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Abstract: The Proportional-Integral-Derivative (PID) controller, a fundamental element in industrial
control systems, plays a pivotal role in regulating an extensive array of controlled objects. Accurate
and rapid adaptive tuning of PID controllers holds significant practical value in fields such as
mechatronics, robotics, and automatic control. The three parameters of the PID controller exert a
substantial influence on control performance, rendering the tuning of these parameters an area of
significant interest within related research fields. Numerous tuning techniques are widely employed
to optimize its functionality. Nonetheless, their adaptability and control stability may be constrained
in situations where prior knowledge is inadequate. In this paper, a multi-phase focused PID adaptive
tuning method is introduced, leveraging the deep deterministic policy gradient (DDPG) algorithm
to automatically establish reference values for PID tuning. This method constrains agent actions
in multiple phases based on the reward thresholds, allowing the output PID parameters to focus
within the stable region, which provides enhanced adaptability and maintains the stability of the
PID controller even with limited prior knowledge. To counteract the potential issue of a vanishing
gradient following action constraints, a residual structure is incorporated into the actor network. The
results of experiments conducted on both first-order and second-order systems demonstrate that the
proposed method can reduce the tracking error of a PID controller by 16–30% compared with the
baseline methods without a loss in stability.

Keywords: multi-phase constraints; action focusing; PID adaptive tuning; deep deterministic policy
gradient; residual structure

1. Introduction

In this section, the characteristics and control methods of PID controllers are intro-
duced, leading to the introduction of the methods for controlling PID controllers using
reinforcement learning. Related works are also discussed here. Finally, the main contribu-
tions are summarized in light of the above content.

1.1. Motivation

PID controllers are widely used in industrial process control, with over 90% of appli-
cations relying on this simple yet highly effective controller design [1,2]. PID controllers
are typically designed by tuning the parameters Kp, Ki, and Kd [3]. However, as linear
controllers, PID controllers have limitations in achieving sophisticated control [4] because
of parameter tuning often relying on the guidance of empirical data [5], which makes accu-
rate PID parameter tuning difficult for complex systems. Developing adaptive parameter
tuning PID controllers that can adapt to multiple task scenarios has become one of the key
research topics in the field of control [6,7].

PID parameters can be optimized using two main methods: classical tuning meth-
ods and optimization methods [8,9]. Classical methods often rely on heuristic tuning
or model construction to address specific engineering challenges [10]. However, these
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methods, such as the Ziegler–Nichols method [11] and the Cohen–Coon method [12], make
assumptions about the underlying model or attempt to estimate the best approximation
of the PID parameters [13]. Therefore, small deviations from the model assumptions may
result in significant discrepancies between the predicted and actual system behavior. Opti-
mization methods can obtain optimal PID parameters by precisely modeling the problem.
Studies [14–16] show that optimization methods can obtain optimal PID parameters by
accurately modeling the problem. Nevertheless, an accurate model is often difficult to
obtain in practical engineering problems. As a consequence, developing PID adaptive
tuning methods that can adapt to a wide range of task scenarios remains a major research
challenge in the control field.

Neural network techniques, which provide a high-dimensional mapping relationship
between inputs and outputs as supervised learning issues, are important techniques for PID
adaptive tuning. Neural networks have been shown to outperform some other intelligent
methods in terms of PID adaptive tuning [17,18]. However, again, collecting the right data
labels can be challenging in actual engineering problems [19].

To address the limitations in supervised learning, this paper attempts to apply reinforce-
ment learning (RL)—a model-free method—to PID adaptive tuning, as it allows agents to
identify optimal behavior through trial-and-error interactions with the environment [20,21].
Unlike neural network methods, RL methods do not require labeled data; instead, agents
interact with environments and modify their exploration policies through reward functions
to find the optimal policy. Our goal is to utilize an agent that is allowed to explore freely
in the environment to determine the optimal PID parameters without the use of an engi-
neering model. However, the instability and windup phenomena [22] caused by the use
of a truly random exploration are obviously unacceptable. Therefore, many studies guide
the exploration of the agent by pre-setting empirical PID parameters based on engineering
experience as reference values. In this work, the aim is to automatically establish and
modify PID reference values throughout the execution process to ensure stability in the
absence of prior knowledge. PID parameter tuning is characterized by its continuous
correspondence with tracking performance [11] within the boundary conditions, where
a small change in parameters does not cause a significant change in control effect. This
feature provides guidance for balancing exploration and exploitation when using RL to
solve the problem of PID adaptive tuning. When the PID output reaches a certain level of
control, the agent’s policy is constrained and guided, which helps to further improve the
performance of the PID controller without causing output oscillation.

1.2. Related Works

Recently, RL-based methods have been widely applied in the field of PID parameter
tuning. The authors of [23] proposed the application of RL to PID controller design to
improve the performance of agents in OpenAI, and the average total number of control
steps per episode from episode 5000 to episode 6000 was reduced by more than 5%. The
authors of [24] developed an RL-based PID tuning method called continuous actor–critic
learning automata (CACLA) for human-in-the-loop physical assistive control. In another
study [25], the authors addressed the problem of simultaneously outputting multiple
parameters in PID controllers based on an RL framework. Ref. [26] proposed an expert
agent-based system based on RL for self-adapting multiple low-level PID controllers in
mobile robots.

Nevertheless, in the above-cited works, the agent’s policy is more focused on explo-
ration in the early phases of iteration, resulting in excessive PID output amplitude and
integral saturation, which can destabilize the system. Aiming at the closed-loop stability of
RL-based PID tuning methods, the authors of [27] expressed a PID controller as a shallow
neural network of the actor network, and improved the stability of the PID controller.
The results show that the moving average of the number of time steps per episode before
the PI controller was reduced by nearly 50%. Ref. [10] proposed an RL-based stability-
preserving PID adaptive tuning framework that guarantees the controller’s stability in the
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entire closed-loop process and found that this approach reduced the MSE tracking error by
more than 10% compared with other methods. However, this method requires a known set
of PID parameters as reference values to guide the agent’s exploration. Ref. [19] initialized
all the PID parameters to 0 without prior knowledge based on simultaneous calculation of
the policy and value function using the RBF network, but this method lacks universality as
the network topology is tailored to a specific system.

Based on the analysis presented above, the aim of our research is to develop an RL-
based PID adaptive tuning framework that can be applied to various systems with limited
prior knowledge while ensuring PID controller stability and improved tracking perfor-
mance. To mitigate the risk of instability, this paper intends to regulate the action of the agent
by constraining its exploration, drawing inspiration from the theory of constraint reinforcement
learning [28]. This is achieved by imposing instantaneous constraints on the agent’s actions,
a technique for which a theoretical framework has been proposed in the literature [29]. By
incorporating explicitly constrained or softly penalized constraint violations [30], the agent
can achieve the desired result while avoiding unstructured exploration.

1.3. Main Contributions

In this work, a multi-phase focused deep deterministic policy gradient (MF-DDPG)
framework for PID adaptive tuning was proposed. The method ensures the stability of
the PID controller in the closed-loop system under limited prior knowledge conditions by
focusing on the agent actions in phases, while achieving fast convergence performance and
better control effect. The main contributions of our work can be summarized as:

1. To balance exploration and exploitation in RL-based PID adaptive tuning, a multi-
phase focused PID parameter adaptive tuning framework was proposed based on
RL. To ensure the agent’s output PID parameters remain within the stable region,
the agent’s action exploration is constrained to remain close to a corresponding
reference value of the PID parameters during each phase, a reference value that is then
adjusted when the agent performance satisfies a preset reward threshold condition.
In this framework, the PID parameter search space is continuously refined from coarse
to fine across the training phases, leading to a near-monotonic improvement in the
PID parameters’ performance.

2. To solve the problem of obtaining a reference value for PID adaptive tuning under
the constraint of limited prior knowledge, a mechanism to automatically determine
a reference value of the PID parameters was introduced in the multi-phase focusing
process. At each phase, the agent automatically establishes a reference value of the
PID parameters based on the current phase’s reward threshold and explores within a
certain range around this reference value. The reference values established in different
phases provide a baseline for the tracking performance of the PID controller, ensuring
that the PID controller continuously focuses on improving control performance. The
proposed method achieves impressive control performance without prior knowledge
of the precise reference values of the PID parameters.

3. To address the challenge of a vanishing gradient, which can arise when constraining
the output of the actor net of the proposed algorithm, a residual structure was added
to the actor net. After applying multi-phase action constraints, the numerical space of
the output for the actor net in RL is compressed, leading to a small range of output
changes that may cause the gradient to vanish during back-propagation, hindering
agent exploration. To overcome this issue, a residual structure was introduced from
the shallow layer to the deeper layer of the actor net, preventing the gradient from
vanishing and enabling the agent to maintain a certain level of exploration even after
multiple action constraints.

1.4. Paper Organization

The outline of the paper is as follows. Section 2 describes the preliminary stages of our
work. Section 3 is the description of the proposed MF-DDPG framework for adaptive PID
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tuning, and the stability maintaining mechanism of the framework. Section 4 provides the
experimental results and analysis of the method. Section 5 is the conclusion of the work.

2. Preliminary Work

In this section, the principles and structure of PID controllers are introduced, as well as
the foundational knowledge related to reinforcement learning algorithms. Building upon
this foundation, the multi-phase focused framework is introduced and a detailed analysis
is provided of its principles and workflow.

2.1. PID Control

PID controllers can be divided into two main types: series PID and parallel PID
controllers [11]. In series PID controllers, the parameters are coupled, whereas in paral-
lel PID controllers, the three PID parameters are decoupled. The latter approach offers
easier tuning and wider applicability. Therefore, this paper primarily focuses on parallel
PID controllers:

u(t) = Kpe(t) + Ki

∫ t

0
e(t) + Kd

de(t)
dt

(1)

where e(t) = s(t)− y(t) is the difference between the setpoint s(t) and the output y(t).
Equation (1) represents the PID control system in continuous form; however, in many
applications, PID controllers are stated in terms of discrete time conditions, as demonstrated
in (2):

u(tn) = Kpe(tn) + Ki I(tn) + KdD(tn) (2)

where I(tn) = ∑n
i=1e(ti)4 t and D(tn) =

e(tn)−e(tn−1)
4t are the integrated and differentiated

errors of a discrete PID controller, respectively, in which 4t > 0. This paper focuses on
investigating PID controllers based on Equation (2) and more specifically, how to address
the integral saturation issue during the adjustment of PID controllers. Actuator saturation
is a common problem that can cause instability in PID controllers. When a PID controller
saturates, it can become an open-loop system [27], causing system errors to accumulate and
leading to a loss of stability known as “windup”. To mitigate the effects of windup, many
studies have employed anti-windup techniques [22]. These techniques involve setting
upper and lower bounds for the controller’s output to prevent the accumulation of integral
terms by accounting for saturation, as shown below:

sat(u) =


umin, i f u < umin

u, i f umin < u < umax

umax, i f u > umax

. (3)

According to (3), when the output is lower than the lower bound, the controller will
take umin as the output, and when the output is higher than the upper bound, it will
take umax as the output. This may prevent a build up in the integrator incremental error
accumulation [27]. Naturally, this is a fundamental technique for preventing integral
saturation, and this paper will further develop it, as will be covered in more depth later.

2.2. Deep Deterministic Policy Gradient Algorithm

The Markov Decision Process (MDP) is the foundation of RL [31], which defines a
mathematical model of sequential decision-making where the current state depends only
on the preceding state and action [32]. The MDP definition is satisfied for PID tuning as the
PID output error from the previous step is the input for the next step. RL consists of four
components: state sk ∈ S , action ak ∈ A, policy, and reward R. PID parameter tuning is
equivalent to an agent’s random exploration of the environment, where various reward
functions correspond to the outputs of different parameters. The policy maps the state
sk and action ak to an action probability distribution π(ak|sk), while the agent receives a
reward rk for the action ak it took in the current state sk. The transition from one state to
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the next state st+1 occurs with a certain transition probability p(st+1|st, at) based on the
action at taken in the current state st (Figure 1). Here, t represents the time step during an
episode with a duration of T, where the agent takes one step at each time step. The st, at,
and rt corresponds to the state, action, and reward values, respectively, resulting from the
interaction between the agent and the environment at time t. The goal of RL is to maximize
the return by identifying the optimal parameters.

Figure 1. Iterative interaction between agents and environments.

In the context of RL, a policy can be categorized into two forms: deterministic or
stochastic. For the PID parameter tuning problem, the parameters output by the agent are
in continuous vector form, making it more appropriate to use a deterministic policy [33].
Therefore, in the current work, the deep deterministic policy gradient (DDPG) algorithm
was used as the foundation of the research framework. The paper defines the cumulative
reward over a policy trajectory with a finite number of steps, and aims to maximize the
expected cumulative discounted reward starting from a certain state:

J(π) = Eτ∼π(
T

∑
t=0

γtrt) (4)

where τ represents the trajectory of the sampled policy, ∑T
t=0 γtrt is the discounted return

starting at t = 0. In order to maximize J(π), the policy is parameterized with θ and solved
by a neural network. Equation (4) can be rewritten as

J(πθ) = Eτ∼πθ
(

T

∑
t=0

γtrt). (5)

Through gradient ascent, the optimization objective becomes

θ ← θ + α5θ J(πθ) (6)

where α is the learning rate. A policy-based method provides a more direct solution than a
value-based method. However, due to the strong randomness of the policy and significant
variance in the network updating process, it can be difficult to obtain the best solution.
To estimate the action value function, a critic network is used in a value-based optimization
network. With parameterized value function approximation, the actor parameter θ is used
for the policy network, while the critic parameter ω is used for the value network, forming
an Actor–Critic (AC) structure. According to the policy gradient theorem [34], the policy
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parameters can be updated by following the gradient of the expected reward with respect
to the policy parameters

5θ J(πθ) = Eτ∼πθ

T

∑
t=0
5θ log πθ(at|st)Qω(at, st) (7)

where Qω(at, st) represents the value function of action at in state st [31,35]. For a deter-
ministic policy given as µω : S → A, every action value is computed by

at = µ(st|θt) +Nt (8)

without sampling from stochastic policies, where Nt is stochastic noise introduced to
encourage exploration. The DDPG algorithm is commonly used to facilitate agent explo-
ration in continuous action spaces. The algorithm establishes Q-value nets Q(s, a|ω) and
corresponding target nets Q

′
(s, a|ω′) for the critic network, as well as policy nets µ(s|θ)

and corresponding target nets µ
′
(s|θ′) for the actor network. To reduce correlations be-

tween samples, a replay buffer D is utilized to store previously sampled data (si, ai, ri, si+1).
For updating the networks’ parameters, a random batch N of transition experiences is
selected from D. Based on the method outlined in [33], the critic network is updated by
minimizing the MSE loss of

L =
1
N ∑

i
(yi −Q(si, ai|ω))2 (9)

where yi = ri + γQ
′
(si+1, µ

′
(si+1|θ

′
)|ω′) is computed by target nets. The actor network is

updated by

5θ J ≈ 1
N ∑

i
5aQ(s, a|ω)|s=si ,a=µ(si)

5θ µ(s|θ)|si . (10)

The networks iteratively update the parameters according to (9) and (10) until
convergence.

3. Multi-Phase Focused PID Adaptive Tuning with DDPG

In this section, the methodology for utilizing MF-DDPG to automatically update the
parameters of PID controllers is introduced and the proposed method for PID adaptive
tuning using RL is described. Figure 2 illustrates the framework of the proposed method,
showing the coupling mechanism between the PID controller and the multi-phase focused
RL algorithm. The proposed method is based on multi-phase action constraints that restrict
the agents’ exploration to a maximum within the stable region by imposing constraints and
gradually focusing actions. This method requires only approximate knowledge of the PID
parameters’ range, without the need to establish a reference value for them. The reference
value is automatically determined along with the switching of the corresponding phases.

1. Environment and agent: The PID closed-loop control operation serves as the environ-
ment for the agent, and each step where the PID controller completes a full closed-loop
control is an interaction between the agent and the environment. The resulting expe-
rience data < st, at, rt, st+1 > are stored in the replay buffer. By iteratively learning
the agent’s initial random exploration policy, RL aims to eventually learn the envi-
ronment’s distribution and guide the agent’s exploration towards the optimal policy.
To update the critic and actor networks, a set of experience data < si, ai, ri, si+1 >
are randomly selected from the replay buffer every K iterations. The updated actor
network then computes the next action at+1 based on the current state st of the agent,
which corresponds to the parameters of the subsequent PID closed-loop operation.

2. State and action: The state represents the information obtained by the interaction
between the agent and the environment. The agent obtains the reward rt by evaluating
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the current state st. In the PID control problem, many studies [36,37] take the entire
episodic trajectories of inputs and outputs of t-th closed-loop operation

yt = [yt
0, yt

1, yt
2, . . . , yt

L]
T , ut = [ut

0, ut
1, ut

2, . . . , ut
L]

T (11)

and
st = [yt, ut]

T (12)

as the state, where L represents the maximum number of time steps of the episodic
trajectories. Yet this will introduce the problem of overly high-dimensional inputs
to the RL networks. In another study [10], episodic data are described as a state
customized to equal the time step, reducing the input dimension, but still potentially
resulting in information redundancy. Our observations show that the early stages
of the control process exhibit significant output fluctuations, while the output value
stabilizes progressively towards the setpoint in the later stages, known as the tuning
characteristic of PID control. To capture the impact of the episode’s setting, the time
frame with the most pronounced output fluctuations was selected, representing the
state of each episode with the first H steps of the closed-loop process. Additionally,
in the early stages of exploration, the agent frequently explores the unstable interval
of PID parameters, leading to excessive closed-loop operation amplitude and output
oscillation, making the output oscillation in the first H steps more noticeable. To
address this issue, the system’s output from the previous H steps [yt

0, yt
1, yt

2, . . . , yt
H ]

T

was normalized and used as the state representation. This simplifies the agent state
and reduces network dimension while preserving the observed environmental infor-
mation. In each episode, the action at is the episodic PID parameters at = [Kt

p, Kt
i , Kt

d]
T ,

and action at is used to guide the episodic PID closed-loop operation.
3. Reward: To ensure effective control, the reward function of the PID controller should

be designed to have a positive correlation with its performance. In particular, the am-
plitude of the system output y(t) should be minimized, as illustrated in Figure 3,
and the output should converge to the setpoint rapidly. Accordingly, our reward func-
tion incorporates both the time steps and the error e(t) of the complete closed-loop
trajectories. The reward function is described as

rt = −
(

∑N
0 |et

n|
λ1

+ λ2N

)2

(13)

where et
n = yt

n − s(t), n = 0, 1, 2, 3, . . . , N, represents the n-th step of the t-th episodic
closed-loop operation. The weights of the error and time step in the reward function
are denoted by λ1 and λ2, respectively. By adjusting these weights, this paper can
comprehensively consider trajectory-based metrics of both the error e(t) and the
number of time steps N during the PID tuning process. This enables us to utilize
a trade-off between output amplitude and time steps in reward design. A smaller
amplitude of the output y(t) corresponds to a shorter time interval and a higher
reward. It is worth noting that all rewards r(t) are less than 0.

The proposed method utilizes the anti-windup method described in (3) to establish an
initial upper and lower bound for the vectors of Omax and Omin, respectively, for the PID
parameters. However, the output of the activation layer of the actor net does not necessarily
fall within the range of PID parameters, and directly constraining the actions through
normalization [38] compresses the action space and restricts the agent from fully exploring
the environment. Therefore, it is necessary to establish a comprehensive mapping between
the action interval and [Omin, Omax]. We define

at =
Omax −Omin

µ(s|θ)max − µ(s|θ)min
� (µ(st|θ) +Nt − µ(s|θ)min) + Omin (14)
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were O-U noise [35] is used as Nt. µ(s|θ)max and µ(s|θ)min are the upper and lowed
bounds of the activation function, respectively. To ensure comprehensive exploration by
the agent and guarantee stability of the closed-loop process, a linear mapping relationship
between the activation function output interval and the PID parameter interval can be
established. This linear relationship, represented by Equation (14), can be viewed as adding
an analogous linear activation layer to the actor network, thus leaving the calculation in
DDPG unaffected. This is regarded as the first phase of agent exploration. However, this
mapping alone may not ensure stability, and thus, the paper further constrains actions
based on various thresholds to ensure stability of PID adaptive tuning with RL. These
thresholds are established based on the reward function, and in this study, two thresholds,
Rth1 and Rth2, are set with Rth1 being smaller than Rth2, and the reference values for the PID
controller are automatically established each time the reward satisfies the criteria, allowing
the agent to continue exploring within a specific range of the reference values until the
algorithm converges. The reference value of the PID parameters is initialized as

B = [0, 0, 0]T . (15)

At the beginning of the algorithm, the agent takes actions according to (14) and obtains
the episodic tuple of experience < st, at, rt, st+1 >. Once at ti, if this satisfies rti ≥ Rth1, then
the reference value is set as

B = ati = [Kti
p , Kti

i , Kti
d ]

T . (16)

Once the new reference value of the PID parameters has been established, the action
constraints are switched to initiate the second phase of exploration. For Kti

p , Kti
i and Kti

d ,
the corresponding exploration ranges ψ1

p, ψ1
i and ψ1

d are set, respectively. The range of PID
parameters in the second phase is

[Kt
p, Kt

i , Kt
d]

T ∈ [(13 −Ψ)�B, (13 + Ψ)�B] (17)

where Ψ = Ψ1 = [ψ1
p, ψ1

i , ψ1
d]

T . Then the new mapping of the action to the PID parameters is

at =
2Ψ�B

µ(s|θ)max − µ(s|θ)min
� (µ(st|θ) +Nt − µ(s|θ)min) + (13 −Ψ)�B. (18)

Equation (18) indicates that the agent explores within a certain range of the current
reference value which guarantees a baseline performance and further ensures the stability
of PID closed-loop control based on the first phase. Similar to (14), the at in (18) also
satisfies a linear relationship with the µ(st|θ) of the actor network. By setting the threshold
Rth1, the agent is able to explore in the stable region of PID parameters. To obtain better
parameters and a more stable closed-loop tuning region, further constraining the agent’s
exploration space in the stable region is proposed based on the second phase. If the reward
rt at tj satisfies rtj ≥ Rth2, then B is set as

B = atj = [K
tj
p , K

tj
i , K

tj
d ]

T (19)

and the exploration range is Ψ = Ψ2 = [ψ2
p, ψ2

i , ψ2
d]

T . The constraint on the agent’s action
will then repeat (17) and (18) until convergence. The process of constraining the actions in
phases is similar to the focusing process of a camera. By focusing on the action through
constraints corresponding to Rth1, the PID parameters are stabilized within the stable
region, which corresponds to “coarse focusing”. Further constraints are applied to the
action when the threshold of Rth2 are met, so that the PID parameters are limited to smaller
parameter range, achieving a more refined control effect. This process corresponds to “fine
focusing”. Figure 4 illustrates the overall flowchart of the algorithm, and Algorithm 1
provides the pseudo-code of the proposed algorithm.
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Figure 2. Illustration of the multi-phase focused PID adaptive tuning with DDPG. The DDPG
algorithm framework is the basis of the whole algorithm. The agent calculates µ(st) through the actor
net, determines whether the constraint condition of phase-switching is satisfied after action mapping,
and outputs the corresponding action as PID control parameters. After the PID performs the whole
closed-loop control process, the output tuple < st, at, rt, st+1 > is stored in the replay buffer and the
process enters the next episode.

Figure 3. Illustration of the PID tuning curve. Line 1 has better performance than Line 0.
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Figure 4. Flow chart of multi-phase action constraint PID tuning with RL.

To reflect the proposed approach, corresponding modifications to the actor net and
critic net in the DDPG framwork were made. Before the action switching phases of ex-
ploration, the agent may enter the unstable region of the PID, resulting in a large output
amplitude that could cause the agent to fall into the saturated region of the tanh activation
function [39], as previously explained. To mitigate this issue during computation, a nor-
malization layer [40] was added before each layer of the network. Based on the principle of
gradient back-propagation [41] in neural networks, after focusing actions through multiple
phases, the output of the neural network changes very little, and, as a result, the gradient
update of the hidden layer can become very slow, particularly for shallow neural networks,
where the gradient can vanish entirely. To address this issue, a residual structure was
added from the first fully connected layer to the third fully connected layer for the actor
net (the actor net has a total of three fully connected layers). The network structure is
depicted in Figure 5. To represent the mapping relationship of two layers in a network,
denoted by F (X) where X is the output of the shallow network, a basic shortcut was
incorporated as a residual connection [42]. This results in the mapping relationship becom-
ing F (X) + X, and during gradient back-propagation, the partial derivative of F (X) + X
with respect to the shallow network parameters will not be 0, thus avoiding the issue of
gradients vanishing.

Remark 1. The proposed method circumvents the need for direct action constraints and instead
regulates the threshold setting through the reward function. Directly constraining the trajectory
of a closed-loop process to ensure exploration in the stable region is challenging due to the lack
of prior knowledge. The reward function, which is positively correlated with the stability of PID
adaptive tuning and incorporates both amplitude and time considerations, is used to adjust the
threshold value. As a result, this method allows for flexible and adaptable threshold setting based on
the reward function.
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(a) Actor network. (b) Critic network.

Figure 5. The structure of the actor and critic networks. LN is a normalization layer, FC is a fully
connected layer.

Algorithm 1 Multi-phase Focused DDPG-based PID Adaptive Tuning Algorithm

Input: Actor network parameters θ, critic network parameters ω, and the value range of
PID parameters [Omin, Omax];

Output: Action at of the agent, optimized θ and ω;
1: Initialize target nets µ

′
and Q

′
with weights θ

′ ← θ, ω
′ ← ω, PID reference value

B = [0, 0, 0], exploration range Ψ1 = [ψ1
p, ψ1

i , ψ1
d]

T , Ψ2 = [ψ2
p, ψ2

i , ψ2
d]

T , replay buffer D,
Switch = False;

2: for t = 0, 1, 2, . . . , T do
3: Reset the environment and receive initial observation state s0;
4: if Switch == False then
5: Compute at as given in (14);
6: else
7: Compute at as given in (18);
8: end if
9: Perform a complete PID closed-loop control process with parameter at, and receive

the next state st+1, reward rt;
10: if rt ≥ Rth1 then
11: Switch = True, B = at and stay still until rt ≥ Rth2 , Ψ = Ψ1;
12: if rt ≥ Rth2 then
13: B = at and remain unchanged, Ψ = Ψ2;
14: end if
15: end if
16: Store transition (st, at, rt, st+1) in buffer D;
17: Sample a batch of N transitions (si, ai, ri, si+1) from buffer D;
18: Compute the target Q value of each sampled transition: yi = ri + γQ

′
(si+1, µ

′

(si+1|θ
′
)|ω′);

19: Update critic network by minimizing the loss as given in (19);
20: Update actor network by one-step sampled gradient descent as given in (20);
21: Update target networks for every K steps (0 < τ < 1):

θ
′ ←− τθ + (1− τ)θ

′
, ω
′ ←− τω + (1− τ)ω

′

22: Set st = st+1;
23: end for

4. Experimental Results and Analysis

In this section, experimental validations of the proposed algorithm using both first-
order and second-order systems are conducted. The analysis of the experimental results
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demonstrates that the algorithm adequately achieves adaptive tuning of PID controllers
and significantly improves their performance.

4.1. Experiment Settings

In this section, the validation of the proposed method is presented using a first-order
system and a second-order system. The first-order system is modeled by

G(s) =
0.5

s + 1
(20)

and the second-order system is modeled by

G(s) =
1

s2 + 10s + 20
(21)

with initial condition y(0) = 0. The RL algorithm parameters used in the experiments are
presented in Table 1. To ensure a fair comparison, the PID parameter ranges for the first-
order system and the second-order system were set to Kp ∈ [0, 2], Ki ∈ [0, 1.5], Kd ∈ [0, 0.15]
and Kp ∈ [0, 100], Ki ∈ [0, 100], Kd ∈ [0, 30], respectively, based on their tuning character-
istics. The algorithm parameters were initialized based on the PID range, and the PID
parameters interval was kept within the predetermined range. Table 2 shows the proposed
algorithm’s parameters. The sample time for the first-order system and the second-order
system were set to 1 s and 0.01 s, respectively. At each sample, the system performs a
closed-loop operation to determine the error e(t) and system output y(t). The second-order
system has 50 times more closed-loop data in each episode than the first-order system due
to the different sampling rates. To facilitate further analysis, the reward weights of the two
systems, λ1 and λ2, were adjusted so that the rewards were of the same order of magnitude.
The paper also set the same exploration interval for Ψ1 and Ψ2 since the first-order and
second-order systems were not sensitive to differential setting of the exploration range
before and after the action range switching. Moreover, the exploration rate for Kd was
increased significantly over the rates for Kp and Ki to facilitate the experiment, as Kd has
a smaller range than Kp and Ki. Further parameter settings were made based on the PID
tuning experience model and the benchmark of the DDPG model.

Table 1. Parameters used for DDPG algorithm.

Parameters Actor Net Critic Net

Structure for networks [32, 16, 32, 1] [32, 16, 1]
Learning rate 0.001 0.001

Activation function tanh relu
Replacement factor τ 0.01 0.01

Optimization function Adam Adam
Memory size for replay buffer 2000

Batch size 32
Discount factor γ 0.9
Training length 3000

State dimension H 5

Table 2. Parameters of multi-phase focused PID adaptive tuning algorithm.

Parameters Values (1st) 1 Values (2nd) 1

Reward weights λ1 10 200
Reward weights λ2 0.1 0.001

Reward threshold Rth1 −10 −10
Reward threshold Rth2 −5 −5
Exploration range Ψ1 [0.15, 0.15, 0.2] [0.15, 0.15, 0.2]
Exploration range Ψ2 [0.15, 0.15, 0.2] [0.15, 0.15, 0.2]

Episodic length 20 10
1 1st represents the first-order system and 2nd represents the second-order system.
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4.2. Threshold Selection Experiment

In this section, the impact on the proposed method of changing the thresholds is
explored. The proposed method uses Rth1 and Rth2 as the threshold values to switch the
PID reference values when the running reward surpasses these thresholds. Therefore, how
these thresholds are set can significantly impact the algorithm’s performance. When action
constraint is not employed, the rewards of both systems converge to around −10, as con-
firmed in the main experiment. To guarantee the algorithm’s fundamental performance,
Rth1 = −10 was set, while Rth2 should be within the range (−10, 0). To determine the
optimal threshold value, the threshold between −7 and −3 was set to Rth2 in the experi-
ments. Figure 6 displays the outcomes. The top row shows the reward curves for various
Rth2 values across the complete episodes, where “benchmark” represents the reward = −5.
When Rth2 is set to −5, the reward function in the first-order system converges to −5,
indicating that the algorithm has switched constraints during the three phases, and the PID
output remains within a stable range. However, when Rth2 = −7 or −6, the agent’s explo-
ration is limited, resulting in the reward converging around the corresponding threshold.
Conversely, the running reward cannot meet the conditions rti ≥ Rth2 when Rth2 = −4 or
−3, causing the reward to stagnate at a lower level. This issue is further highlighted in
the optimal PID tracking curve in the lower left plot for a first-order system with various
Rth2 and is also shown in Figure 6’s upper and lower right plots for second-order systems.
In the experiments, the threshold selection step size was set to 1. This choice was made
because the reward function’s design ensured that variations in the reward value within a
range of 1 or less would not have a significant impact on the final PID control performance.
Therefore, the step size for threshold design in this experiment is deemed reasonable. Thus,
setting Rth2 to −5 is the optimal choice.

4.3. Experimental Analysis

In this section, we present a comparative analysis of the performance of the MF-DDPG
PID adaptive tuning method against existing methods. Figure 7 shows a comparison
between the proposed method and the DDPG-based PID tuning method, which serves as
the baseline in this study. The top row shows the learning curves of the two methods in both
the first-order and second-order systems, with the average reward of our proposed method
plotted in red and that of the DDPG method in green. In the absence of action constraint,
the learning curves of both systems converge to around −10. However, the proposed
method achieves a higher average reward in both systems, indicating the superior stability
and performance of the proposed method. Notably, the reward curve of MF-DDPG displays
a notable rise when the action constraint is satisfied, which validates the capability of the
proposed method. The PID parameter ranges of both methods were also examined over
the entire episode to further demonstrate the efficacy of the proposed method. The
bottom row of Figure 7 illustrates the distribution range of the parameter Kp in the two
systems, ranging from 25% to 75%. The parameter exploration interval of MF-DDPG is
more concentrated, with less variance than that of the baseline method. This implies that the
action value changes do not disrupt the exploration process but instead lead to the agent’s
actions being more focused on the stable region of the PID parameters, thereby enhancing
the stability of the closed-loop system. Furthermore, the PID tracking performance of
various methods was explored. Of the numerous PID tuning methods available in the
literature, the DDPG-based method and the Ziegler–Nichols method [11] were chosen
for the comparison. The results are presented in Figure 8 and Table 3, with the mean
square error (MSE) employed to measure the tracking performance of the PID controllers.
the proposed method achieves the lowest MSE in both the first-order and second-order
systems, with performance improvements of 16–30% compared to the baseline methods.
These findings demonstrate the effectiveness of the MF-DDPG PID tuning method and
the closed-loop stability it offers, confirming that it can rapidly track the setpoint while
maintaining the smallest PID amplitude during the entire closed-loop process.
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(a) (b)

(c) (d)

Figure 6. Comparison of running reward and PID tracking performance under different Rth2 settings.
(a) Reward of different Rth2 in first-order system. (b) Reward of different Rth2 in second-order system.
(c) Optimal PID curves corresponding to different Rth2 of first-order system (Blue line corresponds to
setpoint). (d) Optimal PID curves corresponding to different Rth2 of second-order system.

Table 3. MSE of different methods (In parentheses is the improvement of MF-DDPG over different
methods in terms of tracking MSE).

Methods
System

First-Order System Second-Order System

MF-DDPG 2.486 3.441
DDPG 3.483 (28.8%) 4.295 (19.9%)

Z-N 3.702 (32.8%) 4.011 (16.0%)

Additional experiments were conducted to investigate the changes in the three PID
parameters during the switching of action constraints. The outcomes are displayed in
Figure 9, which illustrates the trajectories of Kp, Ki, and Kd during the entire process. The
three parameters Kp, Ki, and Kd exhibit significant variations during the initial stages of
the algorithm’s execution. This behavior indicates that the agent is in a phase of random
exploration. However, once the rewards meet the threshold conditions, the range of
variations for these PID parameters stabilizes rapidly, with only minor fluctuations. It can
be observed that the PID parameters enter a stable range throughout the whole episode,
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as Kp, Ki, and Kd essentially stabilize within a small interval following the action constraint
switching. These results demonstrate that the interval of the parameters can be focused
after switching with multiple action constraints, regardless of how big or small the initial
interval of the three parameters is. This ensures that the agents’ actions are more likely
to be exploitative in the following episode, which is also beneficial for the stability of
PID tracking.

(a) Learning curve of first order system. (b) Learning curve of second order system.

(c) Distribution of Kp for first order system. (d) Distribution of Kp for second order system.

Figure 7. Comparison of the tuning results with Algorithm 1 and DDPG.

(a) Tracking performance of first order system. (b) Tracking performance of second order system.

Figure 8. Comparison of Ziegler–Nichols method, DDPG-based method, and multi-phase focused
method represented by purple, green, and red bars, respectively (Orange line corresponds to setpoint).
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(a) Parameters trajectories of first-order system. (b) Parameters trajectories of second-order system.

Figure 9. Trajectories of the parameters.

The performance of the proposed method was evaluated by examining its ability
to maintain consistent setpoint tracking when the setpoint is varied, which is a crucial
criterion. To verify the PID adaptive tracking capability of MF-DDPG, step signals were
applied to the setpoints of the two systems. Figure 10 illustrates that the proposed method
is capable of quickly and stably tracking the new setpoints without experiencing significant
oscillations. The PID outputs remain consistently within a stable range. Notably, the second-
order system’s higher sampling frequency results in a lower PID output delay than that
of the first-order system. This experiment demonstrates that our PID parameter tuning
method can generate stable tracking effects and has an excellent adaptive tuning capability.

(a) PID tuning curve of first-order system. (b) PID tuning curve of second-order system.

Figure 10. PID tracking performance with varying setpoint.

4.4. Ablation Experiment

A residual structure was applied to the actor network to overcome the problem of a
vanishing gradient resulting from the reduction in the action space following the switching
of action constraints. To validate the effectiveness of the residual structure, the paper
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monitored the actor network’s gradient updates throughout the entire learning process.
Specifically, the paper focused on the first fully-connected (FC1) layer and computed the
mean episodic value matrix of the absolute gradients for FC1 layer across all episodes,
as illustrated in Figure 11. The results demonstrate that actor networks with residual
structures have higher average gradients compared to those without, since the gradients
of actor networks without residual structures become very small after switching actions,
resulting in slow parameter updates. Moreover, the compressed output action space of the
actor network limits agent exploration, making it less ideal for learning. However, with the
residual structure, the gradients of the actor network do not vanish even when the action
space is focused by multiple action constraints. As shown in Figure 11, the gradients of
the actor network’s shallow network persist with the residual structure, indicating that the
reduction in action space does not negatively impact the parameter updates of the actor
network. This is advantageous for updating PID output parameters and achieving a more
balanced trade-off between exploration and exploitation.

(a) (b)

(c) (d)

Figure 11. Comparison of the gradients of actor networks. (a) Gradient of FC1 layer in actor network
with residual structure for first-order system. (b) Gradient of FC1 layer in actor network without
residual structure for first-order system. (c) Gradient of FC1 layer in actor network with residual
structure for second-order system. (d) Gradient of FC1 layer in actor network without residual
structure for second-order system.

4.5. Comparison with Existing PID Tuning Methods

In this section, a comparative analysis of the proposed PID adaptive tuning algorithm
and several mainstream PID control algorithms is carried out, evaluating the performance
of different algorithms in PID adaptive tuning. The paper selects the particle swarm
optimization (PSO) tuning method [14], internal model control (IMC) tuning method, and
the IMC–Maclaurin (IMC-MAC) closed-loop tuning method [43] for comparison with the
proposed MF-DDPG tuning method. The PID controller is applied to a first-order system,
as described in Equation (20) (similar considerations apply to second-order systems).
The setpoint of the PID controller is designed to be variable, and under the control of the
different methods, the respective PID control performance is compared. The results are
illustrated in Figure 12. Compared to the PID controllers controlled by the other algorithms,
the PID controller controlled by MF-DDPG demonstrates rapid and stable tracking of
variable setpoints, with minimal oscillations in the tracking curve when setpoints change.
Table 4 records the MSE for different tracking curves. Experimental results indicate that,
in comparison to mainstream PID adaptive tuning algorithms, the MF-DDPG algorithm
continues to exhibit advantages.
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Figure 12. Comparison of different methods for PID adaptive tuning.

Table 4. MSE of PID tracking curves with different methods.

Methods Tracking MSE

MF-DDPG 15.56
PSO 19.63
IMC 18.52

IMC-MAC 17.59

5. Conclusions

A novel RL-based PID adaptive tuning method was proposed that utilizes multi-phase
action constraints. Building on the existing PID adaptive tuning method, this work extends
the method by independently exploring parameters using an RL-based algorithm to obtain
a finer range of PID parameters. By establishing reference values for PID parameters
based on reward thresholds and controlling the agent’s exploration process as a constraint
condition, the proposed method can determine more optimal PID tuning parameters with
limited prior knowledge while ensuring closed-loop stability during the PID parameter
discovery phase. To address the issue of a vanishing gradient caused by the switching
of action scale and to expand the agent’s action space, this paper redesigns the reward
function and state based on existing literature and adds a residual structure to the actor
network. The results of experiments conducted on both first-order and second-order
systems demonstrate that our proposed method exhibits a substantial improvement in
performance when compared to baseline methods.

In the future, the method will be expanded to nonlinear complex systems to acquire
appropriate PID parameters while maintaining system stability.
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