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Abstract: Aim: Machine learning (ML) and deep learning (DL) predictive models have been employed
widely in clinical settings. Their potential support and aid to the clinician of providing an objective
measure that can be shared among different centers enables the possibility of building more robust
multicentric studies. This study aimed to propose a user-friendly and low-cost tool for COVID-19
mortality prediction using both an ML and a DL approach. Method: We enrolled 2348 patients from
several hospitals in the Province of Reggio Emilia. Overall, 19 clinical features were provided by the
Radiology Units of Azienda USL-IRCCS of Reggio Emilia, and 5892 radiomic features were extracted
from each COVID-19 patient’s high-resolution computed tomography. We built and trained two
classifiers to predict COVID-19 mortality: a machine learning algorithm, or support vector machine
(SVM), and a deep learning model, or feedforward neural network (FNN). In order to evaluate the
impact of the different feature sets on the final performance of the classifiers, we repeated the training
session three times, first using only clinical features, then employing only radiomic features, and
finally combining both information. Results: We obtained similar performances for both the machine
learning and deep learning algorithms, with the best area under the receiver operating characteristic
(ROC) curve, or AUC, obtained exploiting both clinical and radiomic information: 0.803 for the
machine learning model and 0.864 for the deep learning model. Conclusions: Our work, performed
on large and heterogeneous datasets (i.e., data from different CT scanners), confirms the results
obtained in the recent literature. Such algorithms have the potential to be included in a clinical
practice framework since they can not only be applied to COVID-19 mortality prediction but also to
other classification problems such as diabetic prediction, asthma prediction, and cancer metastases
prediction. Our study proves that the lesion’s inhomogeneity depicted by radiomic features combined
with clinical information is relevant for COVID-19 mortality prediction.

Keywords: machine learning; deep learning; radiomics; COVID-19; mortality; HRCT; imbalance
dataset

Electronics 2023, 12, 3878. https://doi.org/10.3390/electronics12183878 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183878
https://doi.org/10.3390/electronics12183878
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2615-381X
https://orcid.org/0000-0003-0768-3249
https://orcid.org/0000-0003-3148-1022
https://orcid.org/0000-0002-3331-2436
https://orcid.org/0000-0003-2731-0300
https://orcid.org/0000-0003-4271-3677
https://orcid.org/0000-0001-9184-306X
https://orcid.org/0000-0001-5319-5495
https://orcid.org/0000-0003-4892-925X
https://orcid.org/0000-0003-3185-7456
https://orcid.org/0000-0002-8622-0439
https://orcid.org/0000-0002-8738-3352
https://doi.org/10.3390/electronics12183878
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183878?type=check_update&version=1


Electronics 2023, 12, 3878 2 of 14

1. Introduction

Since 2020, SARS-CoV-2 respiratory syndrome affected the whole world [1,2]. High-
resolution computed tomography (HRCT) was extensively used to diagnose, assess, and
monitor the progression of the disease. From this medical imaging technique, it is pos-
sible to extract quantitative data, the so-called radiomics. Through this set of numerical
descriptors, we can investigate the possible correlation between the information extracted
directly from the images’ pixel values and the clinical or biological characteristics of the
involved patients [3]. As CT scans were a necessary part of the diagnostic pathway during
the first period of the COVID-19 pandemic, at least in some centers, we can count CT as
a non-invasive tool for enhancing the existing data available to clinicians by means of
advanced mathematical analysis [4–9].

In recent years, machine learning (ML) and deep learning (DL) methods have been rapidly
developing, and their applications to the medical field have increasingly spread [10–13]. Recent
studies [10,14–40] embedded such techniques to predict COVID-19 prognosis: patient
mortality, mechanical ventilation requirement, hospitalization, or need for intubation.
These algorithms were extensively applied for the detection and segmentation of COVID-
19 pneumonia regions from high-resolution computed tomography scans (HRCTs) and
chest X-rays (CXRs) [3,36,37,41–46].

A recent review [10] analyzed studies regarding COVID-19 mortality prediction.
Among the considered works, only Xiao [38] explored the contribution of radiomics to clin-
ical data in improving mortality prediction. In addition to this, other studies [23,35,39,40]
pointed out that radiomic and clinical data combination is a promising way to predict
which triage is suitable for each patient.

Bae [17], Varghese [19], and Shiri [22] showed that useful information to predict
patient prognosis can also be extracted from 2D radiography image sets. On the other hand,
Shiri [42] built a residual network for the detection and quantification of lung pneumonia
damage, while Ozturk’s model [43] aimed to discriminate between COVID-19, general
pneumonia, and no findings.

From recent studies, it is clear that one of the main drawbacks in this emerging field is
the small number of enrolled patients, which makes the obtained results less generalizable
and prone to overfitting [47].

The future clinical utility of these prediction models is their potential support and
aid to the clinician, providing an objective measure that can be shared among different
centers, enabling the possibility of building more robust multicentric studies [48]. More
importantly, those tools will also play a substantial role in developing and assessing
personalized treatments [48,49].

In our work, we built two classifiers to predict COVID-19 mortality: a machine learning
algorithm, or support vector machine (SVM), and a deep learning model, or feedforward
neural network (FNN), were trained to discriminate between deceased and non-deceased
patients. We chose mortality as the outcome for our evaluation since it showed the lowest
bias with respect to other endpoints collectible in the first phase of the COVID-19 outbreak.
We enrolled a relevant number of patients (2348), one of the major strengths of this study,
from several hospitals in the Province of Reggio Emilia, Italy. Our dataset’s intrinsic
inhomogeneity could make our results more robust, displaying a lower overfitting risk.

2. Materials and Methods
2.1. Study Population

The current study is part of a major multicentric study called “Endothelial, neutrophil,
and complement perturbation linked to acute and chronic damage in COVID-19 pneumoni-
tis coupled with machine learning approaches”, code: COVID-2020-12371808.

The project was approved by the Area Vasta Emilia Nord (AVEN) Ethics Committee
(project number dated back to the 28 July 2020: 855/2020/OSS/AUSLRE) and competent
authorities, following the EU and national directives and according to the principles of the
Helsinki Declaration.



Electronics 2023, 12, 3878 3 of 14

It engaged different Units of Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia
and gathered patients from the whole Reggio Emilia province.

Patients’ inclusion criteria were: age > 18 years old; positive reverse transcriptase
polymerase chain reaction (RT-PCR) swab; and an HRCT or CXR to confirm the presence
of pneumonia between the 27 February 2020 and the 30 May 2020, whose positive RT-
PCR swab was dated within 12 days of the CT exam. These identifed an initial cohort
of 2805 patients. After excluding patients with steroids and biological agents’ therapies
ongoing at diagnosis/baseline, we enrolled a final cohort of 2553 patients. Data collection
met the rules of the European General Data Protection Regulation (GDPR) for chest imaging
data and data analysis.

We excluded 205 patients during our work due to issues in extracting the radiomics
features from the associated segmented volumes. The final dataset encompassed the clinical
and radiomic information for 2348 patients. The inclusion criteria applied to the initial
cohort are reported in Figure 1.

Figure 1. A flowchart showing patient inclusion criteria.

Table 1 shows clinical variables (such as gender and age) and outcome (death) for our
cohort of 2348 patients. Patient deaths were clinically attributed to COVID-19 disease [50]. It
is worth noting that our dataset presents a significant imbalance regarding the investigated
outcome (death by COVID-19): 287 (12%) deceased patients and 2061 (88%) survived
patients. This disparity will be considered during our model training [51].

Table 1. Population features summary.

Population Features Number

Total patients 2348
Survived patients 2061 (88%)
Dead patients 287 (12%)
Mean Age ± sd [min–max] 63 ± 16 [18–100]
Mean Survived Age ± sd [min–max] 61 ± 16 [18–99]
Mean Dead Age ± sd [min–max] 80 ± 10 [45–100]
Women 1085 (46%)
Dead women 98 (9%)
Men 1263 (54%)
Dead men 186 (15%)
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2.2. Clinical Features Collection

Clinical data, including age, sex, comorbidities (such as chronic obstructive pulmonary
disease (COPD), vascular diseases, heart failure, etc.), and C-reactive protein (CRP) level
at the time of hospital admission, were extracted from institutional informative systems
and patient clinical charts. Radiological data, including the presence of ground glass
opacities (GGO), consolidations, and parenchyma involvement (PI) score (<60% or >60%),
were extracted from structured reports of the hospital admission CT scan. We removed
all clinical features with more than 20% missing values. We replaced the other missing
values with the mean or mode of the corresponding feature distribution, depending on
whether the variables were continuous or categorical [52]. Eventually, the clinical dataset
was composed of the 19 clinical features presented in Table 2.

Table 2. Clinical and radiological features comprising the clinical dataset.

Clinical Features

Age Sex
CRP value Obesity
Vascular Diseases Dementia
Heart Failure COPD
Dyslipidemia Cancer
Arrhythmias Cardiac Ischaemia
Cerebrovascular diseases Diabetes
Chronic Renal Failure Hypertension
Ground Glass Opacities Consolidations
PI > 60%

2.3. Radiomic Features Collection

Eight different scanners were employed to acquire the HRCT images, following a
breath-hold acquisition protocol: BrightSpeed, Discovery MI, LightSpeed Pro 32 (GE
Medical Systems, Chicago, IL, USA), Brilliance 64, iCT 128, Ingenuity CT (Koninklijke
Philips N.V., Eindhoven, the Netherlands), Emotion 16, and SOMATON Definition Edge
(Siemens, Munich, Germany). All devices are periodically tested through standard quality
assurance programs according to national and international guidelines [53,54].

We segmented each HRCT image using Coreline Soft (Seoul, Republic of Korea)
software, AVIEW (https://www.corelinesoft.com/en/lung-texture/ [55]). AVIEW lung
cancer screening (LCS) is a medical imaging DL-based software that provides automated
lung nodule detection, segmentation, and analysis from low-dose CT chest images. It
segments different damaged lung parenchymal volumes with a thresholding technique, as
previously reported [56]. Figure 2 shows two examples of AVIEW outputs from our cohort.

AVIEW software can discriminate healthy parenchyma from 5 types of lung abnor-
malities: ground glass opacities (GGOs), consolidations, reticular patterns, honeycombing,
and emphysema [57,58]. Among those, consolidations, reticular patterns, and GGOs are
clinically used to indicate COVID-19 lung pneumonia.

GGOs are hazy areas with slightly increased lung density without obscuration of
bronchial and vascular structures [59]. They may be caused by partial air space-filling or
interstitial thickening. GGOs are frequently accompanied by other features or patterns,
including reticular and/or interlobular septal thickening and consolidation. Consolidation
refers to alveolar air being replaced by pathological fluids, cells, or tissues, manifesting
as an increase in pulmonary parenchymal density that obscures underlying vessels and
airway walls [59]. Recent studies highlighted that GGO could progress to consolidations
so that consolidations can be considered as an indication of disease progression. Reticular
pattern refers to thickened pulmonary interstitial structures, such as interlobular septa and
perilobular lines, manifesting as linear opacities on CT images [59].

The software generates all masks using the NIFTI (Neuroimaging Informatics Tech-
nology Initiative) format. We extracted a large number of widely-used radiomic features

https://www.corelinesoft.com/en/lung-texture/
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through the freeware pyRadiomics (available at: https://pyradiomics.readthedocs.io/,
accessed on 5 September 2023): first-order statistics (18), shape-based (14), gray-level co-
occurrence matrix (GLCM, 24), gray-level run length matrix (GLRLM, 16), gray-level size
zone matrix (GLSZM, 16), and gray-level dependence matrix (GLDM, 14), using Pyra-
diomics package version 3.0.1 (Python v. 3.7.9). Through our homemade software, we
also manually set both the pre-processing parameters and ten different kernels (Log 1.0,
Log 3.0, and eight wavelets) for image filtering. From the original and filtered image data,
we obtained a total of 5892 radiomic features for each HRCT.

Figure 2. 2D ((A) axial, (C) coronal, and (D) Sagittal) and 3D (B) segmentations of a COVID-19
patient. Green: healthy parenchyma; red: consolidations; yellow: ground glass opacities; blue:
reticular pattern, light blue: emphysema.

2.4. Machine Learning Pipeline

In the first step, we kept clinical and radiomic data split into two different datasets,
as shown in Figure 3. Then, in each dataset separately, we standardized each feature,
subtracting the mean and dividing it by the standard deviation of the corresponding
feature distribution. We excluded features with a Spearman correlation coefficient >0.98
from our subsequent analyses. Finally, we split our data into two subsets, one for classifier
training (70%, n = 1643) and the other for classifier validation (30%, n = 705). Thus, we
performed feature selection for the COVID-19 mortality prediction outcome to the training
datasets (10-fold cross-validation least absolute shrinkage and selection operator (LASSO)).
We generated a new dataset from the remaining features containing clinical and radiomic
selected features. Thus, for our training, we used these three different datasets. In this work,
we chose the support vector machine (SVM) algorithm due to the class imbalance of our
data. We trained our SVM model with two subsequent stratified 10-fold cross-validations
to fine-tune its hyperparameters, which were then employed in the final training phase.
Table 3 shows the set of hyperparameters chosen for the training. In this work, we will
call the model trained with radiomic data only the Radiomic Model, the one trained with
clinical data only the Clinical Model, and the one trained with the combination of both
features the Clinical–Radiomic Model. We evaluated our model performances on the testing
sets (holdout).

https://pyradiomics.readthedocs.io/
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Figure 3. Machine learning pipeline scheme.

Table 3. Best hyperparameter values tuned during SVM training for death prediction.

Hyperparameter Value

C 15
gamma 0.0001
kernel rbf
class weight balanced

The SVM training session lasted 2260 s, while the testing required less than 1 s.
Table 4 shows the results in terms of four metrics: area under the curve (AUC, which is

a measure of the performance of a classification model in all classification thresholds [60]),
accuracy (ACC, (1)), sensitivity (SENS, (2)), and specificity (SPEC, (3)).

Table 4. Performance metrics of the ML classifier (SVM) and DL algorithm for the holdout testing
sets (clinical dataset, radiomic dataset, and the set containing both). AUC: area under the curve, ACC:
accuracy, SENS: sensitivity, and SPEC: specificity. The best result obtained for each metric is bolded.

Machine Learning Deep Learning

Clinical Radiomic Clinical-
Radiomic Clinical Radiomic Clinical-

Radiomic

AUC 0.794 0.771 0.803 0.825 0.844 0.864
ACC 0.770 0.800 0.813 0.777 0.777 0.766
SENS 0.763 0.809 0.816 0.733 0.698 0.814
SPEC 0.826 0.733 0.791 0.784 0.788 0.759

All metrics were computed using sklearn.metrics library (available at: https://scikit-
learn.org/stable/modules/model_evaluation.html, accessed on 5 September 2023).

ACC =
TP + TN

TP + TN + FP + FN
(1)

SENS =
TP

TP + FP
(2)

SPEC =
TN

TN + FP
(3)

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
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2.5. Deep Learning Pipeline

We developed a feedforward neural network (FNN) model to compare its performance
with our machine learning model. The architecture is synthesized in Figure 4.

We used a grid-search strategy to identify the best model configuration and hyper-
parameters. We chose the optimal model as the one that maximized the result of a five-fold
cross-validation, with the ROC AUC as the metric function. The grid search was performed
on the training data only. The hyperparameters included in the grid search were: number
of layers, number of neurons per layer, dropout probability, number of epochs, learning
rate, and batch size. Figure 4 shows the number of layers and neurons. The best dropout
probability found was 0, so no dropout was used; the optimal number of epochs was 15,
the learning rate was 10−3, and the best batch size found was 32. The total number of
parameters of the network is 143,080.

Figure 4. Neural network architecture. The network is divided into two separate branches for the
independent analysis of the radiomic and clinical features. The radiomic branch has a higher number
of hidden layers and neurons because radiomic features are way more numerous than clinical ones.
The outputs of the two branches are then concatenated and passed to a final dense layer to produce a
comprehensive output.

To account for class imbalance, the model loss was weighted to make the model pay
more attention to the minority class. The final network had two branches: one to process the
radiomic features (radiomic branch) and the other to process the clinical features (clinical
branch). The radiomic branch was made of three consecutive fully connected layers with
100, 50, and 10 neurons each; the clinical branch had only a fully connected layer with
ten neurons because the clinical features were significantly fewer than the radiomic ones.
The final layers of the two branches were then concatenated and connected to the output
layer of the network, which identified the patient’s probability of belonging to one of the
two classes. Given the independent nature of the two branches, building two separate
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versions of the original network was also possible: one with the radiomic branch only
and the other with the clinical branch only. These were built to evaluate the impact of the
different feature sets on the final performance of the network and to compare this to the
machine learning results.

In this work, we will call the Clinical–Radiomic Model the one with the two branches,
the Radiomic Model the one with the radiomic branch only, and the Clinical Model the one
with the clinical branch only.

The network was trained on 70% of the data and tested on the remaining 30%. No
feature selection was performed on the data used to train and test the network, i.e., all
of the available features were employed. All of the features were standardized using the
mean and standard deviation values calculated on the training set.

FNN training session needed about 1 s per epoch; then, it took less than 1 s to test the
trained model.

The results are collected in Table 4 in terms of the aforementioned metrics: area under
the curve (AUC) score, accuracy (ACC), sensitivity (SENS), and specificity (SPEC).

3. Results

To validate our obtained models, we tested their predictions on a set of data not used
during the training session (test set). Table 4 shows the metrics for the test set using only
the clinical features, only the radiomic features, or a combination of both.

Four different metrics are presented: area under the curve (AUC), accuracy (ACC, (1)),
sensitivity (SENS, (2)), and specificity (SPEC, (3)). The highest obtained score for each
metric and model is highlighted in bold.

4. Discussion

Prediction models in a clinical setting aim to support the physician in decision-making
regarding personalized patient care pathways. This framework could help establish the
stage of the ongoing disease in a screening scenario (diagnosis prediction) or to highlight
patients with a worse prognosis to choose a more intense therapy (prognosis prediction)
promptly. However, especially in the latter case, their introduction into clinical routine is
still delayed by the models’ reliability and accuracy when predicting new cases. Nonethe-
less, an automated tool is still a fundamental asset to standardize and reduce the intrinsic
intra-observer variability that characterizes these processes. Deep learning and machine
learning techniques are increasingly leading in predicting the outcome of COVID-19 pa-
tients [10]. In fact, recent studies reported good results for predictive models used in COVID
diagnosis and the prediction of severity, prognosis, length of hospital stay, intensive care
unit admission, or mechanical ventilation modes [3,10,25,27–40,46].

Our results, collected in Table 4, align with the recent literature, showing that our
models can achieve good prediction accuracy. The machine learning and deep learning
algorithms performed similarly, with the latter slightly outperforming the former. We can
explain this result with both our parametrization strategy for our outcome (binary) and
the size of our training cohort: the number of patients and the low complexity of the task
(2 classes) advantaged the machine learning model. On the other hand, the deep learning
model, which is usually employed for more complex tasks (multi-class or segmentation
tasks) with a bigger training cohort, still performed acceptably given the task, but it could
not surpass the other model. Furthermore, our DL algorithm took as input the same
features as the ML one; they are usually able to manage the whole image data (i.e., pixel
values), which could also be the reason why the models’ performances were similar. This
interesting result can be interpreted as a potential new perspective for our future studies
as we can explore how the DL algorithm can perform in more complex tasks and with
different inputs. The Clinical–Radiomic Model reached higher AUCs than the other two,
both for the ML and DL algorithms, confirming that combining radiomic information with
clinical data can improve the model prediction. The Clinical–Radiomic Model obtained the
highest AUC score in both and a significantly higher SENS score. The ACC score is similar
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for all three models, with the Radiomic and the Clinical Models achieved a slightly higher
result than the Clinical–Radiomic Model; however, the accuracy metric is less significant
than the other metric with data imbalance.

Palmisano et al. [26] retrospectively enrolled 1125 COVID-19 adults to develop a user-
friendly AI platform for automatic risk stratification of COVID-19 patients. Their results
are based on clinical data and CT automatic analysis and are expressed as performances in
predicting patient outcomes. Their best model showed an AUC of 0.842, which is slightly
lower than the one reached by our deep learning algorithm in the Clinical–Radiomic
model but still consistent with our results. Our results are expected given the present
literature [10,20,25,27–33,35–37,46,61–74]. Table 5 collects the performance of the most
recent works regarding ML and DL methods for COVID-19 mortality prediction. As can be
seen, our results are in line with those presented, considering that our method relies on
external validation. Moreover, compared with most of these studies, our study had a larger
cohort for training the models.

Table 5. Performance Metrics (AUC, ACC, SENS, SPEC) of recent machine learning and deep
learning models for COVID-19 mortality prediction. AUC: area under the curve, ACC: accuracy,
SENS: sensitivity, and SPEC: specificity.

Model AUC ACC SENS SPEC

Our model ML 0.803 0.813 0.816 0.791
Our model DL 0.864 0.766 0.814 0.759
Vaid et al., 2020 [61] 0.890 0.976 0.442 0.991
Abdulaal et al., 2020 [62] 0.901 0.862 0.875 0.859
Abdulaal et al., 2020 [63] 0.869 0.837 0.500 0.966
Ko et al., 2020 [64] - 0.930 0.920 0.930
Di et al., 2020 [65] - 0.834 0.950 0.308
Banoei et al., 2021 [29] 0.910 0.750 0.900 0.870
Booth et al., 2021 [66] 0.930 - 0.760 0.910
Li et al., 2021 [67] 0.918 0.799 0.774 0.903
Ning et al., 2020 [68] 0.856 0.787 0.882 0.783
Bertsimas et al., 2020 [69] 0.902 0.850 - 0.866
An et al., 2020 [20] 0.962 - 0.920 0.918
Guan et al., 2021 [70] - 0.991 0.876 -
Vaid et al., 2021 [71] 0.836 0.780 0.805 0.702
Hu et al., 2021 [72] 0.895 - 0.892 0.687
Ikemura et al., 2021 [73] 0.903 - 0.838 0.836
Tezza et al., 2021 [74] 0.840 - 0.788 0.774
Stachel et al., 2021 [75] 0.990 0.960 0.240 0.970

Regarding ML models, the future perspective is to validate these data on new patients
and gradually introduce prediction tools in the clinical practice to support the physi-
cian’s decision.

As previously stated, another future direction of this work could be to explore fur-
ther the potential of the DL algorithm, which proved to work efficiently with previously
extracted features. The next step could be to perform a more complex task (i.e., survival)
or provide the image data directly to the network without pre-computing features. This
course of action could provide several advantages, for example, avoiding the pitfalls usu-
ally typical in models dealing with radiomic features extracted from images rather than the
original pixel values, such as repeatability and reproducibility issues.
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5. Conclusions

In this study, we proposed a technique providing a user-friendly and low-cost tool for
COVID-19 mortality prediction. We presented a comparison between a machine Learning
and a deep learning framework that can be used not only for COVID-19 mortality prediction
but also for other classification tasks such as diabetic prediction, asthma prediction, and
cancer metastases prediction. Moreover, even if the COVID-19 outbreak seems to be under
control and the importance of the CT images in the diagnosis step decreased, imaging-based
models could still be relevant, for example, in serious cases where CT imaging could remain
a viable solution. We obtained similar performances for both ML and DL algorithms, which
means that our algorithms have the potential to be included in a clinical practice framework.
According to our results, clinical and radiomic information are found to be predictors of
COVID-19 mortality. The best performance was obtained with a combination of clinical
and radiomic data, both for ML and DL, with AUCs equal to 0.803 and 0.864, respectively.

Future works should further explore the potential of DL algorithms, for example,
directly using image pixel data and gathering data from other centers to validate our results
on external data.
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