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Abstract: In this paper, we propose an end-to-end low-light image enhancement network based on
the YCbCr color space to address the issues encountered by existing algorithms when dealing with
brightness distortion and noise in the RGB color space. Traditional methods typically enhance the
image first and then denoise, but this amplifies the noise hidden in the dark regions, leading to
suboptimal enhancement results. To overcome these problems, we utilize the characteristics of the
YCbCr color space to convert the low-light image from RGB to YCbCr and design a dual-branch
enhancement network. The network consists of a CNN branch and a U-net branch, which are used to
enhance the contrast of luminance and chrominance information, respectively. Additionally, a fusion
module is introduced for feature extraction and information measurement. It automatically estimates
the importance of corresponding feature maps and employs adaptive information preservation to
enhance contrast and eliminate noise. Finally, through testing on multiple publicly available low-light
image datasets and comparing with classical algorithms, the experimental results demonstrate that the
proposed method generates enhanced images with richer details, more realistic colors, and less noise.

Keywords: low-light image enhancement; YCbCr space; dual-branch network; feature fusion

1. Introduction

In recent years, with the continuous improvement of computer hardware and algo-
rithms, artificial intelligence has made remarkable progress in various fields, such as image
recognition [1], object detection [2], semantic segmentation [3], and autonomous driving [4].
However, these technologies are mainly based on the assumption that images are captured
under good lighting conditions, and there are few discussions on target recognition and
detection technologies under weak illumination conditions such as insufficient exposure at
night, unbalanced exposure, and insufficient illumination. Due to the low brightness, poor
contrast, and color distortion of images and videos captured at night (example shown in
Figure 1), the effectiveness of visual systems, such as object detection and recognition, is
seriously weakened. Enhancing the quality of images captured under low-light conditions
via low-light image enhancement (LLIE) can help improve the accuracy and effectiveness
of many imaging-based systems. Therefore, LLIE is an essential technique in computer
vision applications.

Currently, various methods have been proposed for LLIE, including histogram equal-
ization (HE) [5,6], non-local means filtering [7], Retinex-based methods [8,9], multi-exposure
fusion [10–12], and deep-learning-based methods [13–15], among others. While these ap-
proaches have achieved remarkable progress, two main challenges impede their practical
deployment in real-world scenarios. First, it is difficult to handle extremely low illumina-
tion conditions. Deep-learning-based methods show satisfactory performance in slightly
low-light images, but they perform poorly in extremely dark images. Additionally, due to
the low signal-to-noise ratio, low-light images are usually affected by strong noise. Noise
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pollution and color distortion also bring difficulties to this task. Most of the previous
studies on LLIE have focused on dealing with one of the above problems.

(a) LOL (b) VE-LOL (c) LIME (d) MEF

Figure 1. The comparison effect of various images taken in different scenes. From left to right, these
images are derived from LOL, VE-LOL, LIME, and MEF datasets, respectively.

To explore the above problems, we counted the differences between 500 pairs of real
low-/normal-light image pairs captured in the VE-LOL dataset in different color spaces and
channels, as shown in Figure 2. In the RGB color space, all three channels exhibit significant
degradation. However, in the YCbCr color space, the chrominance channels show higher
PSNR and SSIM values compared to the luminance channel, indicating more severe image
quality loss in the luminance channel. The inherent characteristics of the YCbCr color
space indicate that the difference in luminance primarily resides in the Y channel, while
the Cb and Cr channels are more susceptible to noise contamination. To achieve the
goal of decoupling luminance distortion and noise interference, it is possible to employ
channel-wise processing to handle different channels more appropriately. Therefore, in
low-light image enhancement tasks, compared to the RGB color space, the YCbCr color
space provides a favorable potential candidate space for separating luminance distortion
and noise interference.
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Figure 2. The difference between low-light images and normal images in RGB space and YCbCr
space under the VE-LOL dataset. (a) The average PSNR values for each channel; (b) The average
SSIM values for each channel.

In summary, the main contributions of this article are as follows:

• We propose a new hierarchical structure ( DBENet ) for enhancing low-light conditions
in the real world. This framework includes networks for enhancing illumination maps,
denoising chromatic information, and feature map fusion, respectively;

• We employed a CNN branch to predict the gamma matrix and utilized nonlinear map-
ping to regulate brightness variations, effectively suppressing overexposure during
the enhancement process;
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• Our method outperforms existing techniques on benchmark datasets, achieving signifi-
cant improvements in evaluation metrics such as MAE, PSNR, SSIM, LPIPS (reference),
and NIQE (no-reference), demonstrating its superior efficiency.

The rest of this paper is as follows: Section 2 introduces the proposed network frame-
work. Section 3 explains the loss function used in each component. Section 4 presents the
evaluation of our method via subjective and objective assessments of multiple datasets.
Sections 5 and 6 are dedicated to the discussion and conclusion, respectively

2. Related Works

In general, image enhancement methods can be roughly divided into two categories:
non-learning-based methods and learning-based methods.

2.1. Non-Learning-Based Methods

LLIE plays an irreplaceable role in recovering the intrinsic colors and details, as well
as compressing noise in low-light images. In the following, we provide a comprehensive
review of previous work on low-light image enhancement. Traditional LLIE methods
encompass techniques such as tone mapping [16], gamma correction [17], histogram equal-
ization [18], and those based on the Retinex theory [19–22]. Tone mapping is used to create
more detailed, colorful, and high-contrast images while maintaining a natural appear-
ance. However, linear mapping can lead to the loss of information in bright and dark
areas. Gamma correction employs nonlinear tone mapping to handle the shadows and
highlights in image signals, but selecting global parameters can be difficult and may result
in overexposure or underexposure. Histogram equalization enhances image contrast by
transforming the histogram, but it may yield unsatisfactory results in certain local regions.
Adaptive histogram equalization [23] can map the histogram of local regions to a simpler
distribution for improved effects. The Retinex theory [24] is a computational theory that
simulates human visual perception and can achieve color constancy, color enhancement,
and high dynamic range compression. However, there is still room for improvement in
its processing mechanisms and universality, and its effectiveness may vary in different
scenarios. In general, traditional model-based methods heavily rely on manually designed
priors or statistical models, which may limit their applications.

2.2. Learning-Based Methods

In the field of LLIE, methods based on deep learning have currently become the
mainstream research direction. LLNet [25] represents a seminal contribution from the LLIE
group, which focuses on contrast enhancement and denoising via a depth autoencoder-
based approach. However, it is worth noting that this work does not explore the intricate
relationship between real-world illumination and noise, consequently leading to persis-
tent issues such as residual noise and excessive smoothing. In contrast, Chen et al. [26]
introduced Retinex-Net, a method that decomposes the input image into a reflectance map
and an illumination map. It enhances the illumination map using a deep neural network
for low-light conditions and then applies BM3D [27] for denoising, while Retinex-Net
effectively enhances brightness and image details, it tends to suffer from inadequate image
smoothing and severe color distortion. Lv et al. [28] proposed a comprehensive end-to-end
multi-branch enhancement network (MBLLEN) encompassing feature extraction, enhance-
ment, and fusion modules to boost the performance of LLIE. Drawing inspiration from
super-resolution reconstruction techniques, UTVNet [29] and URetinex [30] introduced
an adaptive unfolding network tailored for robustly denoising and enhancing low-light
images. Another notable approach by Wang et al. [31] introduces a two-stage Fourier-based
LLIE network, FourLLIE. This method enhances the brightness of low-light images by
estimating amplitude transformation in the Fourier space. Furthermore, it leverages a
signal-to-noise ratio (SNR) map to provide a priori information regarding global Fourier
frequencies and local spatial details for image restoration. Notably, FourLLIE is both
lightweight and highly effective in terms of enhancement.
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Recently, zero-shot-learning-based methods has garnered substantial attention due to
their efficiency, cost-effectiveness, and ability to leverage limited image data. For instance,
Liu et al. [32] introduced Retinex-based Unrolling with Architecture Search (RUAS) and
devised a collaborative reference-free learning strategy to discover low-light prior archi-
tectures from a compact search space. Guo et al. [33] presented Zero-DCE, a technique
employing an intuitive nonlinear curve mapping. Subsequently, they improved upon this
method with Zero-DCE++ [34], which is faster and lighter. However, it is important to note
that Zero-DCE relies on multiple exposure training data and does not effectively address
noise, especially in extreme enhancement scenarios. Zhu et al. [35] introduced RRDNet, a
three-branch convolutional neural network designed for restoring underexposed images.
RRDNet employs an iterative approach to decompose input images into their constituent
parts: illumination, reflectance, and noise. This is achieved via the minimization of a
customized loss function and the adjustment of the illumination map via gamma correction.
The reconstructed reflectance and adjusted illumination map are then multiplied element-
wise to generate the enhanced output. In another development, Ma et al. [36] proposed
a learning framework called self-calibrating illumination (SCI) for rapid and adaptable
enhancement in real-world low-illumination scene images. This method estimates a con-
vergent illuminance map via a neural network and, following Retinex theory, divides the
input low-illuminance image element-wise with the estimated illuminance map to derive
an enhanced reflectance map. It is worth noting that while SCI achieves a convergence of
the illuminance map through iterations, it does not explicitly address noise interference
in the process. PSENet [37] offers an unsupervised approach for extreme-light image
enhancement, effectively addressing image enhancement challenges in both overexposure
and underexposure scenarios.

3. The Proposed Network

In the third section, we first introduced our proposed DBENet and provided a more
detailed explanation of the components we proposed in the following subsections.

The architecture of the proposed dual-branch enhancement network (DBENet) is
shown in Figure 3. DBENet consists of two branches (CNN branch and U-Net branch)
and a fusion module. The network follows a divide-and-conquer strategy, where the input
image is transformed from the original RGB color space to the YCbCr color space for
separate processing. The CNN branch handles the luminance component (Y) based on
the nonlinear function. The encoder–decoder branch network processes the chrominance
component (CbCr) starting from global features. Finally, the cascaded fusion features (Yres
and Wres) from both branches are fed into the fusion module to aggregate the enhanced
image.
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Figure 3. The proposed network structure framework diagram.
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3.1. CNN Branch

The CNN branch based on the residual concept consists of three parts: the initial layer
Conv + ReLU, the middle layer Conv + BatchNorm + ReLU, and the final layer Conv +
Sigmoid. The convolutional kernel size is set uniformly to 3 × 3 with a dilation rate of 1,
which enlarges the receptive field of the convolutional network and enhances the feature
extraction ability without increasing the computational burden. The BatchNorm layer
normalizes each channel to reduce inter-channel dependencies and accelerate network
convergence. After obtaining the estimated gamma component γ through the network, we
employ the gamma adjustment scheme [38] to enhance the visibility of details in both dark
and bright regions. The nonlinear function is represented by the following equation:

Yres = 1− (1−Ylow)
1/γ (1)

In Equation (1), Yres represents the enhanced result, and γ and Ylow, respectively,
denote the predicted gamma map and the separated luminance component of the original
image. This function is designed to address the issue of overexposure that often occurs
when enhancing results in the presence of non-uniform lighting and complex light sources
in the original image. Unlike directly applying the gamma function to the original image,
we draw inspiration from dehazing techniques and apply it to the inverted image to obtain
the enhanced output. This approach arises from the shared characteristics of blurred and
low-light images, which often exhibit low dynamic range and high noise levels. Therefore,
dehazing techniques, such as using inverted images, can be employed to enhance and
alleviate this concern.

Within the CNN branch, the process begins by normalizing the image to a 0–1 range.
Subsequently, the network learns the intermediate parameter gamma for predicting the
mapping function and, finally, computes the predicted result. As illustrated in Figure 4’s
mapping curve, when the gamma value is less than 1, it brightens areas with underexposure,
while gamma values greater than 1 darken areas with overexposure. The purpose of this
function is to provide reasonable suppression, allowing the control and mitigation of the
local intensity increase, while simultaneously enhancing the overall image quality.
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Figure 4. Function mapping curves corresponding to different γ values.

3.2. U-Net Branch

Due to the influence of the acquisition environment and equipment, low-illumination
images often contain a lot of noise in dark areas. Noise will reduce image information and
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image quality. In order to better dealing with low-light images, it is necessary to achieve
better denoising and detail preservation effects.

In an effort to reveal the details while avoiding the increase in distortion, we propose
a chromaticity denoising module. The module uses the chrominance channel of the low-
illumination image to mainly reflect the chrominance information of the image, which can
be represented as W. Since the color information distortion is often non-local, in order to
obtain the global color information of the image, the classical U-Net network structure is
used to enrich the spatial information by extracting features of different sizes so that the
semantic information is more diverse. Through the encoder–decoder structure, the U-Net
branch can capture context information at different scales. In addition, the introduction
of skip connections enables U-Net [39] to make full use of feature information and restore
details and boundaries, as shown in Figure 5. In the U-Net branch, the encoder expands the
receptive field of convolution via layer-by-layer pooling operation. In the bottleneck layer
of the network, the larger receptive field can extract the non-local chrominance information
for contrast recovery, and the decoder expands the non-local information to the global via
layer-by-layer upsampling.

128
6432

Figure 5. The structure of the U-Net Branch.

3.3. Fusion Module

In our method, we did not perform the corresponding transformation from YCbCr
to RGB color space on the returned three components. Instead, we did not design a
unique fusion rule but used a fusion module to generate the fused result Ires. As shown
in Figure 6, the architecture of the fusion module consists of 10 layers, with Yres and
Wres concatenated as inputs. Each layer has a convolutional operation, followed by an
activation function. The kernel size of all convolutional layers is set to 3× 3, with a stride
of 1. The padding mode is set to “reflect” to prevent edge artifacts. No pooling layers
are used to avoid information loss. The activation function in the first nine layers is
LeakyReLU with a slope of 0.2, while the activation function in the last layer is Sigmoid.
Furthermore, studies [40] have shown that building short connections between layers
close to the input and layers close to the output can significantly deepen and effectively
train neural networks. Therefore, in the first seven layers, dense connection blocks
are utilized to improve information flow and performance. In these layers, shortcut
direct connections are established in a feed-forward manner between each layer and all
preceding layers, reducing the problem of vanishing gradients.
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Figure 6. The structure of the fusion module. Numbers are the channels of corresponding feature maps.

3.4. Loss Function

During the training phase, due to the similar degradation patterns of the Cb and Cr
chroma channels, for convenience, we use W to represent both the Cb and Cr channels
simultaneously. The loss function of the entire network as follows:

LTotal = L1(Yres, Yhigh) + L2(Wres, Whigh) + L3(Ires, Ihigh) (2)

Among these, I represents the output of the network, and Y and W represent the
outputs of the CNN branch and the U-Net branch, respectively. The subscripts “res” and
“high” indicate the enhanced result and the corresponding normal image.

In Equation (2), the three loss functions, L1, L2, and L3, share the same form. Taking
L1 as an example, we have L1 = L2 + Lssim. The two components represent the mean
square error loss and the structural similarity loss function, respectively. The first term of
the loss function aims to measure the reconstruction error, while the second term measures
the differences in brightness, contrast, and structural similarity between the two images.
Similarly, taking L1 as an example, the L2 loss is defined as shown in Equation (3), while
the definition of the Lssim is presented in Equation (4).

L2 =
∥∥∥Yres −Yhigh

∥∥∥2

2
(3)

Lssim = 1− SSIM(Yres −Yhigh) (4)

where SSIM [41] is the structural similarity, the function is defined as follows:

SSIM(x, y) =

(
2× ux × uy + c1

)(
2× σxy + c2

)(
u2

x + u2
y + c1

)(
σ2

x + σ2
y + c2

) (5)

4. Experimental Results and Analysis

In this part, we describe the experimental results and analysis in detail. First, we briefly
introduce the experimental setting. Then, the qualitative and quantitative evaluation of
paired and unpaired data sets is described. Finally, the experimental results are analyzed.

4.1. Experimental Settings

Parameter Settings: Parameter Settings: All experiments in this paper were conducted
in the same configuration environment, i.e., training environment configuration: Ubuntu
system, 32 GB RAM, and NVIDIA GeForce RTX3090 GPU. The network framework was
constructed with the PyTorch framework and optimized using Admm [42] with parameters
β1 = 0.9, β2 = 0.99, ε = 0.95. In addition, the batch size was 16, the learning rate was 0.0002,



Electronics 2023, 12, 3907 8 of 14

and the training sample size was uniformly adjusted to 256 × 256. A total of 485 randomly
selected paired images from the LOL dataset were used to train our model. The training
epoch number was set to 3000.

Compared Methods: As for the low-light-level image intensifier, we conducted a
visual evaluation of our proposed network on classic low-light image datasets (LOL and
other datasets) and compared it with other state-of-the-art methods and available codes,
including the traditional methods HE [5] and tone mapping [16], deep-learning-based
methods Retinex-Net [26], RUAS [32], Zero-DCE [33], SCI [36], and RRDNet [35].

Evaluation Criteria: We employ quantitative image quality assessment metrics for
comparative analysis to illustrate the effectiveness of the algorithms presented in this paper.
To gauge the disparities in color, structural, and high-level feature similarity, we utilize
MAE, PSNR, SSIM [41], LPIPS [43], and NIQE [44] as measurement indices. In addition,
two paired data sets (LOL and VE-LOL) and two unpaired data sets (LIME and MEF) were
selected for verification experiments to test their performance in image enhancement.

4.2. Subjective Visual Evaluation

Figures 7 and 8 show some representative results of the visual comparison of various
algorithms. Figures 7 and 8 belong to the LOL and VE-LOL datasets, respectively. In
Figure 7, it can be seen that HE has obvious image distortion and color distortion; Retinex-
Net amplifies inherent noise, losing image details; SCI, Zero-DCE, and RRD-Net have
weak brightness enhancement capabilities; tone mapping, RUAS, and our method perform
extremely well in brightness and color aspects. From Figure 8, the enhanced results show
that HE can significantly increase the brightness of low-light images. However, it applies
contrast enhancement to each channel of RGB separately, causing color distortion. Retinex-
Net significantly improves the visual quality of low-light images, but it overly smooths
out details, enlarges noise, and even causes color deviation. Tone mapping can stretch the
dynamic range of the image, but it still has insufficient enhancement for the grandstand
seating section in the image. Although the image effect of RUAS is delicate and has no
obvious noise interference, it does not successfully brighten the image in extremely dark
areas (such as the central seat part). SCI and RRD-Net perform poorly in darker images
and cannot effectively enhance low-light images. Zero-DCE can preserve the details of
the image relatively completely, but the brightness enhancement is not obvious, and the
color contrast of the image is significantly reduced. Compared with the ground truth, our
method not only significantly improves brightness but also preserves colors and details to
a large extent, thereby improving image quality.

(a) Input (b) HE (c) Tone Mapping (d) RUAS (e) Retinex-Net

(f) SCI (g) Zero-DCE (h) RRD-Net (i) Ours (j) Ground Truth

Figure 7. Visual comparisons of different approaches on the LOL benchmark.
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(a) Input (b) HE (c) Tone Mapping (d) RUAS (e) Retinex-Net

(f) SCI (g) Zero-DCE (h) RRD-Net (i) Ours (j) Ground Truth

(a) Input (b) HE (c) Tone Mapping (d) RUAS (e) Retinex-Net

(f) SCI (g) Zero-DCE (h) RRD-Net (i) Ours (j) Ground Truth

Figure 8. Visual comparisons of different approaches on the VE-LOL benchmark.

To comprehensively evaluate various algorithms, we also selected two unpaired
benchmarks (LIME, MEF) for the verification experiments. As shown in Figures 9 and 10,
we show the visual contrast effects produced via these cutting-edge methods under various
benchmarks. From these enhancement results, it is evident that HE greatly improves the
contrast of the image, but there is also a significant color shift phenomenon. Retinex-Net
introduces visually unsatisfactory artifacts and noise. Tone mapping and RRD-Net can
preserve image details, but the overall enhancement strength is not significant, and they
fail to effectively enhance local dark areas. RUAS and SCI can effectively enhance low-
contrast images, but during the enhancement process, they tend to excessively enhance
originally bright areas, such as the sky and clouds in Figure 10, which are replaced by an
overly enhanced white-ish tone. Among all the methods, Zero-DCE and our proposed
method perform well on these two benchmarks, effectively enhancing image contrast while
maintaining color balance and detail clarity.

(a) Input (b) HE (c) Tone Mapping

(d) RUAS (e) Retinex-Net (f) SCI

(g) Zero-DCE (h) RRD-Net (i) Ours

(a) Input (b) HE (c) Tone Mapping

(d) RUAS (e) Retinex-Net (f) SCI

(g) Zero-DCE (h) RRD-Net (i) Ours

(a) Input (b) HE (c) Tone Mapping

(d) RUAS (e) Retinex-Net (f) SCI

(g) Zero-DCE (h) RRD-Net (i) Ours

Figure 9. Visual comparisons of different approaches on the LIME benchmark.
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(a) Input (b) HE (c) Tone Mapping

(d) RUAS (e) Retinex-Net (f) SCI

(g) Zero-DCE (h) RRD-Net (i) Ours

(a) Input (b) HE (c) Tone Mapping

(d) RUAS (e) Retinex-Net (f) SCI

(g) Zero-DCE (h) RRD-Net (i) Ours

Figure 10. Visual comparisons of different approaches on the MEF benchmark.

4.3. Objective Evaluation

We evaluate the results of the proposed method and seven other representative meth-
ods on the LOL and VE-LOL paired datasets. Table 1 shows the average MAE, PSNR,
SSIM, and LPIPS scores of these two public datasets. Among these evaluation indexes,
the higher the PNSR and SSIM values, the better the image quality. On the contrary, the
smaller the MAE and LPIPS, the better the image quality. From Table 1, it is evident that
our method outperforms other approaches significantly on both test sets, demonstrating
the effectiveness of the DBENet framework we proposed.

Table 1. Quantitative comparison on LOL and VE-LOL datasets. The best result is in bold, whereas
the second best results are in underline, respectively.

Dataset Method MAE↓ PSNR↑ SSIM↑ LPIPS↓

LOL

Input 0.3914 7.7733 0.1952 0.4191
HE 0.1879 12.918 0.3369 0.4376

Tone Mapping 0.1517 16.5034 0.5092 0.2312
RUAS 0.1534 16.4047 0.4997 0.1937

Retinex-Net 0.1255 16.7740 0.4196 0.3758
SCI 0.1912 14.784 0.5220 0.2385

Zero-DCE 0.1860 14.7971 0.5573 0.2368
RRDNet 0.2739 11.4037 0.4575 0.2480

Ours 0.1007 19.8625 0.8149 0.1152

VE-LOL (real)

Input 0.3131 9.7168 0.1989 0.3472
HE 0.4901 13.1314 0.3760 0.4140

Tone Mapping 0.1298 17.2469 0.5262 0.2349
RUAS 0.1621 15.3255 0.4878 0.2165

Retinex-Net 0.1313 16.0971 0.4011 0.4368
SCI 0.1470 17.3035 0.5336 0.2021

Zero-DCE 0.1320 17.9992 0.5719 0.2154
RRDNet 0.2089 13.9818 0.4832 0.1896

Ours 0.0099 19.8285 0.8437 0.1086
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In addition, we also evaluated these datasets using the non-reference image quality
evaluator (NIQE), as shown in Table 2. With the exception of Zero-DCE, which had the
best score on some datasets, our NIQE scores outperformed most of the other methods.
Overall, Tables 1 and 2 provide stronger evidence for the effectiveness and applicability of
our proposed method.

Table 2. NIQE scores on low-light image sets (LOL, VE-LOL, LIME, and MEF). The best result is in
bold, whereas the second best results are in underline, respectively. Smaller NIQE scores indicate a
better quality of perceptual tendency.

Method LOL VE-LOL (Real) LIME MEF

HE 8.1541 8.7654 6.8883 3.5638
Tone Mapping 7.8310 7.9683 3.9201 3.5254

RUAS 6.3400 6.5330 5.3642 5.4255
Retinex-Net 8.8781 9.4276 4.7669 4.4097

SCI 7.8766 8.0461 4.2064 3.6277
Zero-DCE 7.7925 8.0449 3.9733 3.3023
RRDNet 7.4777 7.7131 4.0689 3.4796

Ours 5.2485 5.0481 4.3475 4.2920

4.4. Ablation Study

We conducted ablation studies on the dual-branch network, and the data results are
shown in Table 3. The CNN branch is based on spatially extracting local features from
the image, which may overlook global contextual relationships that are crucial for under-
standing the overall representation. On the other hand, the encoder–decoder branch-based
method captures global contextual relationships via skip connections but may overlook
local features, which can affect the fusion outcome. We performed experiments on three
different methods, including a single branch and a combination of both branches. The
experimental results indicate that our proposed dual-branch fusion network outperforms
the CNN branch or U-Net branch methods in all metrics. Therefore, combining the capture
of global contextual relationships and local features can improve the fusion-enhancement
effect for low-light images.

Table 3. Data of ablation experiment.

Methods PSNR SSIM

CNN branch 18.6481 0.7128
U-Net branch 17.5846 0.7813

DBENet 19.8625 0.8149

5. Discussion

To shed light on the core mechanisms underpinning our model’s exceptional perfor-
mance, we introduce DBENet, a deep-learning framework designed explicitly for enhancing
and denoising low-light images. Our model adopts a divide-and-conquer strategy, breaking
down the intricacies into manageable components for separate handling. Furthermore, we
combine the improved gamma correction with deep learning, as illustrated in Figure 11.
The regions highlighted within the red boxes demonstrate that our approach avoids exces-
sive amplification of well-exposed parts of the input image. This approach enables us to
carefully balance image fidelity while enhancing brightness.
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Figure 11. Visual comparison examples of non-uniform illumination images. The top images
represent the input, while the bottom images depict the model’s output. In particular, within the red
rectangles, the light sources are not excessively enhanced.

Moreover, this research opens opportunities for future investigations. These prospects
include the reduction in model inference time, enabling the real-time processing of high-
resolution visuals, and exploring applications in low-light video enhancement. These
endeavors hold significant potential for advancing the frontiers of image and video en-
hancement across a diverse range of real-world scenarios.

6. Conclusions

We propose an end-to-end dual-branch low-light enhancement architecture network
based on the YCbCr color space, inspired by the separation of luminance and chrominance
information in YCbCr color space. This network aims to address the issues of brightness
distortion, color distortion, and noise pollution in enhanced images caused by the high
coupling between brightness and RGB channels in low-light images. The enhancement
network adopts a dual-branch structure to enhance the contrast of the luminance channel
and suppress the noise in the chrominance channel. The experimental results demonstrate
that our proposed method effectively enhances brightness, restores image textures, and
produces images with richer details, more realistic colors, and less noise. Compared to
classical low-light enhancement algorithms, our approach achieves significant improve-
ments in multiple metrics and multiple datasets, while being more lightweight and faster
in processing speed.
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Nomenclatures

DBENet Dual-Branch Brightness Enhancement Fusion Network
FM Fusion Module
MAE Mean Absolute Error
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index Measure
LPIPS Learned Perceptual Image Patch Similarity
NIQE Natural Image Quality Evaluator
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