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Ławryńczuk

Received: 15 August 2023

Revised: 15 September 2023

Accepted: 15 September 2023

Published: 21 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Model Predictive Secondary Frequency Control for Islanded
Microgrid under Wind and Solar Stochastics
Zhongwei Zhao 1,*, Xiangyu Zhang 2 and Cheng Zhong 2

1 College of Information and Electronic Engineering, Zhejiang Gongshang University, Qiantang District,
Hangzhou 310018, China

2 College of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China;
m15264388175@163.com (X.Z.); zhongcheng@neepu.edu.cn (C.Z.)

* Correspondence: zhaozw@zjgsu.edu.cn

Abstract: As microgrids are the main carriers of renewable energy sources (RESs), research on them
has been receiving more attention. When considering the increase in the penetration of renewable
energy sources/distributed generators (DGs) in microgrids, their low inertia and high stochastic
power disturbance pose more challenges for frequency control. To address these challenges, this
paper proposes a model predictive control (MPC) secondary control that incorporates an unknown
input observer and where RESs/DGs use a deloading virtual synchronous generator (VSG) control
to improve the system’s inertia. An unknown input observer is employed to estimate the system
states and random power disturbance from the RESs/DGs and load to improve the effect of the
predictive control. The distributed restorative power of each DG is obtained by solving the quadratic
programming (QP) optimal problem with variable constraints. The RESs/DGs are given priority
to participate in secondary frequency control due to the proper weighting factors being set. An
islanded microgrid model consisting of multiple photovoltaic and wind power sources was built. The
simulation results demonstrate that the proposed method improves the system frequency, restoration
speed, and reduces frequency deviations compared with the traditional secondary control method.

Keywords: secondary frequency control; model predictive control; virtual synchronous generator;
unknown input observer; islanded microgrid

1. Introduction

Microgrids have attracted tremendous attention because they can facilitate the in-
tegration of RESs/DGs and improve the reliability, efficiency, and flexibility of power
grids [1]. Microgrids can be operated in an islanded mode, wherein the primary objective
is to maintain a balance between sources and loads. RESs/DGs are connected to the micro-
grid through inverters, which makes the microgrid less inertial than the traditional grid
and deteriorates the frequency characteristics of the system [2]; additionally, due to the
uncertainty of RESs, more unknown disturbances are brought into the system [3]. All of
these factors bring more challenges to the frequency regulation of microgrids [4].

Hierarchical control is the basic control strategy for microgrids, which includes pri-
mary frequency regulation, secondary frequency regulation, and even tertiary frequency
regulation [5,6]. Primary regulation immediately adjusts the power output from the local
governor or electronic controller to address the microgrid’s frequency deviation. The con-
ventional primary control is a droop control, but it provides barely any inertia/damping
support. To cope with this problem, the concept of the VSG has been presented. VSG
mimics the behavior of conventional synchronous generators (SGs) and achieves primary
frequency control while compensating for some inertia deficiency [7]. The primary control
cannot achieve error-free regulation [8] and must introduce the secondary control; this is
a control that utilizes measurements and communication systems to eliminate frequency
deviation [9].
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Many control methods have been utilized for the secondary frequency control of
islanded microgrids [10]. The authors in [11] adopted a sliding mode control to control
frequency; this method can overcome system uncertainty and has strong robustness, but
the chattering phenomenon exists in sliding mode controls. The linear quadratic regulator
(LQR) has also been used for the frequency control of microgrids [12,13]. Its design is
convenient and suitable for MIMO systems, but it requires a high precision of the control
parameters. Some artificial intelligence (AI) methods are also used for frequency control.
In [14,15], the black hole optimization search algorithm and particle swarm optimization
algorithm were used for secondary frequency control. The authors in [16,17] used a fuzzy
adaptive controller and self-tuning techniques based on AI for secondary frequency control.
However, these AI-based methods do not consider the control quantity in the objective
function, which may cause power overlimit and waste renewable energy. In addition
to centralized schemes, the distributed control has been previously adopted [18–20], but
distributed control has the problems of high technical requirements, high costs, traffic
congestion, and limits on critical monitoring and protection functions [21].

The emerging MPC method has a good control effect and robustness, and the rolling
optimization algorithm can make up for the uncertainty that is caused by model mismatch,
distortion, interference, and other factors [22]. The study in [23] is a review of the appli-
cation of MPC in microgrids. The study analyzed the application of MPC in microgrids,
covering various levels of the hierarchical control structure; however, it did not focus on
the application of MPC in microgrid frequency regulation. The authors in [24] presented a
novel secondary control method for voltage regulation in islanded microgrids. In [25], an
MPC method for a renewable energy AC microgrid without a PID regulator was proposed.
A tube-based MPC method was presented in [26] to control the participation of electric
vehicles (EVs) in the frequency regulation of an islanded power system. The authors in [27]
presented a modified MPC strategy to account for limiting overcurrent in the case of a
faulted autonomous AC microgrid operation; however, this fails to address the impact of
RES randomness. In [28], the authors considered energy storage systems based on virtual in-
ertia control in coordination with a diesel generator that was controlled by the MPC method
to improve the frequency regulation of an islanded MG. The authors in [29] proposed a
fuzzy control combined with an MPC for VSG control, where the fuzzy MPC controller
enhances the frequency stability of islanded microgrids by adjusting virtual inertia and
damping coefficients. The authors in [30] presented an MPC strategy that optimizes the
power flow between energy storage batteries in a microgrid and employs a solver to handle
the nonlinear changes in energy storage batteries. However, the above-mentioned MPC
studies only utilize storage batteries and diesel generators for participating in frequency
regulation. Recently, RESs have been proposed to participate in system frequency regula-
tion [31,32] through a deloading control that the DGs operate at suboptimal points. MPC
requires an observer to estimate the current system state. The uncertainties from the DGs
may deteriorate the performance of the observer. Conventional observers struggle to obtain
accurate values because they only use input signals, including perturbed signals [33].

This paper proposes a load frequency control strategy for islanded microgrids based
on the MPC method. The main salient features of the proposed method are briefly outlined
as follows: (1) RESs adopt a deloading control and VSG control to provide reserve power,
virtual inertia, and participation in secondary frequency regulation; (2) The decoupled
unknown state observer is used to observe the system state value and power disturbance,
respectively; (3) MPC is utilized to optimize the output of each RES/DG for secondary
frequency control in real time. RESs/DGs are given priority by setting the appropriate
weight factors, and the variable constraints are set based on the maximum available power
of RESs/DGs to prevent their output power from exceeding the limit.

The rest of this article is organized as follows. Section 2.1 includes the study of
microgrid load frequency modeling and its space state equations. Section 2.2 provides the
unknown input observer design. The proposed MPC controller is described in Section 2.3.
Section 2.4 focuses on wind power, photovoltaic, and load uncertainty modeling. The
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simulation and results are demonstrated in Section 3, and the conclusion is presented in
Section 4.

2. Materials and Methods
2.1. Microgrid Model

The islanded microgrid studied in this paper is shown in Figure 1. It mainly contains
two distributed photovoltaic generators (PV1, PV2), two distributed wind turbines (WT1,
WT2), a battery energy storage system unit (BESS), and a diesel engine unit (DU). The
capacity configuration of each power generation unit is shown in Table 1 below.
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Table 1. Microgrid-rated power and load.

Microgrid Power Symbols Numerical Value

Photovoltaic (PV)
PPV1 100 kW
PPV2 100 kW

Wind turbine (WT)
Pwt1 100 kW
Pwt2 100 kW

BESS PBESS 120 kW
Diesel engine PDU 120 kW

Load Load 640 kW

The conventional primary frequency control is droop control, but it provides barely
any inertia/damping support. In Figure 1, the VSG deloading control is used for grid-
tied converters to achieve virtual inertia and primary frequency regulation and obtain
partial reserve power. It should be noted that RESs can participate in secondary frequency
regulation by using a deloading control, but this also generates the influence of input
uncertainty and affects the control effect. Furthermore, the stochastic power fluctuation of
the WT, PV, and load causes system frequency fluctuation.

2.1.1. The Small Signal of VSG

In this study, the RESs adopt a VSG deloading control. The DC side provides a stable
voltage for the inverter. The power command value is set according to the maximum avail-
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able power and deloading coefficient. Deloading control has been extensively researched
and is not the focus of this paper; however, [34] can serve as a reference for it.

In Figure 2, Idc [A] and Udc [V] are the DC side current and voltage, respectively. E
[V] is the inverter output voltage, Ul [V] is the grid voltage, I [A] is the grid current, L f
[mH] is the filter inductor, C f [mF] is the filter capacitor, Lg [mH] is the line inductor, Kq is
the voltage sag factor, Pin [kW] is the input power of the inverter, Pin [kW] is the output
power of the inverter, and Pre f [kW] and Qre f [kVar] are the command values of active and
reactive power, respectively.
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The mechanical equation of the synchronous generator is

Jω
dω

dt
= Ps − Pe − Dω(ω−ωn) (1)

where Ps [kW] is the mechanical power, Pe [kW] is the electromagnetic power, and D is the
damping factor of the generator. J is the rotational inertia of the generator, and ω [rad/s] is
the mechanical angular velocity of the rotor; the electrical angular velocity is also ω [rad/s],
and ωn [rad/s] is the synchronous angular velocity of the grid.

The active output of the inverter can be expressed as

P =
EUl
Z

cos(ϕ− δ)−
U2

l
Z

cos ϕ (2)

where Z [Ω] is the line impedance, P [kW] is the active output power of the inverter, E[V]
is the inverter output voltage, Ul [V] is the grid voltage, ϕ [rad] is the line impedance angle,
and δ [rad] is the power angle.

For simplicity, the line impedance is usually represented as purely inductive and δ is a
small value; thus, Equation (2) can be simplified as

P = 3
UUl
ωL

δ (3)

where U [V] is the inverter-side voltage, L [mF] is line inductive reactance, and Ul [V] is the
grid-side voltage.

From Equation (3), the output power and power angle are linearly related. The power
angle of VSG can be obtained through the rotor mechanical Equation (1).

By combining Equations (1) and (3), the VSG small-signal model can be obtained as
shown in Figure 3, where K = 3 UUl

ωL .
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2.1.2. LFC Model of Microgrid

This paper mainly focuses on the secondary frequency control of RES high-penetration
microgrids. The load frequency control (LFC) model of the microgrid is shown below
in Figure 4. In the LFC model, the VSG small-signal model is used to simulate the grid-
connected inverter. The energy storage battery and the diesel engine adopt the first-order
equivalent model. More details can be found in [35]. In order to facilitate the research, all
parameters are normalized.
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In Figure 4, Jpv and Jwt are the inertia values of the virtual synchronous generator of
the photovoltaic and wind turbines, respectively. Dpv and Dwt are the damping values
of the virtual synchronous generator of the photovoltaic and wind turbines, respectively.
∆Upv, ∆Uwt, ∆Udu, and ∆Ubess are the power reference values of the photovoltaic, wind
turbine, diesel engine, and energy storage battery, respectively. R and Tdu1 are the diesel
sag factor and speed regulation time constant, respectively, and Tdu2 is the time constant of
the diesel engine. K1 is the rated angular velocity, K2 = 3 UUg

ωL , Ht is the microgrid inertia,
and Dt is the damping coefficient of the system. The specific values of the LFC microgrid
modeling are listed in Table 2.

Table 2. Microgrid parameters.

Microgrid Power Symbols Value

Photovoltaic (PV) JPV 0.0987
DPV 88.8264

Wind turbine Jwt 0.0987
Dwt 88.8264

Energy Storage System TBESS 0.01

Diesel engine
Tdu1 0.04
Tdu2 0.01

R 3
Microgrid inertia Ht 0.6

Microgrid damping D 1
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2.1.3. State-Space Equation Modeling

The microgrid LFC model of Figure 4 is organized into a state-space form as follows:{ .
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(4)

where x(t) is the state variable, u(t) is the control variable and unknown input perturbation,
and y(t) is the output variable; A, B, and C are the state constant matrix, control constant
matrix, and output constant matrix of the continuous state equation, respectively. The
system state and control quantities are shown below.

x =
(

∆ωpv1 ∆ppv1 ∆ωpv2 ∆ppv2 ∆ωwt1 ∆pwtl ∆ωwt2 ∆pwt2 ∆pbess ∆ωdu ∆pdu ∆ f
)T

u =
(
∆upv1 ∆upv2 ∆uwt1 ∆uwt2 ∆ubess ∆udu

)T

where ∆ωpv1∆ωpv2 is the angular velocity of the PV virtual synchronous generator, ∆ppv1
∆ppv2 is the PV output power, ∆ωwt1 ∆ωwt2 is the angular velocity of the WT virtual
synchronous generator, ∆pwt1 ∆pwt2 is the WT output power, ∆ωbess is the angular velocity
of the BESS virtual synchronous generator, ∆pbess is the BESS output power, ∆pdu is the
diesel engine output power, ∆ωdu is the diesel engine angular velocity, and ∆ f is the system
frequency variation. ∆u is the control variable of DGs.

2.2. Unknown Input Observer Design

In this study, an MPC is used for secondary frequency control because it can achieve
satisfactory control effects when dealing with multi-input multi-output coupled systems.
MPC uses the current system state as the initial value for the predictive control. However,
the system’s current state is not directly measurable, so a state observer is necessary.

Due to the randomness of the system, conventional observers struggle to obtain
accurate system states. This paper uses an unknown input observer to obtain the state
estimation and unknown input perturbation (the equivalent load disturbance).

The equivalent load disturbance is represented as an unknown input disturbance dk.
The state equations of the microgrid can be rewritten as{

xk = Aob ∗ xk−1 + Bob ∗ uk + Eobdk
yk = Cobxk

(5)

where Aob is the state matrix of the system; Bob is the control matrix of the system, which
does not contain unknown perturbation terms; Cob is the output matrix of the system;
Eob is the matrix of unknown input perturbations; xk is the state vector; yk is the output
vector; uk is the known input vector; and dk is the equivalent load perturbation. They are
all discretized matrices.

The state estimation error vector ek is defined as

ek = xk − x̂(k|k) (6)

where x̂(k|k) is the state estimate.
The structure of the UIO according to the dynamic system design is shown in Figure 5.

The equations are as follows:

zk = F ∗ zk−1 + TBuk−1 + K ∗ yk (7)

x̂(k|k) = zk + H ∗ yk (8)

where zk is the state of the observer, and F, T, K, and H are the matrices designed to achieve
the decoupling of the unknown inputs. From the block diagram, it can be seen that the UIO
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is essentially a dynamic system that decouples the state estimates from the perturbation
terms in the original system.
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Expanding
.
e(k), we obtain:

.
e(k) = (A− HCA− K1C)e(k) + [F− (A− HCA− K1C)]z(k)
+[K2 − H(A− HCA− K1C)]y(k) + [T − (I − HC)]Bu(k) + (HC− I)Ed(k)

(9)

It can be seen that if we want to observe the decoupled state, ek needs to be made a
function of Mek, i.e.,

.
ek = Mek. (10)

The following equation can be derived:

0 = (HC− I)E (11a)

T = I − HC (11b)

F = A− HCA− K1C (11c)

K2 = FH (11d)

If all eigenvalues of M are negative, then e(k) will gradually approach zero. Based on
Equation (11), the value of the corresponding matrix is obtained. At this point, Equation
(10) is not a function of E or dk, having achieved the expected decoupling of the state
estimate from the unknown perturbation input.

The disturbance estimate can also be derived as:

d(k|k) = (CE)†[y− CAx̂(k|k)− CBu] (12)

where d(k|k) is the estimated value of the disturbance.
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2.3. Model Predictive Controller Design

MPC control is used in this paper to implement the secondary frequency regulation
control of the microgrid, and its control structure is shown in Figure 6.
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In Figure 6, the MPC controller frequency deviation ∆f reference is 0, and the output is
the power reference ∆U for each DG. The current state x(k|k) is observed by the proposed
unknown input observer. The system state is predicted in the finite time domain based on
the prediction model. The rolling optimal control is adopted to solve the optimal control
variable under the satisfied constraint. The output ∆U adjusts the DG’s output power to
improve the system frequency response.

2.3.1. Prediction Model

Considering the accuracy of the MPC and the complexity of the calculation, this paper
sets the prediction time domain as p = 12 and the control time domain as m = 4. Combined
with the system discrete model, the prediction values in the prediction time domain p can
be obtained using the following equations:

Yp(k + 1 | k) = S∆x(k) + Iy(k) + SB∆U(k) (13)

S =

[
CA

2
∑

i=1
CAi

3
∑

i=1
CAi · · ·

p
∑

i=1
CAi

]T

(14)

I =
[
1 1 · · · 1 1

]T
1×p (15)

SB =



CB 0 0
2
∑

i=1
CAi−1B CB 0

3
∑

i=1
CAi−1B

2
∑

i=1
CAi−1B CB

4
∑

i=1
CAi−1B

3
∑

i=1
CAi−1B

k−m+1
∑

i=1
CAi−1B

...
...

...
p
∑

i=1
CAi−1B

p−1
∑

i=1
CAi−1B

p−m+1
∑

i=1
CAi−1B


(16)

where Yp(k + 1 | k), k = 1, 2, 3 . . . p.
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2.3.2. Constraints

For generators and energy storage batteries, the available power mainly depends on
their rated capacity, so the constraints of diesel engines and energy storage batteries during
frequency regulation can be expressed as{

PDU,min − PDU ≤ ∆UDU(k) ≤ PDU, max − PDU
PBESS,min − PBESS ≤ ∆UBESS(k) ≤ PBESS,max − PBESS

(17)

where PDU,min, PDU, max , PBESS,min, and PBESS,max are the upper and lower power limits of
the diesel engine and energy storage unit, respectively. PDU , PBESS is the upper dispatch
power value at the current moment.

The available power for the WTs and PVs is dependent on the maximum power and
deloading level d%. In this paper, a 10% deloading level is chosen for each WT and PV. The
estimation method for the maximum available power is provided in [36].

The available frequency regulation power constraints of the WT and PV generating
sets are set as {

−d%PMAP,WT ≤ ∆UWT(k) ≤ d%PMAP,WT
−d%PMAP,PV ≤ ∆UPV(k) ≤ d%PMAP,PV

(18)

where PMAP,PV and PMAP,WT are the maximum available power of the PV and WT, respec-
tively. d% is the deloading level. ∆UPV(k) and ∆UWT(k) are the available power of the PV
and WT, respectively.

2.3.3. Optimization Target

The optimization objectives of the MPC control are set as follows:

J(x(k), ∆U(k)) =
∥∥Γyx(k + 1 | k)

∥∥2
+ ‖Γu∆U(k)‖2 (19)

The objective function includes state variables and control variables, which can be
optimally solved by considering these two sets of variables, where Γy and Γu are the weight
matrices of the state variable and output variable, respectively.{

Γy = diag
{

α α α · · · α
}

Γu = diag
{

βPV1 βPV2 βWT1 βWT2 βDU βBESS
} (20)

where Γy is used to penalize the system frequency deviation and Γu is used to penalize the
control output, i.e., the output power of the generation unit; α and β are the corresponding
penalty factors.

To make full use of renewable energy, it is better to prioritize the output power of the
RESs participating in frequency regulation. We set the penalty factors of the PVs and WTs
to be lower than those of the battery and diesel units. In this paper, α = 1.395; the wind and
photovoltaics had a penalty factor of βWT = βPV = 0.2432, and the diesel unit and battery
had a penalty factor of βDU = βBess = 0.3236.

The diesel and storage units have a larger penalty factor than the WTs and PVs. This
treatment can prioritize the wind and photovoltaic units for participation in secondary
frequency regulation.

2.3.4. Constraint-Containing Optimization Problem Solving

Due to the existence of constraints, the optimal solution of the objective function
cannot be directly obtained. Therefore, it is necessary to convert the MPC optimization
problem with variable constraints into a quadratic programming problem. The prediction
equation is brought into the objective function and, for the optimization problem, the
objective function is simplified as:

J = ∆U(k)T(STΓT
y ΓyST + ΓT

u Γu)∆U(k)− (2STΓT
y ΓyEp(k + 1 | k))

T
∆U(k) (21)
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Converting the constraints into inequality form, we obtain:

C∆U(k) ≥ B(k + 1|k) (22)

To solve the optimization problem in quadratic programming form, we define new
variables, i.e., where R is the reference value matrix.

ρ =

[
Γy
(
Yp(k + 1)− R(k + 1)

)
Γu∆U(k)

]
(23)

The optimization problem then becomes min ρTρ, and the extreme value condition of
ρTρ = (Az − b)T(Az − b) is derived from the derivative to obtain the extreme value solution.

Z∗ = (AT A)
−1

ATb (24)

The optimal control sequence that is obtained by solving is as follows:

∆U∗(k) = Kmpc(0−Yp(k + 1 | k)) (25)

Kmpc =
(
ST

B ΓT
y ΓySB + ΓT

uΓu

)−1
ST

B ΓT
y Γy (26)

Only the first element of the optimal control sequence is taken as the control output.
Based on the above discussion, the flow chart of the MPC controller designed in this

paper is shown in Figure 7.
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Figure 7. MPC control flow chart.

The state observer obtains the current system state X(k|k) according to the input
system output Y(k|k) and control command U(k|k) and passes it to the MPC controller.
The MPC controller predicts the system state in the prediction time domain through the
prediction model according to the current state. The optimization is solved according to the
optimization objective and set real-time variable constraints. The first control command in
the optimal control sequence is sent to the control object to complete the optimal control.

2.4. Equivalent Load and Wind Power, Photovoltaic, Load Uncertainty Modeling

To facilitate analysis, the WT and PV output power can be equivalent to a ‘negative’
load. The equivalent load power of the system is the difference in power between the load
and PV as well that of the WT power. The equivalent load power of the system is

∆PE = ∆PL − ∆PW − ∆PS (27)
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where ∆PE is the equivalent load power of the system, ∆PL is the load power, ∆PW is the
WT power, and ∆PS is the PV power. The equivalent load perturbation is represented as an
unknown input perturbation by the B array. The specific values are shown in Appendix A.

The wind speed, irradiance, and system load fluctuate. In this study, the wind speed,
irradiance, and load are obtained according to statistical rules.

Irradiance is usually approximated to obey the lognormal distribution. The probability
distribution function is as follows:

f (It|µt, σt) =
1

Itµt
√

2π
exp(

−(ln It − σt)
2

2σ2
t

) (28)

where It is the solar irradiance at time t and µt, σt is the parameter of the lognormal
distribution function.

Wind speed is described as the three-parameter Burr distribution function, which is
expressed as

f (vt|at, ct, kt) =
( ktct

at
( vt

at
)ct−1)

(1 + ( vt
at
)ct)

kt+1 (29)

where vt is the wind speed at time t;at, ct, kt are the scale parameter, first shape parameter,
and second shape parameter of the Burr distribution at time t, respectively. According to the
generated wind speed and irradiance data, the output power of the WT and PV is obtained.

The load fluctuation can be expressed by the normal distribution function that is
shown in the following equation:

f (P) =
1√

2πσp
exp(−

(P− µp)
2

2σ2
p

) (30)

where σp is the standard deviation of active power; µp is the mean value of active power.
Details of the probabilistic model and the remaining parameters can be found in [37].

3. Results

To verify the effect of the proposed control strategy, according to Figure 1, this paper
built a simulation model of a microgrid consisting of wind turbines and photovoltaic,
diesel, and energy storage batteries. The traditional PI control, conventional MPC control,
and proposed MPC control are the three control methods used for secondary frequency
regulation. In the study, all parameters are normalized.

3.1. Wind Speed, Solar Irradiance, and Load Fluctuation Scenarios

According to the probability model proposed in Section 2.4, take µt = 0.01 σt = 0.02
at = 2.15, ct = 2, kt = 0.5 σp = 0.08 µp = 0. The generated RESs/DGs power data and
equivalent load are shown in Figure 8.
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Figure 9 shows the observation results of the decoupled observer and observation
error. Figure 9a shows the observed results of the equivalent load perturbations. In the
equivalent load fluctuation smooth range, which ranges from 160 s to 180 s, the observation
performance is accurate. In the high fluctuation range, which ranges from 40 s to 80 s, the
observation performance is degraded. This means that the observation error is 1%. Overall,
the observed value for the proposed observer is close to the real value, although the load
perturbations quickly vary.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 23 
 

 

0

−0.05

−0.1

0.05

0.1

−0.15

Times (s)
20 40 60 80 100 120 140 1600 180

estimation valueequivalent load disturbance estimation error

ΔP
 [p

.u
.]

 
(a) 

0

−0.01

−0.02

−0.03

−0.04

0.01

0.02

Times (s)

20 40 60 80 100 120 140 1600 180

estimation valuesystem state estimation error

x6
 [p

.u
.]

 
(b) 

0
−0.02

−0.06

−0.1

0.02

0.06

Times (s)

20 40 60 80 100 120 140 1600 180

estimation valuesystem state estimation error

x9
 [p

.u
.]

0
1
2

−1

510−×

 
(c) 

Figure 9. Cont.



Electronics 2023, 12, 3972 13 of 22Electronics 2023, 12, x FOR PEER REVIEW 14 of 23 
 

 

0
−0.01

−0.03

−0.05

0.01

0.05

0.03

Times (s)

20 40 60 80 100 120 140 1600 180

estimation valuesystem state estimation error

x1
1 [

p.
u.

]

 
(d) 

Figure 9. (a) Equivalent load estimation value; (b) system state 6x  estimation value; (c) system state 

9x  estimation value; (d) system state 11x  estimation value. 

Figure 10 is the power instruction value of the controller.  
The upper and lower limits of power of the diesel engine and energy storage battery 

are fixed; however, due to the fluctuations in the irradiance and wind speed, the upper 
and lower limits of PV and WT fluctuate. 

Observing Figure 10, we see that the output of the PI controller is proportionally dis-
tributed to the DGs. The output power of each DG is approximate. 

While there are two MPC controls, by solving the quadratic programming problem, 
the optimal power of each DG is obtained. Due to the setting of the weight coefficient, the 
outputs of PV and WT will be higher than that of the diesel engine and energy storage 
battery. Across some time periods, such as from 10 s to 30 s, the PV and WT outputs reach 
their maximum values but do not cross the limit due to the real-time variable constraint 
setting. 

PV min PV max MPC+UIO MPC PI

Times (s)
20 40 60 80 100 120 140 1600 180

0.05

0.1

−0.05

−0.1

0

ΔU
PV

 [p
.u

.]

 
(a) 

Figure 9. (a) Equivalent load estimation value; (b) system state x6 estimation value; (c) system state
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Figure 9b shows the observation results of x6, that is, the output power of the WT.
Figure 9c shows the observation results of x9, that is, the output power of the energy storage
battery, and Figure 9d shows the observation results of x11, that is, the diesel engine angular
velocity. x6 is the output of the second-order system, and x9 is the output of the first-order
system; it can be seen that, compared with the second-order system, the observer has a
better observation effect on the first-order system.

Figure 10 is the power instruction value of the controller.
The upper and lower limits of power of the diesel engine and energy storage battery

are fixed; however, due to the fluctuations in the irradiance and wind speed, the upper and
lower limits of PV and WT fluctuate.

Observing Figure 10, we see that the output of the PI controller is proportionally
distributed to the DGs. The output power of each DG is approximate.

While there are two MPC controls, by solving the quadratic programming problem,
the optimal power of each DG is obtained. Due to the setting of the weight coefficient, the
outputs of PV and WT will be higher than that of the diesel engine and energy storage
battery. Across some time periods, such as from 10 s to 30 s, the PV and WT outputs reach
their maximum values but do not cross the limit due to the real-time variable constraint
setting.

Figure 11 is the frequency response result of Case 1.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 23 
 

 

0
−0.01

−0.03

−0.05

0.01

0.05

0.03

Times (s)

20 40 60 80 100 120 140 1600 180

estimation valuesystem state estimation error
x1

1 [
p.

u.
]

 
(d) 

Figure 9. (a) Equivalent load estimation value; (b) system state 6x  estimation value; (c) system state 

9x  estimation value; (d) system state 11x  estimation value. 

Figure 10 is the power instruction value of the controller.  
The upper and lower limits of power of the diesel engine and energy storage battery 

are fixed; however, due to the fluctuations in the irradiance and wind speed, the upper 
and lower limits of PV and WT fluctuate. 

Observing Figure 10, we see that the output of the PI controller is proportionally dis-
tributed to the DGs. The output power of each DG is approximate. 

While there are two MPC controls, by solving the quadratic programming problem, 
the optimal power of each DG is obtained. Due to the setting of the weight coefficient, the 
outputs of PV and WT will be higher than that of the diesel engine and energy storage 
battery. Across some time periods, such as from 10 s to 30 s, the PV and WT outputs reach 
their maximum values but do not cross the limit due to the real-time variable constraint 
setting. 

PV min PV max MPC+UIO MPC PI

Times (s)
20 40 60 80 100 120 140 1600 180

0.05

0.1

−0.05

−0.1

0

ΔU
PV

 [p
.u

.]

 
(a) 

Figure 10. Cont.



Electronics 2023, 12, 3972 14 of 22Electronics 2023, 12, x FOR PEER REVIEW 15 of 23 
 

 

−0.05

0

−0.1

0.05

0.1

Times (s)
20 40 60 80 100 120 140 1600 180

WT min WT max MPC+UIO MPC PI

ΔU
W

T [
p.

u.
]

 
(b) 

Times (s)
20 40 60 80 100 120 140 1600 180

0

0.1

−0.1

0.05

−0.05

BESS max BESS min MPC+UIO MPC PI

ΔU
B

ES
S [

p.
u.

]

 
(c) 

DU max DU min MPC+UIO MPC PI

Times (s)
20 40 60 80 100 120 140 1600 180

0

0.1

0.05

−0.1

−0.05

ΔU
D

U
 [p

.u
.]

 
(d) 

Figure 10. Controller instruction value in Case 1. (a) PV power output, (b) WT power output, (c) 
energy storage output, (d) diesel engine output. 

Figure 11 is the frequency response result of Case 1.  
As seen in Figure 11, among the three control methods, two MPC methods had a 

better frequency control effect than the PI control because MPC uses real-time rolling op-
timization and can optimally distribute the restorative power between all DGs. The pro-
posed control method has the best frequency response because the used unknown input 
observer has an accurate observed value that is beneficial for model prediction in the 

Figure 10. Controller instruction value in Case 1. (a) PV power output, (b) WT power output,
(c) energy storage output, (d) diesel engine output.



Electronics 2023, 12, 3972 15 of 22

Electronics 2023, 12, x FOR PEER REVIEW 16 of 23 
 

 

prediction time domain. The standard deviation of the PI control is 7.174 × 10−3, MPC is 
5.232 × 10−3, and UIO + MPC is 3.651 × 10−3.  

310−×

1

0.5

0

−0.5

−1

1.5

−1.5

20 40 60 80 100 120 140 1600 180
Times (s)

MPC
MPC+UIO

PI

Fr
eq

ue
nc

y 
[p

.u
.]

 
Figure 11. System frequency in Case 1. 

3.2. Severe Fluctuation Scenarios of Wind Speed, Solar Irradiance, and Load 
In some severe weather conditions, wind speed and solar irradiance may rapidly 

change, such as through the rapid shading of clouds, sudden changes in wind speed, etc. 
Take 0.01tμ = 0.05tσ = 1.22, 1.1, 2t t ta c k= = = 0.15pσ = 0pμ = . This generates a set of fluctu-
ations and more violent random perturbations, and the data are shown in Figure 12 below. 

loadPΔ pvPΔ wtPΔ EPΔ

Times (s)

20 40 60 80 100 120 140 1600 180

0

0.1

−0.1

−0.2

−0.3

0.2

ΔP
 [p

.u
.]

 
Figure 12. Random disturbance of the WTs, PVs, loads, and equivalent load. 

As shown in Figure 13, although the fluctuation is intensified, the observer can still 
obtain an accurate estimate. The average observation error is 1.5%. The observation effect 
of the first-order system is better than that of the second-order system. 

Figure 11. System frequency in Case 1.

As seen in Figure 11, among the three control methods, two MPC methods had a better
frequency control effect than the PI control because MPC uses real-time rolling optimization
and can optimally distribute the restorative power between all DGs. The proposed control
method has the best frequency response because the used unknown input observer has
an accurate observed value that is beneficial for model prediction in the prediction time
domain. The standard deviation of the PI control is 7.174 × 10−3, MPC is 5.232 × 10−3, and
UIO + MPC is 3.651 × 10−3.

3.2. Severe Fluctuation Scenarios of Wind Speed, Solar Irradiance, and Load

In some severe weather conditions, wind speed and solar irradiance may rapidly
change, such as through the rapid shading of clouds, sudden changes in wind speed, etc.
Take µt = 0.01 σt = 0.05 at = 1.22, ct = 1.1, kt = 2 σp = 0.15 µp = 0. This generates
a set of fluctuations and more violent random perturbations, and the data are shown in
Figure 12 below.
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Figure 12. Random disturbance of the WTs, PVs, loads, and equivalent load.

As shown in Figure 13, although the fluctuation is intensified, the observer can still
obtain an accurate estimate. The average observation error is 1.5%. The observation effect
of the first-order system is better than that of the second-order system.
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Similarly, the traditional PI control allocates the recovery power proportionally to
each DG. Subfigures a–d show that the PV and WT reach saturation at many time points.
However, the MPC control is the optimal control under the constraint; the MPC will increase
the output of other DGs when some RESs reach the power limit. Therefore, in this time
frame, the output powers of the diesel and storage battery will be increased appropriately
to ensure frequency regulation performance.

Figure 15 is the frequency response result of Case 2. Among the three control methods,
the proposed method has the best frequency control effect. The standard deviation of the
PI control is 9.817 × 10−3, MPC is 7.613 × 10−3, and the UIO + MPC is 4.612 × 10−3.

Figure 14 is the output of the controller in Case 2.
To reflect the performance of the proposed controller more intuitively in the secondary

frequency regulation control response, Table 3 depicts the maximum frequency deviation
and standard deviation of the three controllers.
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Table 3. Frequency control effects of the three controllers.

Control Method Standard Deviation Maximum Error Unit

Case 1
PI 7.174 × 10−3 1.56 × 10−3 p.u.

MPC 5.232 × 10−3 1.22 × 10−3 p.u.
MPC + UIO 3.651 × 10−3 0.71 × 10−3 p.u.

Case 2
PI 9.817 × 10−3 2.73 × 10−3 p.u.

MPC 7.613 × 10−3 1.94 × 10−3 p.u.
MPC + UIO 4.612 × 10−3 0.84 × 10−3 p.u.

4. Conclusions

This paper proposes an MPC microgrid secondary frequency control method by
incorporating an unknown input observer. RESs adopt a deloading VSG control and
participate in centralized secondary frequency regulation. The proposed unknown input
observer, when decoupled, observes the unknown equivalent load input and system
state, respectively.

Compared with the conventional PI control, the results show that the proposed con-
troller reduces the standard deviation by 49% in the case of small perturbations and by
53% in the case of large perturbations. Benefiting from the improvement in the observation
effect, when compared with the normal MPC control, the results show that the proposed
controller reduces the standard deviation by 31% in the case of small perturbations and by
38% in the case of large perturbations.

The proposed method improves the insufficient inertia of the RES high-permeability
microgrid and enables the RESs to participate in secondary frequency regulation. The
unknown input observers improve the observation accuracy, thus improving the control
effect of MPC. The MPC controller gives priority to the RES output, which reduces the
consumption of the energy storage battery and diesel engine. The proposed control strategy
in this paper has a better control effect on microgrid frequency control.

In this paper, the influence of randomness on the MPC algorithm is not considered; this
may affect the control effect of the controller. In subsequent research, the stochastic model
predictive control method will be studied to further enhance the frequency control effect
under the high stochastic power perturbation scenario, for example, in chance-constrained
MPC and tree-based MPC applications.
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