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Abstract: The new generation of 3D video is an international frontier research hotspot. However, the
large amount of data and high complexity are core problems to be solved urgently in 3D video coding.
The latest generation of video coding standard versatile video coding (VVC) adopts the quad-tree
with nested multi-type tree (QTMT) partition structure, and the coding efficiency is much higher than
other coding standards. However, the current research work undertaken for VVC is less for 3D video.
In light of this context, we propose a fast coding unit (CU) decision algorithm based on the gray level
co-occurrence matrix (GLCM) and Extra trees for the characteristics of the depth map in 3D video.
In the first stage, we introduce an edge detection algorithm using GLCM to classify the CU in the
depth map into smooth and complex edge blocks based on the extracted features. Subsequently, the
extracted features from the CUs, classified as complex edge blocks in the first stage, are fed into the
constructed Extra trees model to make a fast decision on the partition type of that CU and avoid
calculating unnecessary rate-distortion cost. Experimental results show that the overall algorithm
can effectively reduce the coding time by 36.27–51.98%, while the Bjøntegaard delta bit rate (BDBR) is
only increased by 0.24% on average which is negligible, all reflecting the superior performance of our
method. Moreover, our algorithm can effectively ensure video quality while saving much encoding
time compared with other algorithms.

Keywords: VVC 3D video; depth map; GLCM; Extra trees

1. Introduction

Due to the swift progress in both video coding and multimedia information technology,
people’s requirements for video quality have gradually increased. The pursuit of temporal
and spatial resolution has become increasingly high. Blu-ray, HDR (high dynamic range)
and other image quality [1] have been the standard configuration of significant video
platforms. On the other hand, people put forward higher requirements for video, such as a
more realistic visual experience, as well as a more realistic and natural 3D visual experience.
2D video is brutal in meeting these new needs, so with a large viewing angle, a high quality
and picture, surrounded by the sense of the immersive video, came into being. This mainly
included stereoscopic video, multi-vision point video, 360◦ video, VR (virtual reality) video,
and AR (augmented reality) video, etc. [2]. The 3D video also shows broad application
prospects within medicine, education, and entertainment. The visual experience it brings
occupies a place in theaters and home entertainment and has captured the love of many
users. At the same time, to meet people’s various expectations for video, 3D video needs to
use ultra-high-resolution cameras to shoot scenes from multiple viewpoints and encode
and transmit the acquired ultra-high-definition video signals [3]. In addition to transmit
multiple viewpoint texture videos, an additional depth map needs to be transmitted to
generate a virtual new viewpoint, which causes a sharp increase in storage resources and
transmission bandwidth. Therefore, how to better save the bit rate of 3D video transmission
while ensuring a high-quality visual experience has become a hot topic for domestic and
foreign researchers.
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Faced with people’s new requirements for video quality, the Moving Picture Experts
Group (MPEG) and the Video Coding Expert Group (VCEG) officially announced the latest
3D video coding standard, 3D-HEVC (3D-High Efficiency Video Coding), in February 2015,
which was a major advancement in the foundation of multi-view video [4,5]. The 3D-HEVC
standard utilizes different coding techniques for the main viewpoint and auxiliary view-
points, while the traditional HEVC coding technique is mainly used for the main viewpoint.
In contrast, some new techniques are used for the coding of non-basic viewpoints and
depth maps, which are mainly used for the removal of redundant information such as the
correlated redundancy between the texture map and the depth map as well as the spatial
redundancy inside the depth map [6,7]. This greatly improves the compression and coding
efficiency of 3D-HEVC [8]. In terms of traditional video coding standards, the Joint Video
Experts Team (JVET) announced the latest video coding standard VVC in July 2020, which
has a more efficient coding performance and broad market prospects than the previous
generation of video coding standard HEVC with good network adaptability, compression
efficiency, etc. [9]. Moreover, VVC adopts a hybrid coding technology framework, and
the CU partitioning adopts the QTMT partition structure, which is more diversified and
flexible and can be more effectively adapted to high-resolution image coding and decoding
processing. In addition, VVC extends the original HEVC encoder on video data by adding
new model prediction modes.

Unlike 2D video, 3D video adds multiple viewpoint texture videos and corresponding
depth maps. The depth camera acquires the depth map to determine the distance between
the object and the camera and map the distance to a grayscale image. Figure 1 shows
a frame from the 3D video test sequence “balloons”, from which it can be seen that the
texture map is more detailed. In contrast, the depth map has more flat areas and sharp edge
areas due to the phenomenon of gray level jumps that cause the edges to be unsmooth. The
edge areas critically impact the depth map coding quality compared to the large flat areas.
The depth map coding technique is implemented to enhance the precision in encoding
the edge regions of the depth map in contrast to the extensive flat areas. This plays a
pivotal role in determining the quality of that. While VVC 3D video l still uses the QTMT
partition structure [10], the partition size and depth of the CU are strongly correlated with
the edge features of the depth map [11]. Typically, flat regions are allocated to larger-sized,
shallower-depth CU, whereas regions with sharp edges are often divided into smaller-
sized, deeper-depth CU. The significant rise in coding complexity and coding time can be
attributed predominantly to the flexible QTMT partition structure of VVC 3D video and
the incorporation of the depth map coding technique. The current research methods of
VVC are primarily used to address the problems associated with 2D video coding, and few
are aimed at 3D video coding [12]. Based on this, it becomes imperative to discover a rapid
coding algorithm capable of efficiently diminishing the complexity associated with depth
map coding of VVC 3D video, all while upholding video quality.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 19 
 

 

(a) (b)
 

Figure 1. A frame within the balloons sequence; (a) texture map; (b) depth map. 

To efficiently alleviate the complexity associated with depth map coding, this paper 
makes the following subsequent contributions on the attributes of the depth map and VVC 
partitioning. (1) Propose a GLCM-based edge detection algorithm to classify CUs in the 
depth graph into flat blocks and complex edge blocks, skipping the CU partition of flat 
blocks to reduce unnecessary rate-distortion optimization (RDO) processes. (2) Propose 
an Extra trees-based CU partition decision algorithm, which utilizes the Extra trees model 
to judge the partition mode of complex edge block CUs in advance, avoiding calculating 
those RD costs with no partition possibilities, thus significantly reducing the computa-
tional complexity. 

The remainder of this paper is organized as follows. Section 2 furnishes an overview 
of previous research efforts centered on alleviating the intrinsic complexity associated 
with 3D video coding. Section 3 presents the proposed fast intra decision algorithm for 
depth map. Section 4 showcases the empirical findings and analysis of the comprehensive 
algorithm put forth in this paper. Finally, the paper concludes with a summary presented 
in Section 5. 

2. Related Works 
In recent years, video coding technology has developed rapidly, and many research-

ers have proposed several fast algorithms for two-dimensional video coding. For example, 
[13] introduced four algorithm adjustments and a fully parallel hardware architecture for 
the H.265/HEVC intra encoder. Ref. [14] proposed a new end-to-end fast algorithm to help 
the coding tree unit partition structure decision in intra coding to reduce the complexity 
in VVC coding. Ref. [15] used a fast decision algorithm based on the DenseNet network 
and decision tree classifier to reduce VVC encoding time. 

Due to the differences between 2D video and 3D video, the fast coding algorithms 
applicable to 2D video are unsuitable for use in VVC 3D video. In contrast, the current 
fast algorithms for reducing the coding complexity for 3D video can be categorized into 
three types, described next. 

2.1. Fast Algorithm Based on Heuristic 
Most of the heuristic-based fast algorithms are implemented by using thresholds, RD 

costs, or correlations between time/space/viewpoints and the characteristics of the video 
itself. Li et al. [16] proposed a fast algorithm utilizing spatial correlation and RD cost to 
diminish the complexity of intra coding for the depth map and harnessed the frequency 
distribution attributes of RD cost to accurately predict the maximal depth layer of CTUs. 
Moreover, to diminish the complexity of depth modeling mode 1 (DMM1), a fast decision 
method for wedge patterns based on K-means was proposed. Ref. [17] proposed a two-
layer texture discriminative fast depth coding algorithm, which uses the summation of 

Figure 1. A frame within the balloons sequence; (a) texture map; (b) depth map.



Electronics 2023, 12, 3914 3 of 18

To efficiently alleviate the complexity associated with depth map coding, this paper
makes the following subsequent contributions on the attributes of the depth map and VVC
partitioning. (1) Propose a GLCM-based edge detection algorithm to classify CUs in the
depth graph into flat blocks and complex edge blocks, skipping the CU partition of flat
blocks to reduce unnecessary rate-distortion optimization (RDO) processes. (2) Propose
an Extra trees-based CU partition decision algorithm, which utilizes the Extra trees model
to judge the partition mode of complex edge block CUs in advance, avoiding calculating
those RD costs with no partition possibilities, thus significantly reducing the computational
complexity.

The remainder of this paper is organized as follows. Section 2 furnishes an overview of
previous research efforts centered on alleviating the intrinsic complexity associated with 3D
video coding. Section 3 presents the proposed fast intra decision algorithm for depth map.
Section 4 showcases the empirical findings and analysis of the comprehensive algorithm
put forth in this paper. Finally, the paper concludes with a summary presented in Section 5.

2. Related Works

In recent years, video coding technology has developed rapidly, and many researchers
have proposed several fast algorithms for two-dimensional video coding. For example,
ref. [13] introduced four algorithm adjustments and a fully parallel hardware architecture
for the H.265/HEVC intra encoder. Ref. [14] proposed a new end-to-end fast algorithm
to help the coding tree unit partition structure decision in intra coding to reduce the
complexity in VVC coding. Ref. [15] used a fast decision algorithm based on the DenseNet
network and decision tree classifier to reduce VVC encoding time.

Due to the differences between 2D video and 3D video, the fast coding algorithms
applicable to 2D video are unsuitable for use in VVC 3D video. In contrast, the current fast
algorithms for reducing the coding complexity for 3D video can be categorized into three
types, described next.

2.1. Fast Algorithm Based on Heuristic

Most of the heuristic-based fast algorithms are implemented by using thresholds, RD
costs, or correlations between time/space/viewpoints and the characteristics of the video
itself. Li et al. [16] proposed a fast algorithm utilizing spatial correlation and RD cost to
diminish the complexity of intra coding for the depth map and harnessed the frequency
distribution attributes of RD cost to accurately predict the maximal depth layer of CTUs.
Moreover, to diminish the complexity of depth modeling mode 1 (DMM1), a fast decision
method for wedge patterns based on K-means was proposed. Ref. [17] proposed a two-layer
texture discriminative fast depth coding algorithm, which uses the summation of gradient
matrices to compute the texture intricacy of CU and their sub-blocks within the present
depth map to determine further the depth of CU partition as well as to skip unnecessary
DMM discriminations. Fu et al. in [18] proposed a two-step adaptive corner selection
technique using the feature of corners in computer vision, analyzed and investigated the
correlation between corners and coding modes, and proposed a fast intra mode decision
for non-corner PU that can skip the DMM decision and feel the segmented depth coding in
advance. Ref. [19] proposed a fast algorithm for diminishing complexity based on texture
features and spatiotemporal correlation, using a combination of pixel-based statistical
methods and edge detection to establish a new texture complexity model, based on which
CUs are categorized into smooth, texture, and edges. After that, an early termination of
the CU partitioning algorithm for smoothing blocks was proposed aiming to eliminate
superfluous CUs. Hamout et al. [20] proposed a method to extract the edge information of
each PU pixel by performing texture and depth maps using a local structure tensor and then
building a histogram of the edge directions and opting for the orientation characterized by
the highest histogram value as the optimal intra prediction pattern.
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2.2. Fast Algorithm Based on Machine Learning

Integrating machine learning technology has substantially improved the efficiency of
3D video coding and effectively reduced the intricacy. Li et al. [21] proposed an early intra
adaptive CU decision algorithm for unsupervised learning-based intra depth map coding,
which proposed three clustering models for different sizes of CUs to determine in advance
whether the CUs need to be further classified. Ref. [22] proposed a fast XGBoost-based
algorithm to select a large number of features for model training by using the correlation
between spatiotemporal, inter-view, etc., and a comprehensive set of 14 XGBoost models
was constructed to address various CU sizes and viewpoint types, aiming to achieve the
determination of the early CU partition and the prediction of PU. Saldanha et al. [23] pro-
posed a fast algorithm for depth map coding based on static decision trees, which constructs
different decision trees for three sizes of CU, utilizing data mining and machine learning.
It extracts context attributes to determine whether the CUs need to be segmented, which
effectively avoids the complex RDO process. To more effectively address the challenge
posed by the elevated complexity of the depth map, ref. [24] proposed a fast CU decision
making for the depth map based on the XGBoost model; first of all, the decision model is
constructed to use the texture information of the depth map as a feature attribute vector,
simultaneously, the determination of whether the current CU should undergo further
partitioning is designated as the label. In addition, the feature attributes obtained from
the coding process are utilized to train the decision model and to determine whether the
CU continues to be splited or not. An early determination algorithm for deep intra coding
was proposed by FU et al. in their work cited in [25], where the intra 2N × 2N and N × N
and CU partitions, of whether or not the current CU needs to be skipped or examined,
are regarded as binary decisions; following the execution of the decision tree based learn-
ing algorithm, the Gini values are obtained from the leaf nodes for each of the partitions
proposed for the current CU, while the results are restricted by different Gini values.

2.3. Fast Algorithm Based on Deep Learning

Over recent years, deep learning has gained extensive adoption across numerous
domains, including its application within video coding. Some practical, fast algorithms are
based on deep learning in 3D video coding. Peng et al. in [26] proposed a deep loop filtering
method based on multidomain correlation learning and partition constraint networks
to improve the performance of multi-view video coding by exploring the multidomain
correlation to recover the high-frequency details of the distorted frames as well as designing
the partition loss and thus the compression artefacts for better attenuation. To alleviate the
complexity associated with depth map coding, a fast depth map intra coding algorithm
employing CNN and layer classification is proposed in [26], which consists of a layer
classification model for texture smoothing to ascertain the most smoothed depth map and a
CNN network that contains the SENet structure that combines these two models in order to
predict the delineation of all the CU under a particular view. To enhance the efficacy of intra
prediction in depth map coding, Zhang et al. proposed an intra prediction mode based on
depth region partition [27], introducing a depth region partition network and applying it
to texture frames to directly predict its division results. Furthermore, a frame-level training
strategy is devised for the information edge representation. Xie et al. [28] proposed a CNN-
based edge detection system based on the idea of FNN and deep supervised networks,
which showed promising results in edge detection by initializing the network structure
and parameters using a pre-trained constructed VGGNet and by amalgamating visual
responses across multiple scales and levels.

3. Proposed Algorithm

3D video is encoded with inputs of multi-viewpoint videos, which are simultaneously
captured by multiple cameras in the same scene and from different angles. Hence, each
viewpoint contains a texture video and a depth video. Therefore, for 3D video, not only
the texture video needs to be encoded, but also the corresponding depth map, which
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significantly contributes to the elevated complexity observed in 3D video coding. In
contrast, VVC 3D video uses the VVC video coding technique, calculated by recursively
partitioning and traversing the CU blocks. Therefore, if the depth map is coded directly
using the VVC video coding technique, each CU has six possible partition modes, which
requires a complete RDO search, traversing and calculating the RD cost of partition modes
for all depths, and finally selecting the partition mode with the minimum RD cost for the
current CU. The whole process is very cumbersome, which is an essential reason for the
high coding complexity.

3.1. Edge Complexity Detection Algorithm Based on GLCM

Predominantly, the depth map comprises sizable flat regions interspersed with smaller
segments exhibiting intricate edge patterns [29]. As depicted in Figure 2, the pixel values in
the flat areas have characteristics of regional consistency. Within a specific range, the pixel
values change relatively slowly and tend to be the interior or background part of the object,
so they are split mainly by large-size CU. In contrast, the sharp and complex edge regions
tend to be the object’s outline, the pixel values change significantly, and the regions are
presented with sharp edges. They are primarily divided into small-size CU. Chen et al. [30]
proposed a fast GLCM-based algorithm in order to effectively reduce the depth map coding
complexity in 3D-HEVC, which can effectively describe the texture complexity of the depth
map in 3D-HEVC and thus pre-determine the CU partition depth and candidate intra
prediction modes. To efficiently mitigate the coding complexity associated with the depth
map of VVC 3D video, the GLCM and Sobel operator extract texture features and edge
information from the CU within the depth map and classify the CU blocks into flat blocks,
complex blocks, and edge blocks. For a CU classified as a flat block, its subsequent partition
will be skipped; for a CU classified as a complex block or an edge block, its division method
will be further judged.
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Figure 2. Partition of balloons sequence in depth map in VTM 10.0.

For an image with gray level n, its gray co-production matrix is an n × n two-
dimensional matrix, each element in the matrix represents a second-order joint probability,
and the element p(i, j, d, θ) located at matrix (i, j) represents the probability of the occur-
rence of a set of pixel pairs (i, j), spaced at a distance of d pixels along the direction θ in the
image. Figure 3 shows the generation process of the GLCM of an image block with a size of
4 × 4 and gray level n = 4; (a) represents the pixels in the image block, and (b) represents
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the corresponding generated GLCM, where d = 1, θ = 0
◦
, that is, considering horizontally

adjacent pixel pairs. In the figure, the horizontally adjacent pixel pair (2,3) occurs twice,
so the element at the (2,3) position in the obtained GLCM is 2, while the pixel pair (1,1)
occurs only once, so the element at (1,1) in the obtained GLCM is 1. According to the
representation method of the GLCM in [31], given an image I with M × N resolution units
whose gray scale ranges from 0 to L− 1, the image I can be represented as I = [ f (i, j)]MN,
where f (i, j) is the gray scale value at point (i, j). The GLCM can be represented as follows:

P(i,j,d,θ)=#{(k,l),(m,n)∈M×N, f (k,l)=i, f (m,n)=j,dis((k,l),(m,n))=d}
0 ≤ i, j ≤ L− 1,
θ∈{0◦ ,45◦ ,90◦ ,135◦}

, (1)

where dis() is the distance function to denote the distance d between (k, l) and (m, n),
f (k, l) = i and f (m, n) = j represent the gray values of points (k, l) and (m, n), respectively,
# represents the number of elements in the set. The normalized GLCM is obtained by
dividing each entry by the count of adjacent resolution pixel pairs R:

p(i, j, d, θ) =
P(i, j, d, θ)

R
, (2)
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Haralick defines a set of 14 texture feature measures based on the GLCM [32], and
here we choose three of them, which are angle-second matrix (ASM), contrast (CON), and
correlation (COR).

The ASM represents the summation of element squares within the matrix. It is com-
monly utilized to gauge the homogeneity of grayscale values along a specific texture
direction in an image, as well as to quantify the consistency of texture grayscale variations.
The expression for ASM is provided below:

ASM = ∑m−1
i=0 ∑n−1

j=0 p(i, j, d, θ)2, (3)

The CON metric quantifies the intensity variation between a pixel and its neighboring
pixels across the entire image. It is defined as follows:

CON = ∑m−1
i=0 ∑n−1

j=0 (i− j)2 p(i, j, d, θ), (4)

Correlation (COR) is used to measure the correlation dependence of gray scale image
values between rows or columns of pixels, each CU of the depth map generates a gray
scale covariance matrix for four directions θ ∈ {0◦, 45◦, 90◦, 135◦}. COR can be expressed
as follows:

COR = ∑m−1
i=0 ∑n−1

j=0
(i− µh)(j− µv)p(i, j, d, θ)

σhσv
, (5)
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where i and j denote the positions of the matrix elements, µv and σv denote the mean and
standard deviation of matrix elements in the vertical direction, and µh and σh represent the
mean and standard deviation of matrix elements in the horizontal direction, respectively:

µh = ∑m−1
i=0 ∑n−1

j=0 ip(i, j, d, θ), (6)

µv =
m−1

∑
i=0

n−1

∑
j=0

jp(i, j, d, θ), (7)

σh =

√√√√m−1

∑
i=0

n−1

∑
j=0

(i− µv)
2 p(i, j, d, θ), (8)

σv =

√√√√m−1

∑
i=0

n−1

∑
j=0

(j− µh)
2 p(i, j, d, θ), (9)

It is well known that most images have gray levels between 0 and 255, which makes the
computation of the GLCM very complicated, and therefore the pixels are properly controlled
to quantize the distance function dis() during the computation so that dis() ∈ [1, M− 1]. At
this point it will make the weaker edges produce a small fraction of distortion, so we use the
Sobel operator to solve this problem according to the method in [33]. In the Sobel operator,
Gh and Gv represent the gradient of each pixel in the horizontal and vertical directions, and
the final gradient of each pixel is as below:

|G| = |Gh|+ |Gv|, (10)

When the magnitude of |G| exceeds the threshold, the pixel is categorized as an edge
point. As shown in Figure 4 for the CU of flat region, the pixels typically exhibit similar
values in the four directions (0◦, 45◦, 90◦, 135◦), GFVθ = (0, 1, 0), and define the GLCM
feature vector of CU as follows:

GFVθ = (ASM, CON, COR), (11)

GFV =
GFV0◦ + GFV45◦ + GFV90◦ + GFV135◦

4
, (12)

1 
 

 
Figure 4. GFV of flat area and complex edge area.
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After that, we judge the CU texture classification according to Equation (13), and if the
current CU meets the determination condition of the flat texture region, the CU partition
will be terminated early; if the present CU is determined as an edge region or a complex
region, the CU will be encoded subsequently:

TextureCU =


smooth, GFV = (0, 1, 0) and |G| < Th

edge, |G| > Th
complex, GFV 6= (0, 1, 0)

∣∣∣∣ |G| > Th
, (13)

3.2. CU Fast Decision Algorithm Based on Extra Trees

Recently, machine learning has found application across diverse domains to improve
efficiency [34], among which ensemble methods such as bagging and boosting have received
much attention from researchers because they can be used to design efficient classifiers.
Among these methods, ensembles of decision trees, such as random forests, which are a
series of classifier ensemble methods that use randomization to produce different individual
classifiers, have been shown to outperform methods such as SVM and the boosting on a
variety of classification tasks. Extra trees is an algorithm proposed by PierreGeurts et al. in
2006 [35], which is very similar to the principle of random forest, and also uses random
sampling and random feature selection to construct multiple decision trees. Nevertheless,
the difference is that Extra trees will randomly choose the division point of features when
splitting nodes, instead of using the optimal division point like decision trees and random
forests; that is to say, Extra trees is more random. Moreover, each decision tree of Extra
trees is constructed from the original training samples, which makes it better to reduce
the model variance and inhibit overfitting, strengthen the robustness of the model, and
minimize the bias generated. Since the node division process of Extra trees is simple and
there is no need to search for local optimal division points, the training speed is faster, and
the computational complexity is consequently diminished.

VVC adopts the QTMT partition structure, where the MTT (multi-type tree) structure
is a newly added partition method, which makes the VVC partition more flexible, including
horizontal binary tree (BTH) partition, vertical binary tree (BTV) partition, horizontal trino-
mial tree (TTH) partition, and horizontal trinomial tree (TTV) partition. If the traditional
RDO search process is used, the RD cost of all possible CU will be checked sequentially
from the top to the bottom layer. Combining the minimum RD cost will be chosen as the
best partition result. A CTU coding process needs to calculate the RD cost of 5781 CU,
which substantially increases the VVC coding complexity. The coding process of VVC 3D
video, the QTMT partition structure, is employed. According to the partition direction,
there are six possible partition modes for CUs, which can be roughly categorized into three
kinds of partition modes, namely, QT, MTH, and MTV. Therefore, a fast decision algorithm
for CU using the Extra trees mode is proposed to make advance decisions for QT, MTH,
and MTV to reduce the unnecessary RDO process.

Given that the largest size of MTT in VVC 3D video is 32 × 32, the algorithm applies
to 32 × 32, 16 × 16, 8 × 8, and 4 × 4 CUs in order to make the CU partition prediction
more accurate, address the computational complexity of features, and mitigate unnecessary
computational overheads. Therefore, all things considered here, block shape ratio (BSR),
variance (Var), texture trend (T) in the direction of partition, the difference between the
predicted partition depth and the actual depth of the current CU (∆D) and QP, are used as
features for Extra trees model training.

(1) Block Shape Ratio (BSR): The aspect ratio of CUs affects the tendency of partition
in different directions, which can represent the measurement of the shape of the CU, and
the BSR can be expressed according to the method in [36] as follows:

BSR =


h

w+h MTH
0.5 QT
w

w+h MTV
, (14)
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where w denotes the width of the CU, and h represents the height of the CU.
(2) Variance (Var): It is the variance of total pixels within the given CU, providing

a clear reflection of the image’s contrast information. Texture information has a certain
relationship with the partition type of CU Var is expressed as below:

Var =
1

w× h∑w−1
i=0 ∑h−1

j=0 (P(i, j)−meanP)2, (15)

meanP =
1

w× h

w−1

∑
i=0

h−1

∑
j=0

P(i, j), (16)

where P(i, j) represents the original pixel located at coordinates (i, j), and meanP signifies
the average value computed across all pixels within the given CU.

(3) Texture tendency of partition direction (T): Both the texture direction and gradient
of the CU are intricately linked with the partition method. If the texture of the CU is vertical
or the vertical gradient is large, then the partition in the vertical direction will be more
inclined; on the contrary, if the texture of the CU is horizontal or the horizontal gradient is
large, then the partition in the horizontal direction will be more inclined. Therefore, the
texture trend T of the division direction here will be calculated by the gradient, and the
gradients in different directions will be obtained by the Scharr operator calculation method
in [37]. The Scharr operator can be said to be an improvement of the Sobel operator, but the
calculation accuracy is higher, and the effect is better. The Scharr operator of each pixel in
different directions is shown in Figure 5. Then the gradient is calculated as follows:

gradx = ∑w−2
i=1 ∑h−2

j=1 |A·scharrx|+ ε, (17)

where A is the pixel matrix, x denotes the direction of CU ( x = hor, ver, 45◦, 135◦), scharrx
is the matrix of the Scharr operator for the corresponding direction, and ε is valued at 1 here
(to prevent smoothing with a denominator of 0 in the calculation of T). Then the formula
for dividing the texture trend T in the direction is as follows:

(Thor = min
(
(gradhor

gradver
),
√

2(gradhor
grad45◦

),
√

2( gradhor
grad135◦

)
)

Tver = min
(
(gradver

gradhor
),
√

2(gradver
grad45◦

),
√

2( gradver
grad135◦

)
)), (18)

where gradhor, gradver, grad45◦ , and grad135◦ signify the gradient along the horizontal,
vertical, 45◦, and 135◦ directions, correspondingly.
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(4) QP: The quantization parameter of the current CU. QP can affect the spatial details
of CU partitioning and partitioning results. The larger the QP, the larger the CU partition
size; the smaller the QP, the smaller is the CU partition size.

(5) The difference between the predicted partition depth and the real depth of the
current CU (∆D): There exists a relationship between the information of neighboring CU
and the current CU partition, and the depth of the current CU partition can be predicted
based on the depth of neighboring CU, then ∆D can be expressed as below:
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∆D = Dpre − Dcur, (19)

where Dpre denotes the predicted depth and Dcur the true depth of the current CU. If only
the left (upper) CU exists for the current CU, then the value of Dpre is equal to the depth of
the left (upper) CU. If both the left and upper CU of the current CU exist, then the value of
Dpre can be expressed as follows:

Dpre =


max

(
Dupper, Dle f t

)
, Dl−u = min

(
Dupper, Dle f t, Dl−u

)
min

(
Dupper, Dle f t

)
, Dl−u = max

(
Dupper, Dle f t, Dl−u

)
Dupper + Dle f t + Dl−u, otherwise

, (20)

where Dupper, Dle f t, and Dl−a represent the depth of the upper CU, left CU, and upper left
CU of the current CU, respectively.

We set the labels of the model to three modes: QT, MTH, and MTV, and set the
threshold to 0.2. Table 1 presents the depth map standard test sequence chosen for dataset
creation, displaying details such as resolution, frame count, frame rate, and video sequence
viewpoint. The test set consists of partial sequences extracted from the JVT-3V standard
set, including Kendo, Undo_Dancer, and Poznan_Street. Each sequence was encoded in
VTM10.0 with “All intra” configuration. In addition, in order to control the number of
Extra trees, the parameter settings for Extra trees are shown in Table 2. In the experiment,
the Extra trees model is deployed to VTM10.0 in the “All intra” configuration, and the full
sequence test is performed on these two types of 3D video sequences.

Table 1. 3D Video Test Sequence.

Video Sequences Resolution 3-Views Input Frame Rate Frames to Be Encoded

Undo_Dancer

1920 × 1088

1-5-9 25 250
Poznan_Hall2 7-6-5 25 200
Poznan_Street 5-4-3 25 250

Shark 1-5-9 30 300
GT-Fly 9-5-1 25 250
Kendo

1024 × 768
1-3-5 30 300

Balloons 1-3-5 30 300
Newspaper 2-4-6 30 300

Table 2. Parameter settings of the Extra trees model.

Parameter Name Model Setting

Number of features 5
Min_samples_of leaf 10

Max depth 10
Number of labels 3

3.3. Framework of the Overall Algorithm

Building upon the aforementioned groundwork, our proposed algorithm encompasses
two distinct stages of decision processes, including the employment of the edge complexity
detection algorithm rooted in the GLCM and the CU fast decision algorithm that utilizes
Extra trees, with the aim of diminishing the computational complexity involved in coding
of the depth map within VVC 3D video. First, we utilize the GLCM to detect the depth map,
classify the CUs in different regions, and skip the CUs in flat blocks, which significantly
reduces the RD cost computation and avoids the unnecessary CU delineation process in the
intra prediction part. After that, the features are extracted for the CUs classified as complex
blocks or edge blocks in the previous stage, and then the Extra trees model is employed
for ascertaining the current partition type of the CU and whether the QT partition MTV
partition or MTH partition needs to be skipped or not. This can further reduce the RD cost
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computation in the CU partition process. The flowchart of the proposed overall algorithm
is shown in Figure 6. The pseudocode of the proposed algorithm is shown in Algorithm 1.

Algorithm 1 The proposed fast decision algorithm for VVC 3D video CU split.

Require:
Validity of neighboring frames; the size of the CU input into the Extra trees model is 32 × 32 or 16
× 16 or 8 × 8 or 4 × 4
Ensure:
CU is classified into smooth blocks and complex edge blocks; CU skips unnecessary partitioning
types

1: Input: current coding unit
2: Calculate the gradient of the current CU |G| = |Gh|+ |Gv| by Equation (10);
3: Calculate the feature vector GFV = GFV0◦+GFV45◦+GFV90◦+GFV135◦

4 by Equation (12).
4: if (GFV) = (0,1,0) and |G| < Th then

CU is classified as a smooth block and terminate the CU partition;
else if (GFV) 6= (0,1,0) or |G| > Th then

CU is classified as a complex or edge block;
5: if CU == 32 × 32 or 16 × 16 or 8 × 8 or 4 × 4 then
6: Compute the block shape ratio, variance, texture trend in the partition direction, the
difference between the predicted partition depth and the true depth of the current CU, and QP;
7: Obtain the probabilities of QT, MTH, and MTV through the Extra trees model.
8: if probabilities of QT ≤ th then

skip QT;
if probabilities of MTH ≤ th then

skip MTH;
if probabilities of MTV ≤ th then

skip MTV;
9: End.
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4. Experimental Results

To assess the efficacy of the proposed algorithm in mitigating the computational com-
plexity of VVC 3D video, the proposed scheme was implemented within the reference test
software VTM10.0 with ALL-Intra configuration and QP (depth) settings of {34, 39, 42, 45},
executed on an Intel(R) Core (TM) i7-11800H and 16GBRAM platform. Furthermore, it was
evaluated on eight video sequences with two types of resolution (1024 × 768/1920 × 1088)
from the 3D standard video test sequences of the JVT-3V, as shown in Table 1. The algorithm
proposed in this paper only improves the depth map coding of VVC 3D video and uses
BDBR [38] and ∆T as the criteria for evaluating the performance of the proposed algorithm.
Among them, BDBR is the coding efficiency saving standard of different methods at the
same desired quality level (BDBR indicates the percentage of code rate reduction achievable
through an improved coding approach while maintaining an equivalent objective quality.
A lower BDBR value signifies enhanced compression performance of the current encoder),
and ∆T represents the percentage reduction in coding time when compared to the reference
algorithm in VTM10.0, which is defined as below:

∆T =
TPRO − TVTM10.0

TVTM10.0
× 100%, (21)

4.1. Performance Analysis of Individual Algorithm

The proposed overall algorithm consists of the GLCM based edge complexity detection
algorithm and Extra trees-based CU fast decision algorithm, where the GLCM-based
edge complexity detection algorithm classifies the CUs in the images according to their
complexity into flat block CU, edge block, or complex block CU. For the CU that are
classified as flat block, their subsequent classification will be skipped; for CU classified as
complex blocks and edge blocks, the partition method will be further judged, which can
effectively avoid the RDO process for flat areas in the depth map. The Extra trees-based
CU fast decision algorithm extracts the relevant features. It utilizes the Extra trees model to
assess the partition type of the CUs of the complex and edge blocks that need to be split,
avoiding unnecessary RD cost calculation of the partition type. The two sub-algorithms
enable the overall algorithm to be applied more effectively to diminish the computational
burden of depth map coding of the VVC 3D video.

In this section, we conduct ablation experiments to independently evaluate the ef-
fectiveness of the two sub-algorithms. First, the GLCM-based edge complexity detection
algorithm is used to classify CUs, and then the VTM10.0 anchoring algorithm is used to
split the CU, which needs to go through a tedious RDO process. Then, we remove the first
sub-algorithm and directly adopt the Extra trees model to judge the partition type of all
CUs. Finally, the BDBR and ∆T of the three combinations are analyzed separately, and
Table 3 presents the corresponding experimental results.

Table 3. Comparison of sub-algorithm and overall algorithm encoding performance.

Sequence
GLCM Extra Trees Overall

BDBR (%) ∆T (%) BDBR (%) ∆T (%) BDBR (%) ∆T (%)

Balloons 0.25 23.09 0.24 33.21 0.18 39.45
Kendo 0.12 31.25 0.21 31.04 0.16 36.27

Newspaper 0.24 26.41 0.35 34.72 0.39 43.09
GT_Fly 0.19 51.18 0.28 40.71 0.31 51.98

Poznan_Hall2 0.38 41.77 0.31 36.24 0.32 49.33
Poznan_street 0.21 38.35 0.16 39.83 0.18 47.81
Undo_dancer 0.29 37.49 0.37 35.69 0.29 46.74

Shark 0.16 36.57 0.17 37.02 0.14 39.27
1024 × 768 0.2 26.92 0.27 32.99 0.24 39.6
1920 × 1088 0.25 41.07 0.26 37.9 0.25 47.03

Average 0.23 35.76 0.26 36.06 0.25 44.24
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Observing Table 3 reveals that the amalgamation of the GLCM-based edge complexity
detection algorithm with the VTM10.0 anchoring approach yields an average coding time
reduction of 35.76%; the BDBR experiences a minor increase of only 0.23%, which indicates
that it can effectively skip the CU partition of the flat region, and pay more attention to
the CU partition of the complex and edge blocks, which underscores the efficacy of the
proposed algorithm. The extra trees-based CU fast decision algorithm combined with the
VTM10.0 anchoring algorithm saves 36.06% coding time on average. In comparison, the
BDBR increases by only 0.26%, which indicates that the algorithm’s decision on the CU
partitioning method effectively reduces the coding of the depth map of the VVC 3D video.
The 3D video sequences we tested have two resolutions, 1024 × 768 and 1920 × 1088. The
GLCM-based edge complexity detection algorithm has the best performance in 1920 × 1088
video sequences, with an average coding time saving of up to 41.07% and a coding time
saving of up to 51.18% in GT_Fly sequences. The Extra trees-based CU fast decision
algorithm performs excellently in 1024 × 768 video sequences with an average coding time
saving of up to 32.99% compared to the GLCM-based edge complexity detection algorithm
and up to 40.71% in GT_Fly video sequences. Both sub-algorithms effectively reduce the
RD cost computation and diminish the computational intricacy of VVC 3D video depth
map coding.

Furthermore, the coding performance of the comprehensive proposed algorithm is
demonstrated in Table 3. The proposed algorithm comprises two sub-algorithms, the GLCM
based edge complexity detection algorithm and the Extra trees-based CU fast decision
algorithm, which can effectively diminish the coding time by an average of 44.24%. At the
same time, the BDBR increases by only 0.25% simultaneously, which is negligible when
contrasted with the VTM anchor algorithm. The average coding time saving is the most in
the 1920 × 1088 resolution 3D video sequence with 47.03%, where the GT_Fly sequence
has more flat regions; for flat blocks, the proposed sub-algorithm performs a skip operation
and more flat blocks are skipped in this sequence, so the average coding time saving is the
most with 51.98%. In the 1024 × 768 resolution video sequences, the newspaper sequence
saves the most coding time at 43.09% (the increase in BDBR is negligible).

4.2. Comparison with Other Algorithms

To more effectively show the superiority of our algorithm in diminishing coding
complexity, we chose three other excellent algorithms for performance comparison, namely,
the fast rate-distortion optimization algorithm proposed by Huo et al. [39] for depth map,
the convolutional neural network-based adaptive CU size coding algorithm within the
frame of depth maps proposed by Zhang et al. [40], and the CU size decision algorithm
employed to mitigate the intricacy of the coding depth map within the frame proposed
by Hamout et al. [41]. Table 4 shows the experimental results for each algorithm and
indicates that [39] achieves an average encoding time reduction of 24.8%. At the same time,
the proposed algorithm surpasses [39] by achieving even more significant time savings,
especially in the GT_Fly sequence, which saves the most increase in coding time; in addition,
BDBR has increased but only by 0.17%, which is negligible. Then, the algorithm of [40]
saves an average of 35.7% of ∆T and the proposed algorithm outperforms the comparison
by saving an additional 8.54% in ∆T and the proposed algorithm has a comparatively
lower BDBR which highlights the superiority of the proposed algorithm. In contrast
to the algorithm of [41], the algorithm has improved by 4.04% in saving encoding time.
Figures 7 and 8 illustrate the impact of the proposed algorithm on ∆T and BDBR across
video sequences of varying resolutions when compared to the mentioned algorithms. It
is evident that the present algorithm performs well in terms of coding performance in
each resolution category. Consequently, it can be deduced that the proposed algorithm
showcases significantly superior performance compared to the algorithms above. Moreover,
its effectiveness in alleviating the burden of depth map coding is even more pronounced.
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Table 4. Performance comparison between the proposed algorithm and the algorithms of [39–41].

Sequence
Huo [39] Zhang [40] Hamout [41] Proposed

BDBR (%) ∆T (%) BDBR (%) ∆T (%) BDBR (%) ∆T (%) BDBR (%) ∆T (%)

Balloons 0.14 27.9 0.30 22.3 0.12 32.9 0.18 39.45
Kendo 0.11 28.2 0.50 32.4 0.17 35.2 0.16 36.27

Newspaper 0.10 24.1 0.70 25.6 0.08 32.3 0.39 43.09
GT_Fly 0.05 23.5 0.80 51.7 0.08 35.0 0.31 51.98

Poznan_Hall2 0.06 27.6 0.40 42.7 0.39 51.6 0.32 49.33
Poznan_street 0.05 23.1 0.50 38.4 0.26 41.6 0.18 47.81
Undo_dancer 0.01 20.3 1.00 36.4 0.29 49.3 0.29 46.74

Shark 0.03 23.4 0.30 36.0 0.26 44.0 0.14 39.27

Average 0.07 24.8 0.55 35.7 0.21 40.2 0.24 44.24
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4.3. Additional Analysis

In order to further illustrate the efficiency of the proposed algorithm in saving coding
complexity, the running time consumption of the model was further analyzed by comparing
the proposed method with VTM10.0. As shown in Figure 9, compared with VTM10.0, the
running time overhead of the proposed algorithm in all video sequences is less than
10%, and the average time overhead is 7.89%, accounting for only a tiny part of the total
encoding time. The critical reason for this result is that in the GLCM algorithm, skipping
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the smooth block only further divides the edge complex blocks, and the Extra trees model
makes an early decision on the CU division method, skipping most of the redundant RDO
process. In addition, we also compared the details of the partition results of the sequence
Poznan_street made by VTM10.0 with the partition results of the proposed algorithm, as
shown in Figure 10.
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5. Conclusions

To effectively address the inherent computational intricacy in depth map coding
within the VVC 3D video, an algorithm is proposed with characteristics of the depth
map. First, it is proposed to classify the CU using the GLCM-based edge complexity
detection algorithm and perform a skip operation for the CU of the flat blocks to minimize
many unnecessary RDO processes. On this basis, we propose to use the CU fast decision
algorithm based on Extra trees for the CU partition method, which can judge the CU
partition method in advance, further avoid unnecessary RD cost calculations, and further
enhance the reduction of coding complexity. The research demonstrated that the proposed
algorithm substantially diminishes the encoding burden, achieves an average reduction of
44.24% in coding time, and increases BDBR by only 0.25% (negligible), which showcases the
exceptional performance of the proposed algorithm. Furthermore, we will further improve
the Extra trees model so that the CU partition method can be accurately judged and also
test the video sequences with more resolutions to expand the scope of the application.
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Abbreviations
The following abbreviations are used in this manuscript:

VVC Versatile Video Coding
QTMT Quad-tree with Nested Multi-type Tree
CU Coding Unit
GLCM Gray Level Co-occurrence Matrix
BDBR Bjøntegaard Delta Bit Rate
HDR High Dynamic Range
VR Virtual Reality
AR Augmented Reality
MPEG Moving Picture Experts Group
VCEG Video Coding Expert Group
HEVC High Efficiency Video Coding
JVET Joint Video Experts Team
RDO Rate Distortion Optimization
DMM Depth Modeling Modes
CNN Convolutional Neural Network
FNN Feedforward neural network
VGGNet Visual Geometry Group Network
QT Quad Tree
BTH Horizontal Binary Tree
BTV Vertical Binary Tree
TTH Horizontal Trinomial Tree
TTV Vertical Trinomial Tree
ASM Angle-Second Matrix
CON Contrast
COR Correlation
MTT Multi-Type Tree
QP Quantization Parameter
VTM VVC Test Model
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