


Multiparty machine learning paradigms are gaining increasing attention recently, as they power many data-driven applications while preserving data privacy [1,2,3,4]. Among the many algorithms, a widely adopted paradigm is FL, where multiple participants (or clients) jointly train a shared global model under the coordination of a central server. Since training datasets from each client never leave their holders, a privacy guarantee can be provided in FL. To date, instead of traditional centralized training methods, FL has been broadly implemented in a range of fields, including automatic driving, speech recognition, intelligent medical diagnoses, etc.



However, there remain several challenges to be addressed in FL [5,6,7,8,9]. In this paper, we tackle the problem of privacy protection and computing the energy cost. Many recent works have proven that FL is vulnerable to various kinds of privacy attacks [10,11]. For example, given the local update gradients (or local models), a malicious server can infer whether a specific data point belongs to the training set of a particular client [12]. Moreover, an attacker in the open public environment can precisely reconstruct small batches of training samples [13,14,15], if the updated gradients are intercepted and the local model architectures are known. Such attacks pose a server privacy threat to FL systems. As a response, many defense methods have been proposed, such as leveraging cryptographic techniques [16,17] or adding differential noise to model gradients [18].



Although these solutions provide effective or provable defenses to FL, they cannot be widely adopted in resource-constrained training scenarios, especially in large-scale and highly distributed FL, e.g., edge computing with massive amounts of unreliable devices. Since current privacy protection techniques incur extra computing overheads and affect model performance [19], data service providers as well as individual users are reluctant to adopt these techniques to ensure data privacy. On the other hand, energy consumption has also become one of the major bottlenecks in promoting FL in Internet of Things (IOT) [20]. Nevertheless, current researchers merely focus on constructing new training protocols to limit resource usage and hardly extend their attention to modifying local models in an energy-efficient manner.



To this end, in this paper, we propose a novel FL framework that offers both theoretically guaranteed privacy protection and low energy consumption. Our proposed framework models the local training in a discrete manner, which is similar to how nerve signals travel in the human brain. Specifically, we leverage spiking neural networks, also known as the third-generation neural network, and differential privacy, a promising technique to protect data privacy, to construct a new local training and server aggregation algorithm. The crux of our framework design lies in how to properly inject differentially private noise into the discontinuous forward propagation process, while maintaining the availability of gradients produced by backpropagation. Our evaluation results demonstrate that our proposal can effectively defend against two common privacy attacks, i.e., membership inference attacks and property inference attacks.



The contributions made in this paper can be summarized as follows.




	
We leverage an SNN to tackle the conflict between privacy and efficiency in FL. blue In particular, SNNs enjoy naturally high computing efficiency, with a mathematically traceable computing process. Hence, differential private noise can be added to the training process, while maintaining acceptable model accuracy. Compared to previous works, our proposed framework significantly lowers the hardware requirements for clients.



	
To the best of our knowledge, we propose the first FL framework that enjoys both low energy consumption and theoretically guaranteed privacy protection. Our framework protects both the local model and global model by injecting DP noise into the training and transmission process.



	
We conduct extensive experiments to evaluate our proposed framework. Empirical evaluation results show that our proposal can effectively defend against common privacy attacks. Moreover, our training scheme can be implemented in large-scale cross-device training, and it does not incur a notable accuracy drop compared to typical FL paradigms with privacy protection.








This paper is organized as follows: Section 2 presents the preliminaries and background of our work, Section 3 formalizes the problem and threat models, Section 4 describes our proposed method, Section 5 shows our empirical evaluation results, Section 6 discusses previous works related to ours, and Section 7 concludes our work.




2. Preliminaries and Background


In this section, we introduce the related preliminaries and background of our work.



2.1. Federated Learning


FL [21] allows multiple participants to cooperatively train a shared global model, while maintaining the confidentiality of their privately held local datasets. Assume that each participant in FL    c i  ∈ C   privately holds a dataset    D i  ∈ D  . Take surprised learning, for example: local dataset   D i   consists of multiple data points   d i  , which are characterized by a sample   x i   and its corresponding label   y i  , i.e.,    {  x i  ,  y i  }  =  d i   . In the canonical FL paradigm, each client locally trains a local model    F i   ( . )    on   D i   via minimizing a loss function   L ( . )  . This optimization process is typically achieved by gradient decent algorithms. Mathematically,


   θ i  p + 1   ←   ∂  L (  D i  |  θ i p  )   ∂   θ i p    ,  



(1)




where p and  θ  denote the training epoch (or communication round in FL) and weights of local models, respectively. The loss function   L ( . )   could be predefined before training or dynamically adjusted in the training process, based on practical training goals.



After each client finishes their local training, the central server collects local models from them. A new global model for the next training epoch   F ( . )   is then created by averaging each local model, i.e.,


   F  p + 1    ( . )  ←  1 I   ∑   c i     θ   c i   p  .  



(2)







The new global model would be broadcasted to all clients, on which the next local training is based. The local model of each client could be a classical machine learning model or neural network. In this paper, we propose using spiking neuron models, also known as spiking neural networks (SNN), as local models of each client. The authors in [21] have explored the possibility of implementing SNNs in federated learning.




2.2. Spiking Neuron Models


Neuromorphic computing has gained considerable attention in recent years, as it requires lower energy compared to traditional neural networks. A basic model in neuromorphic computing is a spiking neural network (SNN), which is inspired by certain biological principles of the human brain. Different from current artificial neural networks (ANNs), SNNs model the forward propagation process in a discrete manner and are considered to be the third-generation neural network. Specifically, each neuron in the SNN accumulates the incoming spikes and generates a spike when its membrane potential exceeds a threshold. After firing, the membrane potential would be reset to the resting potential. Mathematically, at each time step t, for the i-  th   neuron, such a process can be modeled as


   u i t  = λ  u i  t − 1   +  ∑  j ∈ N     w  i j    o j  t − 1        s . t .       o j  t − 1   =     1       i f    u i  t − 1   > v ,      0       o t h e r w i s e ,       



(3)




where u, o, and   w  i j    denote its membrane potential, the output of the previous neuron, and a weight between the i-th and j-th neurons, respectively.   λ < 1   is a constant, indicating the reduction in membrane potential at every time step.



An SNN is typically converted from a well-trained ANN. However, such conversion is time-consuming and the model accuracy cannot be properly persevered. Recent research [22] has proposed Batch Normalization Through Time (BNTT), a novel training method that associates a local learning parameter with each time step. As a result, it is possible to train an SNN without an auxiliary fully trained ANN model. In particular, after the BNTT layer is applied, the forward propagation is modeled as


   u  i  t  = λ  u  i   t − 1   +  BNTT  γ  i  t     ∑  j ∈ N    w  i j    o  j  t   = λ  u  i   t − 1   +  γ  i  t      ∑  j  N    w  i j    o  j  t  −  μ  i  t        σ  i  t   2  + τ     ,  



(4)




where u and  σ  denote the mean and variance from a batch of samples, and  τ  is a small constant to ensure numerical stability. A parameter  γ  can therefore be learnt using backpropagation.




2.3. Differential Privacy


Differential privacy (DP) offers theoretically guaranteed privacy protection to confidential data, while not incurring a significant additional computing cost. The DP-SGD algorithm [23] is the first solution to implement DP in machine learning paradigms, which adds perturbing noise to the stochastic gradient descent. DP-SGD only modifies the training algorithm, not adding noise the dataset itself. As a result, the gradient in the model update (in the case of FL, local models) can be published without privacy leakages. In particular, we have the following definitions.



Definition 1 

([24]). A randomized mechanism  M  with domain D and range  R  satisfies (ϵ, δ)-differential privacy if, for any two adjacent inputs   d ∈ D  , and for any subset of outputs   S ∈ R  , it holds that


  Pr  [ M  ( d )  ∈ S ]  ≤  e ϵ  Pr  M   d ′   ∈ S  .  



(5)









Under this definition, each output of DP algorithm  M  is equally likely on two adjacent databases. The privacy budget,  ϵ , controls the amount of the difference between d and   d ′  . A smaller  ϵ  can provide a stronger privacy guarantee of  M . To make the effectiveness of DP measurable, we introduce Renyi Differential Privacy as follows.



Definition 2 

([25]). A randomized mechanism   M ( d )   is said to be (α, ϵ)-Renyi differentially private if its distribution over two adjacent inputs d and   d ′   satisfies


   D α    M  ( d )  ∥ M    d ′    ≤ ϵ ,  



(6)




where α tunes the amount of concern placed on unlikely large values of   c  o ; M , d ,  d ′     versus the average value of   c  o ; M , d ,  d ′    . Here,   c  o ; M , d ,  d ′     denotes the the privacy loss at an outcome o, which is defined as


  c  o ; M , d ,  d ′   = log   Pr [ M ( d ) = o ]   Pr  M   d ′   = o    .  



(7)











3. Problem Statement and Threat Model


In this paper, our objective is to protect the confidentiality of each participant’s local training data. In particular, we consider the following two types of data leakages.




	
Membership Leakage. Membership privacy [26,27] concerns indicating whether a specific training sample was involved in the training set. In a membership inference attack (MIA) [28], an attacker manages to obtain black-box access to the target model and query multiple times with its local samples   D ′   to infer which part of   D ′   belongs to the confidential training set. MIA is critical in FL, since each participant as well as the central server can access the shared global model. Moreover, recent researchers [12,28] have proposed more effective MIA pipelines for FL, which significantly increases the risk of privacy leakage.



	
Class Leakage. Class leakage exists when the attacker manages to obtain the class distribution of the target dataset. For example, a property inference attack (PIA) [29,30] infers the properties of the training data that are irrelevant to the learning objective. Such properties typically include the proportion of each type of sample in the training set. Similar to MIA, in FL, the shared global model would also cause severe class leakage problems. In particular, with the assistance of a data poisoning attack, an existing attack [30] achieved high accuracy in inferring the general properties of each participant’s confidential training dataset.








In FL, since each entity (including the central server) could potentially become compromised, we mainly presume participants to be honest-but-couriers. In other words, each entity would strictly follow the predefined protocol, while trying to infer secret information as much as possible. Therefore, our proposal provides a privacy guarantee in the FL scenario where one or all of the following unexpected conditions are applied.




	
(T1) The central server becomes malicious and actively infers confidential information from the received local models. Since the central server has full visibility to all local models, this is the most threatening scenario. Moreover, in order to further extract secret information, the central server could send carefully designed fake global models to a victim participant and infer secret information from their responses.



	
(T2) A third party manages to intercept but cannot tamper with the communication between the central server and participants. Likewise, they could actively infer confidential information from updated local models. Different from the malicious central server, the global model is dependable.



	
(T3) A number of participants become compromised and cooperatively infer a training set that they do not possess from each training round’s global model.








To eliminate these privacy threats, our proposal leverages DP in both local training and server aggregation. Both local models and global models are protected by DP noise, which makes a compromised entity less able to infer sensitive information from the local models and global models.




4. Proposed Method


In this section, we describe our proposed privacy-preserving federated learning by spiking neuron models. A federated learning scheme can generally be divided into two iterative phases: (1) a local search by each participant, denoted by   S ( . )  , and (2) server aggregation, denoted by   A ( . )  . In a communication round, each client firstly performs a local search on their private dataset D, i.e.,    F i   ( . )  ← S  ( D )   . The trained model   F ( . )   would be uploaded to a central server, where model aggregation is performed, i.e.,   F  ( . )  ← A (  F 1   ( . )  … ,  F i   ( . )  , … ,  F c   ( . )  )  . In this paper, we design novel local search and server aggregation algorithms for SNNs that provide a privacy guarantee. Figure 1 illustrates our proposal at a high level. In the following paragraph, we separately describe our proposed two algorithms.



4.1. Local Search


In a local search, each client updates their local model by minimizing a loss function   L ( . )  . A widely used loss function is the cross-entropy loss, defined as


  L  ( . )  = −  ∑ i   P A   (  x i  )  l o g  (  P B   (  x i  )  )  ,  



(8)




where   P A   and   P B   denote two probability distributions. From the accumulated membrane potential, the cross-entropy loss for SNNs can be defined as


  L  ( . )  = −  ∑ i   y i  log    e  u  i  T     ∑ k   e  u  k  T      .  



(9)







After modeling the discrete propagation process in a continuous manner, i.e., applying surrogate gradient,     d o   d u   =  e  2   u −  u  t h    2     , gradient descent can be adopted to compute the model updates at each time step. According to the chain rule, the gradient of the corresponding time and layer can be computed as


   ∇ w  L  ( . )  =  ∑  t = 1  T    ∂ L   ∂  o  i  t      ∂  o  i  t    ∂  u  i  t      ∂  u  i  t    ∂  w  i j     .  



(10)







To protect training data privacy, we add Gaussian noise   N ( . )   to the gradients computed at each training epoch p. As a result, differentially private gradients can be obtained, which makes the attacker less able to extract sensitive information. We provide a privacy guarantee under the framework of GDP theory [31]. In particular, distinguishing between two adjacent datasets D and   D ′   is harder than distinguishing between two Gaussian distributions   N ( 0 , 1 )   and   N ( κ , 1 )  . Therefore, even if a malicious party intercepts the local update gradient or global model, they cannot directly infer or reconstruct the corresponding training set. Mathematically, in the p-th training epoch, the local model for client c is updated by


   w  c   p + 1   ←  w  c  p  − η  1 B    N  0 ,  κ 2   C 2  I      +   ∇ w   L  c  p   ( . )  / max  1 ,     ∇ w   L  c  p   ( . )   2  C    −  ∇ w   L  c  p   ( . )   ,  



(11)




where  η  is the learning rate, C is the gradient norm bound,  κ  is the noise scale,  B  is the batch size, and   N ( 0 ,  κ 2   C 2  I )   is a normal Gaussian distribution. To avoid privacy leakage, participants usually upload the gradients of each training epoch, instead of uploading the full local model, i.e.,   Δ  w  c   p + 1   = Δ  w  c   p + 1   −  w  c  p   . This is equal to uploading the full local model, as the central server can directly compute the average on such received gradients.




4.2. Server Aggregation


The central server aggregates all received local updates and forms a new global model. To ensure that all local models have a sufficient impact on the global model, the central server would usually select a subset   S ∈ C   from all participants. The selection algorithm, for example, could be solving the following maximization problem [32]:


   max S   | S |      s . t .      T  round    ≥  T cs  +  T  S  d  +  Θ  | S |   +  T agg  ,  



(12)




where  S  is the selected client set,   T round   is the deadline for each round,   T cs   is the time required for the client selection step,   T agg   is the time required for the aggregation steps,   T  S  d   is the time required for global model distribution, and   Θ  | S |    is the time for participants in  S  required to update and upload the local models.



After client selection, the central server initiates the aggregation process. Denoting the count of non-zero elements of a set by   .  , Equation (2) can be expanded as follows:


   F  p + 1    ( . )  ←  F p   ( . )  +  1   ∑  c ∈ S     D   c i    p + 1       ∑  c ∈ S     D   c i    p + 1    Δ  w   c i    p + 1   .  



(13)







Here, participants with more data samples are given more weight in aggregation, which helps the global model to converge faster. To enhance the privacy of the global model, i.e., defend against third parties intercepting the broadcasted global model, DP noise can be added before it is published:


   F  p + 1    ( . )  ←  F  p + 1    ( . )  + N  0 ,  κ  ′ 2    C  ′ 2   I  .  



(14)







In particular, to limit the performance penalty incurred by adding DP noise, noise is only applicable to model weights that do not change significantly compared to the last training round. The central server also selects some particular training terminal conditions, which indicate when the FL ends. This also helps to reduce the overfitting of the model. The detailed algorithm of our proposed training scheme is shown in Algorithm 1.



	Algorithm 1: Privacy-Preserving Federated Neuromorphic Learning



	[image: Electronics 12 03984 i001]










5. Experiments


In this section, we present the empirical evaluation results of our proposal. We test the final accuracy of the well-trained global model, as well as its ability in defending different privacy attacks.



5.1. Settings


Our evaluation is conducted on the PyTorch Framework 3.8. All experiments are conducted 5 times, and the average results are reported. Detailed settings are described as follows.



Dataset and Learning Scale. We conduct experiments to evaluate the performance of our FL framework on the MNIST and CIFAR-10 datasets. MNIST consists of 60,000 training samples and 10,000 test samples, which are 28 × 28 grayscale images. CIFAR-10 consists of 60,000 training samples and 10,000 test samples, which are 32 × 32 RGB images. To simulate three practical learning scenarios [33] (cross-silo FL and cross-device FL), the datasets are split according to the following.




	
cross-silo FL: Participants are different organizations (e.g., hospitals or banks) or geo-distributed data centers. Typically, there are 2–100 participants in this scenario, and all of them are reliable, i.e., no failure or drop out. Our simulation of this scenario splits the dataset with the following settings: (1) CS_1: 6 clients, with 10,000 training samples each, (2) CS_2: 20 clients, with 2000–5000 samples each, and (3) CS_3: 50 clients, with 1000–2000 samples each. All local gradients would aggregated by the central server, i.e., client selection is disabled.



	
cross-device FL: Participants are a very large number of massively parallel mobile or IoT devices, typically up to   10 5  . During training, only a small of participants are available at any one time, i.e., some of the participants would have a probability not responding to the central server. Our simulation of this scenario splits the dataset with the following settings: (1) CD_1: 200 clients, each with 500 training samples randomly selected from the training set, and (2) CD_2: 1000 clients, each with 250 training samples. randomly selected from the training set. The central server only selects 30 local models for aggregation according to its selection protocol.








Model Architectures. We implement two local model architectures: (1) M1, a lightweight fully connected neural network with 5 hidden layers; and (2) M2, VGG13, which consists of 10 convolutional filters 3 × 3 and two fully connected layers with pooling. As a comparison, both architectures would be implemented as an ANN and SNN. The training batch size  B  for each participant is 32, and the learning rate  η  is 0.005. In VGG16, we also use a momentum of   0.9   to avoid falling into local optima. The activation function in ANNs is set with Sigmoid. In each communication round, the local model is trained by 10 epochs before updating the gradients on the central server. The DP noise added in the local training phase and aggregation phase is   N ( 0 , 0.01 )   and   N ( 0 , 0.005 )  , respectively.




5.2. Training Accuracy


We report the training accuracy of the well-trained global model, as well as the communication rounds needed under different settings, in Table 1 (MNIST) and Table 2 (CIFAR-10). In general, the global model can converge well under both FedAvg and our method. Please note that our method provides privacy protection, which would cause a performance penalty. We will present the evaluation results in defending against privacy attacks in the next subsection.



From both tables, we can observe that, in both simple and complex network architectures (M1 and M2), our proposed FL scheme can provide a global SNN model with testing accuracy similar to the ANN. In both network architectures, the number of communication rounds for the SNN is 1.5 times more than for the ANN on average, especially in large training scenarios. Moreover, the decrease in model accuracy compared to the ANN does not vary with the learning scale. It can be estimated that, in even larger learning scenarios with more uncertainties, our proposal can achieve a global model that is similar to an ANN in terms of accuracy, while enjoying the unique benefits of SNNs, e.g., low computing energy cost. From Table 2, we can see that the SNN also performs well on RGB images. Next, we report how the global model accuracy increases with the communication rounds in Figure 2. The tested global model accuracies under the setting of M2 CIFAR-10 are shown. For cross-silo training, the global model accuracy increases faster than for cross-device training.




5.3. Defense against Privacy Attacks


In this subsection, we present the evaluation results in terms of defending against privacy attacks. As mentioned in Section 3, we mainly consider membership inference attacks and property inference attacks. We posit that (1) the central server or (2) some of the clients are malicious. The MIA follows the implementation of [34], and the attack accuracy is reported in Table 3. The PIA follows the implementation of [35], and the attack accuracy is reported in Table 4. We use the same metric for attack accuracy as in [35].



The MIA accuracy in Table 3 is computed by


   MA A  = 2 P  [   F A   (  Y t   |  aux  )  = ϵ  ]  − 1 ,  



(15)




where aux denotes the information available to the attacker (i.e., attacker’s advantage), and   F A   is the chosen attack algorithm. Since a randomly initialized attack algorithm achieves 50% accuracy (random guess), this measurement of the performance of MIA would be more rational. From Table 3, we can observe that our proposed FL framework can effectively prevent MIA in different learning scenarios. The attack accuracy drops significantly (65% in average) in simple and complex datasets. In large models, our proposal can provide even better privacy protection.



As for defense against PIA, our training scheme also achieves similar defense performance compared to the results in MIA. From Table 4, we can observe that the attack accuracy decreases considerably with our training scheme. In different settings, the distribution of only a small portion of confidential data can be inferred by the attacker. From all tables, we can conclude that our proposed training scheme can provide strong privacy protection in different threat models, while only causing a slight drop in model performance and convergence speed.




5.4. Ablation Study


We also conduct an ablation study to further verify the effectiveness of our proposal. We test the defense performance when (1) the scale of added noise is changed, and (2) we only enable DP in local training or server aggregation. We select the most challenging scenario in the cross-silo and cross-device context, respectively, i.e., CS_3 and CD_2. The results are reported in Table 5 and Table 6, respectively.



In Table 5, we further show the distribution of DP noise added in local training. We evaluate  N (0,0.02) and  N (0,0.005), and the global model accuracy (Acc), communication rounds (CR), and privacy attack accuracy (PA) are reported. PA reflects the model’s general ability in defending against privacy attacks and is computed from the average attack accuracy of MIA and PIA. Generally speaking, adding DP noise with a wider range would cause a penalty in both model accuracy and convergence speed, but provide more powerful privacy protection. In practical training, participants can choose the appropriate scale of noise.



Next, we investigate the model’s defense capability when only adding DP noise in local training or server aggregation. In Table 1 and Table 6, we can observe that applying DP noise in only the local training phase or server aggregation phase can allow resistance to privacy attacks. However, such privacy protection is weaker than when injecting noise in both phases.





6. Related Work


Our work mainly follows two lines of research: federated learning and spiking neuron models. The following paragraph briefly introduces recent advances in these two areas.



6.1. Federated Learning


Federated learning has quickly become one of the gold standards in privacy-preserving machine learning solutions since it was first introduced by Google in 2016 [19]. The pioneering work in FL typically simply considers all clients to be honest to each other, which makes directly aggregating local gradients possible [36]. However, the existence of malicious clients has prompted the proposal of more secure and robust FL frameworks [18].



Specifically, a number of works have designed different kinds of attacks to manipulate the training process or infer privacy data in FL. Zhu et al. proved that an attacker is able to reconstruct the actual training set of each participant if the local update gradient can be accessed [13]. Similarly, a malicious subset of the participants has been proven to be able to poison the global model by sending model updates derived from mislabeled data [37]. Moreover, FL can also easily be backdoored if the attacker manages to continuously send corrupted gradients to the aggregation server [38].



Nevertheless, in regard to these attacks, a wide range of researchers have provided many defense solutions. For example, Moriai et al. consider using homomorphic encryption to ensure the confidentiality of the whole training process [39]. In order to prevent different kinds of data inference attacks, adding differential noise to the training process has also been considered in a number of secure training schemes [10].




6.2. Spiking Neuron Models


The recent increasing need for the autonomy of machines in the real world has promoted the application of SNNs [40,41]. Inspired by biological neural networks, SNNs leverage plasticity and backpropagation as the main training methods [42]. Despite great advantages in energy consumption and learnability, SNNs are still difficult to train in many cases, since there exist complex dynamics of neurons, and the spike operations are naturally non-differentiable. Recent studies of SNNs can broadly be divided into the following streams.



Research stream 1: Investigating and advancing the connection between neural networks and SNNs. For example, Jason K. et al. explored the delicate interplay between encoding data as spikes and the learning process and investigated how deep learning might move towards biologically plausible online learning [43]. Yufei et al. designed an information maximization loss that aims at maximizing the information flow in the SNN, which ensures sufficient model updates at the beginning and accurate gradients at the end of the training [44].



Research stream 2: Boosting the convergence of SNNs. For example, Fang et al. proposed the spike-element-wise (SEW) ResNet to realize residual learning in deep SNNs, which overcomes the vanishing/exploding gradient problems of spiking ResNet [45]. To overcome the challenge of discrete spikes prohibiting gradient calculation, Yuhang et al. proposed a surrogate gradient approach that serves as continuous relaxation [46]. By encoding the spike trains into a spike representation using (weighted) firing rate coding, Qingyan et al. proposed the differentiation on spike representation method, which provides competitive accuracy to ANNs yet with low latency [47].



Research stream 3: Promoting the practical application of SNNs. For example, Xie et al. designed a novel network structure for SNNs based on neuron receptive fields, which extract information from the pixel and spatial dimensions of traffic signs [48]. Moreover, Viale et al. used an SNN connected to an event-based camera to tackle the classification problem between cars and other objects [49].





7. Conclusions and Future Work


In this paper, we propose the first privacy-preserving FL framework with SNNs. Our proposal can simultaneously provide theoretically guaranteed privacy protection and achieve low energy consumption. Our framework injects DP noise into the training and transmission process. We conducted extensive experiments to evaluate our proposed framework. Empirical evaluation results have shown that our proposal can effectively defend against common privacy attacks. blueFor example, the attack accuracy of membership inference attacks drops to 43% in some scenarios. Moreover, our training scheme can be implemented in large-scale cross-device training, and it does not incur a significant accuracy drop compared to typical FL paradigms with privacy protection.
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Figure 1. Our proposed training framework at a high level. 
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Figure 2. Change in global model accuracy with the increase in communication rounds (CIFAR-10, M2). 
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Table 1. The converged global model accuracy (Acc) and communication rounds (CR) in different settings for the MNIST dataset.
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FedAvg M1

	
FedAvg M2

	
Ours M1

	
Ours M2




	

	

	
Acc

	
CR

	
Acc

	
CR

	
Acc

	
CR

	
Acc

	
CR






	
CS_1

	
SNN

	
98.9%

	
126

	
99.1%

	
178

	
97.1%

	
152

	
97.2%

	
219




	
ANN

	
99.2%

	
97

	
99.6%

	
169

	
97.4%

	
128

	
97.8%

	
143




	
CS_2

	
SNN

	
98.8%

	
134

	
98.9%

	
189

	
97.0%

	
180

	
97.4%

	
269




	
ANN

	
99.2%

	
106

	
99.3%

	
170

	
97.2%

	
144

	
97.6%

	
178




	
CS_3

	
SNN

	
98.3%

	
150

	
98.5%

	
195

	
96.3%

	
208

	
96.8%

	
285




	
ANN

	
99.0%

	
111

	
99.3%

	
182

	
96.8%

	
160

	
97.1%

	
197




	
CD_1

	
SNN

	
96.5%

	
213

	
96.9%

	
245

	
94.2%

	
323

	
94.8%

	
329




	
ANN

	
97.8%

	
178

	
98.0%

	
190

	
94.9%

	
219

	
95.5%

	
230




	
CD_2

	
SNN

	
95.7%

	
256

	
95.8%

	
281

	
93.8%

	
348

	
94.4%

	
367




	
ANN

	
97.1%

	
220

	
97.5%

	
243

	
94.0%

	
245

	
95.2%

	
277











 





Table 2. The converged global model accuracy (Acc) and communication rounds (CR) in different settings for the CIFAR-10 dataset.
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FedAvg M1

	
FedAvg M2

	
Ours M1

	
Ours M2




	

	

	
Acc

	
CR

	
Acc

	
CR

	
Acc

	
CR

	
Acc

	
CR






	
CS_1

	
SNN

	
96.2%

	
186

	
96.8%

	
240

	
95.7%

	
187

	
95.9%

	
199




	
ANN

	
96.6%

	
170

	
97.6%

	
226

	
96.1%

	
165

	
96.3%

	
186




	
CS_2

	
SNN

	
95.9%

	
193

	
96.3%

	
258

	
95.2%

	
196

	
95.6%

	
215




	
ANN

	
96.5%

	
179

	
97.0%

	
239

	
95.5%

	
173

	
95.5%

	
194




	
CS_3

	
SNN

	
95.1%

	
205

	
95.9%

	
262

	
94.6%

	
228

	
94.9%

	
254




	
ANN

	
95.7%

	
186

	
96.5%

	
245

	
94.8%

	
212

	
94.3%

	
210




	
CD_1

	
SNN

	
93.2%

	
240

	
94.3%

	
280

	
94.2%

	
347

	
94.6%

	
363




	
ANN

	
94.1%

	
210

	
94.7%

	
255

	
93.6%

	
236

	
94.7%

	
274




	
CD_2

	
SNN

	
92.6%

	
269

	
93.8%

	
293

	
93.3%

	
366

	
94.0%

	
370




	
ANN

	
93.4%

	
238

	
94.2%

	
276

	
93.4%

	
250

	
93.3%

	
280











 





Table 3. MIA accuracy under FedAvg and our proposed training scheme in MNIST (D1) and CIFAR-10 (D2).
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MIA

	
FedAvg M1

	
Ours M1

	
FedAvg M2

	
Ours M2






	

	
D1

	
D2

	
D1

	
D2

	
D1

	
D2

	
D1

	
D2




	
CS_1

	
67.3%

	
61.1%

	
23.0%

	
26.6%

	
69.9%

	
63.5%

	
23.5%

	
25.9%




	
CS_2

	
65.9%

	
61.0%

	
21.9%

	
26.3%

	
68.1%

	
62.9%

	
23.2%

	
25.3%




	
CS_3

	
65.1%

	
60.4%

	
20.8%

	
29.5%

	
67.5%

	
62.3%

	
22.7%

	
24.8%




	
CD_1

	
52.1%

	
48.2%

	
19.6%

	
18.6%

	
59.1%

	
51.2%

	
17.6%

	
20.2%




	
CD_2

	
49.3%

	
42.1%

	
18.5%

	
17.9%

	
58.3%

	
47.0%

	
17.1%

	
19.6%











 





Table 4. PIA accuracy under FedAvg and our proposed training scheme in MNIST (D1) and CIFAR-10 (D2).
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PIA

	
FedAvg M1

	
Ours M1

	
FedAvg M2

	
Ours M2






	

	
D1

	
D2

	
D1

	
D2

	
D1

	
D2

	
D1

	
D2




	
CS_1

	
78.6%

	
75.0%

	
30.3%

	
28.7%

	
73.9%

	
71.8%

	
27.4%

	
25.7%




	
CS_2

	
77.2%

	
74.2%

	
29.4%

	
26.6%

	
73.1%

	
70.9%

	
26.7%

	
25.0%




	
CS_3

	
76.4%

	
73.7%

	
28.7%

	
26.0%

	
72.0%

	
70.1%

	
26.1%

	
24.6%




	
CD_1

	
72.1%

	
71.0%

	
26.9%

	
24.9%

	
67.5%

	
65.7%

	
24.0%

	
22.4%




	
CD_2

	
71.2%

	
69.5%

	
26.1%

	
24.0%

	
64.3%

	
63.1%

	
22.9%

	
21.8%











 





Table 5. Results showing how the scale of added noise in local training impacts global model accuracy (Acc), communication rounds (CR), and privacy attack accuracy (PA). PA equals the average attack accuracy of MIA and PIA.
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CS_3 M1

	
CD_2 M1

	
CS_3 M2

	
CD_2 M2






	

	

	
D1

	
D2

	
D1

	
D2

	
D1

	
D2

	
D1

	
D2




	
 N (0,0.01)

	
Acc

	
96.3%

	
94.6%

	
93.8%

	
93.3%

	
96.8%

	
94.9%

	
94.4%

	
94.0%




	
CR

	
208

	
228

	
348

	
366

	
285

	
254

	
367

	
370




	
PA

	
24.8%

	
27.8%

	
22.3%

	
21.0%

	
24.4%

	
24.7%

	
20.0%

	
20.7%




	
 N (0,0.02)

	
Acc

	
95.6%

	
93.3%

	
92.9%

	
92.0%

	
95.1%

	
93.7%

	
92.6%

	
91.3%




	
CR

	
213

	
237

	
365

	
378

	
298

	
265

	
388

	
386




	
PA

	
23.6%

	
25.7%

	
20.9%

	
19.8%

	
19.7%

	
18.9%

	
16.5%

	
16.0%




	
 N (0,0.005)

	
Acc

	
97.0%

	
95.6%

	
94.4%

	
94.6%

	
97.2%

	
95.8%

	
95.7%

	
95.2%




	
CR

	
196

	
207

	
328

	
332

	
250

	
239

	
354

	
348




	
PA

	
27.5%

	
26.7%

	
23.9%

	
23.6%

	
29.8%

	
30.6%

	
28.6%

	
29.5%











 





Table 6. Results when only applying DP noise in local training phase or server aggregation phase.
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CS_3 M1

	
CD_2 M1

	
CS_3 M2

	
CD_2 M2






	

	

	
D1

	
D2

	
D1

	
D2

	
D1

	
D2

	
D1

	
D2




	
DP in local

training

	
Acc

	
95.1%

	
93.8%

	
93.2%

	
93.0%

	
95.7%

	
94.4%

	
93.9%

	
93.5%




	
CR

	
187

	
198

	
306

	
328

	
246

	
289

	
345

	
356




	
(PA

	
34.9%

	
36.6%

	
31.7%

	
32.8%

	
30.9%

	
31.7%

	
30.1%

	
32.6%




	
DP in server

aggregation

	
Acc

	
95.3%

	
94.5%

	
93.9%

	
93.4%

	
95.7%

	
95.2%

	
95.0%

	
93.7%




	
CR

	
181

	
196

	
294

	
310

	
239

	
265

	
310

	
327




	
PA

	
32.7%

	
31.9%

	
31.3%

	
31.0%

	
31.8%

	
32.0%

	
31.7%

	
32.2%
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