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Abstract: A vehicular ad hoc network (VANET) has significantly improved transportation efficiency
with efficient traffic management, driving safety, and delivering emergency messages. However,
existing IP-based VANETs encounter numerous challenges, like security, mobility, caching, and rout-
ing. To cope with these limitations, named data networking (NDN) has gained significant attention
as an alternative solution to TCP/IP in VANET. NDN offers promising features, like intermittent
connectivity support, named-based routing, and in-network content caching. Nevertheless, NDN in
VANET is vulnerable to a variety of attacks. On top of attacks, an interest flooding attack (IFA) is one
of the most critical attacks. The IFA targets intermediate nodes with a storm of unsatisfying interest
requests and saturates network resources such as the Pending Interest Table (PIT). Unlike traditional
rule-based statistical approaches, this study detects and prevents attacker vehicles by exploiting a
machine learning (ML) binary classification system at roadside units (RSUs). In this connection, we
employed and compared the accuracy of five (5) ML classifiers: logistic regression (LR), decision tree
(DT), K-nearest neighbor (KNN), random forest (RF), and Gaussian naïve Bayes (GNB) on a publicly
available dataset implemented on the ndnSIM simulator. The experimental results demonstrate that
the RF classifier achieved the highest accuracy (94%) in detecting IFA vehicles. On the other hand, we
evaluated an attack prevention system on Python that enables intermediate vehicles to accept or reject
interest requests based on the legitimacy of vehicles. Thus, our proposed IFA detection technique
contributes to detecting and preventing attacker vehicles from compromising the network resources.

Keywords: vehicular network; named data networking; interest flooding attack; machine learning

1. Introduction

The exponential global surge in the use of conventional vehicles has undoubtedly
enhanced individual convenience but has also escalated the risk of accidents [1]. According
to World Health Organization (WHO) statistics from 2023, fatalities from road accidents
account for 29% of all reported injuries [2]. To address these challenges, the deployment
of a vehicular ad hoc network (VANET) [3] has emerged as a promising solution. The
primary objective is to reduce road accidents and optimize traffic flow through efficient
vehicle-to-everything (V2X) communication [4]. The onboard unit (OBU)-equipped vehicles
possess robust communication, storage, and procession capabilities, effectively handling
data transmission, storage, and computational tasks. In addition to safety applications
(e.g., collision warning messages, emergency information dissemination, traffic conditions,
speed limit warnings, and lane change assistance), vehicles can provide infotainment
services [5].
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Despite numerous features, VANET faces various challenges due to the traditional
transmission control protocol/internet protocol (TCP/IP). The existing TCP/IPs encounter
issues such as intermittent connectivity, scalability, security, and privacy concerns in the
context of VANETs. Specifically, a vehicular environment requires efficient crucial informa-
tion dissemination and the ability to handle a large number of users within challenging
intermittent conditions. In addition to its limitations, TCP/IP operates as a host-centric
network, which adds an additional burden and worsens the overall network latency [6].
Consequently, existing IP-based network architecture is inefficient for VANET. Alterna-
tively, named data networking (NDN) [7] has emerged as a promising network architecture
of the information-centric network (ICN) [8] for VANET. Instead of relying on IP addresses
for establishing connections and data transmission, NDN employs a unique hierarchical
naming approach (e.g., /VNDN/infotainment/music/album/video.mp4) that prioritizes
content over its host. This content-centric model proves advantageous. One notable feature
of NDN is its in-network content-caching mechanism, which enables vehicles to retrieve
content from nearby nodes rather than solely relying on the original host. Table 1 compares
IP-based communication limitations and NDN-based solutions address those limitations.

Table 1. Limitations of TCP/IP communications and NDN-based solutions.

Limitations of TCP/IP Communication NDN-Based Solutions

It is host-oriented It is a content-oriented network interested in
content rather than the host.

It relies on IP addresses. NDN uses unique content names that reduce the
dependency on IP addresses.

It is connection-oriented.
NDN is a connectionless network architecture
that does not require establishing explicit
connections between two ends.

TCP/IP faces intermittent connectivity issues
The in-network content caching and name-based
forwarding strategy support intermittent
connectivity.

It secures the channel.
NDN secures content with a cryptographic
signature rather than the
communication channel.

It has limited scalability in large networks

NDN’s architecture allows for scalable content
retrieval through its distributed caching
mechanism, improving performance in
large-scale networks.

Lack of inherent support for multi-cast.
NDN inherently supports multi-cast
communication, enabling efficient dissemination
of content to multiple recipients simultaneously.

NDN is one of the five research endeavors supported by the National Science Founda-
tion (NSF) within its future internet architecture program, encompassing the fundamental
principles of information-centric networking (ICN). In 2009, VAN Jacobson initially pro-
posed the concept of a content-centric network [9], which evolved into NDN under the
NSF-funded future internet architecture project [10] as a future internet architecture [11].
NDN uses two types of packets: interest and data packets. The content consumer always
initiates the interest packet to request specific data, and the data packet contains the content
in response to the interest packet. As mentioned below, nodes within NDN are catego-
rized into three categories according to the situation. (1) Content consumer node: It is a
content-intensive entity that initiates communication by broadcasting an interest request
for specific content. (2) Content producer node: The content producer node matches the
requested content and provides it to the content consumer. (3) Intermediate node: The
intermediate node in the NDN architecture serves two distinct roles based on the context of
the received packet. Firstly, when the requested content name matches the available content
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name within the node’s storage, it functions as a content producer, directly providing the
requested data to the content consumer node. Secondly, if the intermediate node does
not have the requested content, it acts as a relay node, forwarding the interest packet
to the next hop in the network. This dynamic behavior of intermediate nodes facilitates
efficient content retrieval and distribution, contributing to the overall robustness of the
NDN network.

In addition, every NDN node contains three data structures:
Content store (CS): The CS allows the NDN node to cache data packets and serve the

content consumers without forwarding interest requests to the content producer every time.
The CS reduces network congestion and improves content retrieval.

Pending interest table (PIT): The PIT stores unsatisfied interest requests and their
interfaces in a table until the interest request is satisfied.

Forward information base (FIB): The FIB is responsible for forwarding unsatisfied
interest packets to the next hops. Unlike traditional IP-based routing, NDN’s FIB entries
are indexed with name prefixes rather than IP addresses, as described in [12]. The entries
in FIB contain next-hop information. This feature allows routers to direct interest packets to
one or multiple next-hops, depending on the forwarding strategy, enabling efficient multi-
path forwarding in the network. Figure 1 shows the NDN communication architecture in
vehicular NDN (VNDN).

Figure 1. VNDN transmission architecture.

Regardless of the fact that NDN has numerous features, it is highly vulnerable to
various attacks, such as interest flooding attacks (IFAs) [13], content poisoning attacks
(CPAs) [14], man-in-the-middle attacks [15], and illusion attacks [16]. On top of these
attacks, IFA stands out as one of the most prevalent in VNDN. The IFA is a variant of a dis-
tributed denial of service (DDoS) attack, where a content consumer initiates IFA in VNDN
with a storm of non-existing interest requests. The IFA deliberately depletes resources,
including PIT, CS, network bandwidth, and producer resources. This attack is executed by
inundating the network with excessive interest packets. By overwhelming the system, the
attacker exhausts NDN resources, rendering them inaccessible to legitimate consumers and
causing disruption in the network’s operation [17]. IFA attackers can consume network
resources by employing two distinct techniques: (1) a non-existing interest packet: In this
approach, the attacker generates random interest packets that contain invalid requests,
such as /VNDN/infotainment/music/5453.txt, where the attacker requests a text file in
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the music prefix. These packets refer to content that does not exist in the network. Conse-
quently, intermediate nodes cannot resolve and retain such requests in the PIT. This results
in unnecessary resource consumption and potential network congestion. Thus, PIT can be
choked with forged interest packets. (2) Valid data request: The attackers target content
producers with enormous legitimate interest packets using forged nounce [13]. For exam-
ple, an attacker initiates an interest packet with /VNDN/infotainment/music/nounce,
where nounce is a random value. Using such forged interest packets significantly impacts
the producers and network routers by traversing the network resources. Figure 2 visually
represents IFA in VNDN, where the attack scenario poses a significant threat to the commu-
nication infrastructure of connected intermediate vehicles using a non-existing and valid
interest packet.

Figure 2. IFA in VNDN.

To address the challenge of IFA in NDN, researchers have explored various approaches,
including threshold-based IFA detection [18], statistical-based countermeasures [19],
reputation-based IFA detection [20], rating-based approaches [21], and charging/rewarding
mechanisms [22]. Although these approaches have contributed significantly to detecting
IFA in NDN, they have not provided an efficient solution for accurately detecting and
preventing such attacks in the VNDN. On the other hand, ML is gaining momentum
in anomaly detection [23] in various fields, including the Internet of Things (IoT) [24],
healthcare [25], image processing [26], spam detection [27], unmanned aerial vehicles
(UAVs) [28], VANET [29,30], NDN [31] and so on. Specifically, ML has yielded substantial
advancements by significantly enhancing capabilities in diverse aspects, including intrusion
detection [32], optimal resource allocation [33], offloading strategies, and precise mobility
pattern forecasting. Despite its widespread application in various domains, none of the
previously mentioned research has explored the use of ML in VNDN. Unlike traditional
approaches for detecting IFA in NDN, we are the first to propose an ML-based efficient
solution to detect and prevent IFA in VNDN. Considering the challenges and limitations
highlighted in the existing literature, the main focus of this research is to propose a resilient
network framework that effectively tackles IFA through ML classifiers. To achieve this, we
evaluate and propose the most accurate ML classifier for CPA detection. The significant
contributions of this research are as follows:

• We propose an ML-based classification technique to identify attackers and legitimate vehicles.
• We evaluate the accuracy of five ML classifiers and propose the most accurate algo-

rithm for IFA detection.
• Based on our ML-based detection results, we propose a simulation-based IFA preven-

tion system in intermediate nodes.

By focusing on the detection and prevention of IFA in VNDN, this research aims
to fortify the resilience of vehicular communication systems. Our ML-based approach
mitigates the immediate threats posed by IFAs and establishes a foundation for secure
VNDN ecosystems. The subsequent sections of this paper are structured as follows:

Section 2 presents a detailed existing work and their limitations in detecting and
preventing IFA. Section 3 delves into a comprehensive analysis of the system model,
network elements, and proposed ML-based IFA detection and prevention system. We
provide IFA detection and prevention results in Section 4 and conclude the paper in
Section 5. Finally, Section 6 presents future work.
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2. Related Work

The scientific community has seen a marked surge in interest and contributions toward
combatting cyber-attacks [34], specifically in the VNDN realm [35]. However, developing
and implementing efficient security measures for safeguarding VNDN is in its infancy.
Specifically, ML techniques have been explored in detecting attacks [36,37]. Reference [38]
discovered IFA in NDN by expressing how a huge number of interest packets can over-
whelm the network. Subsequently, numerous research papers have delved into the IFA
using several techniques; for example, the authors in [31] proposed an ML-based classifica-
tion technique for detecting IFA on tree topology (small-scale topology) and Rocketfuel
ISP topology (large-scale topology). Another solution for detecting IFA presented a central-
ized controller-based approach [39]. In this mechanism, a router maintains an unsatisfied
interest request threshold system. Based on a predetermined threshold value, a router
decides to identify IFA nods. However, this approach has certain limitations. The metrics
used to identify IFA nodes may lead to false detection, and the system might fail to detect
IFA, especially in scenarios with significant legitimate traffic or when content producers
are unavailable. These shortcomings highlight the need for more advanced and robust
detection mechanisms to combat IFA in VNDN effectively. Similarly, in reference [40], the
authors presented a threshold-based system for identifying IFA within a local PIT. Instead
of relying on a centralized router, the PIT manages a predetermined threshold system in this
approach. The threshold-based approach allows the local PIT to assess incoming interest
requests autonomously and identify potential IFA scenarios based on the predefined thresh-
old criteria. This solution aims to enhance the efficiency and accuracy of IFA detection
within the network by decentralizing the detection process and employing local PIT mech-
anisms. However, it is essential to consider the trade-offs and limitations of this approach,
particularly in terms of scalability and adaptability to various network conditions.

In order to prevent PIT from exhaustion, Wang et al. [41] proposed decoupled le-
gitimate and timeout interest requests. Each router maintains a timeout interest request
in this architecture in an m-list. If the prefix is already in the m-list, the router forwards
the interest packet outright, avoiding PIT storage. While this approach mitigates some
of the impacts of an IFA, it fails to provide a comprehensive solution to thwart such at-
tacks entirely. Additionally, legitimate requests are adversely affected by this approach.
In addition, attackers can misuse the router’s resources by forging names to flood the
m-list, causing the solution to become inefficient. In contrast, few authors have proposed a
hypothesis-testing theory-based approach in the literature; for example, the authors in [42]
exploited hypothesis-based testing theory for formulating a comprehensive likelihood
static hypothesis test theory (SHTT) tailored to address evolving attacks, particularly in in-
corporating NDN with TCP/IP, which is difficult to address using conventional approaches.
Similarly, the authors in [43] tackled IFA by employing a detection approach based on
SHTT. The test is free from any reliance on router characteristics or measured values. The
framework comprises two main scenarios: (i)When all traffic parameters are known, an
optimal test is formulated, and its statistical performance is thoroughly evaluated. (ii) The
framework introduces a linear parametric model, which estimates unknown parameters
and enables the development of a practical test. However, it is crucial to recognize that
the scheme assessment is restricted to a basic binary tree graph with merely eight clients
and one adversary. Consequently, assessing the scheme’s efficacy under more extensive
networks or during distributed attacks presents considerable challenges.

Meanwhile, the authors in [44] presented a Markov-based IFA detection system.
This approach involves creating a space vector determined by the fluctuations in the PIT
occupancy rate, and the network’s state is evaluated using a quantized value. By calculating
the Euclidean distance, the system distinguishes between legitimate and malicious interest
packets, achieving a high detection rate. However, a notable drawback of this approach is
its significant consumption of network resources, particularly when identifying interest
packets within a large volume of NDN network traffic.



Electronics 2023, 12, 3870 6 of 19

Moreover, Xin et al. [45] introduced a cumulative entropy-oriented IFA detection
system that monitors abnormal interest requests and identifies malicious prefixes using
entropy theory. Similar to our proposed work, few researchers have incorporated ML
for IFA detection in NDN. For instance, Azmi et al. [46] proposed a feature selection
technique for IFA detection. In this research, the authors employed an information gain
and data reduction approach to identify pertinent features from the UNSW-NB 15 dataset,
specifically for detecting DDoS attacks. The dataset underwent testing using three distinct
classification methods: artificial neural network (ANN), naïve Bayes (NB), and decision
table. The experiment’s outcomes were thoroughly analyzed, and evaluation metrics,
such as true positive (TP), false positive (FP), precision, and accuracy were utilized to
categorize the data into two classes: attacks and normal. By employing this methodology,
the researchers aimed to develop an effective DDoS attack detection system that relies on
relevant characteristics, which can be classified with high precision and accuracy. Similarly,
the authors in [47] leveraged ML for detecting IFA. The authors collected a dataset with
12 features implemented in the ndnSIM simulator and performed the accuracy of three ML
classifiers, including K-nearest neighbor (KNN), decision tree (DT), and ANN. The results
showed that DT outperformed other classifiers with 85.42% accuracy while KNN achieved
81% and ANN yielded 80% accuracy. Although the proposed ML-based IFA detection
system is important, it could not achieve high accuracy.

Different from traditional rules-based, threshold-based, and other partial ML-based
approaches for detecting IFA, we propose an efficient IFA detection mechanism that exploits
five ML classifiers and depicts an accurate algorithm for IFA detection. Additionally, we
propose a prevention mechanism to cope with IFA in VNDN. To the best of our knowledge,
this study presents the first contribution that leverages ML classifiers for detecting and
preventing IFA attacker vehicles in VNDN. Thus, we address the limitations of existing
research work by exploiting a novel ML-based classification system in detecting and
preventing IFA in VNDN. A comprehensive list of notations used throughout this paper is
presented in Table 2.

Table 2. Notations and their descriptions.

Notation Description

CCR Content Consumer Reputation

DPkt Data Packet

Ipkt Interest Packet

Cnt Content

CC Content Consumer

CCn
R Content Consumer New Reputation

CCn
R − 1 Content Consumer Previous Reputation

AgrCCR Aggregate Content Consumer Reputation

3. System Model

This section is structured into three interconnected and comprehensive subsections,
each contributing to the overarching goal of our research. Initially, we present the de-
sign of a purpose-built network architecture exclusively for IFA detection within VNDN
environments. This architecture is a fundamental framework for efficient data analysis
and processing in VNDN. In the second subsection, we leverage ML binary classification
techniques to identify attacker and non-attacker vehicles using five ML classifiers. By
employing advanced ML techniques, we aim to achieve high accuracy and reliability in
identifying potential IFA attacker vehicles amidst the complex data flow within VNDN.
Finally, the third subsection introduces our proposed algorithm for IFA prevention, which
proactively mitigates the impact of potential intrusions. This algorithm contributes to the
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enhanced security and resilience of the VNDN system, safeguarding the network against
IFA attacks and fostering a safer and more trustworthy VNDN.

3.1. Proposed Network Architecture

In our proposed network architecture, the intermediate node receives all interest
packets, including both satisfied and unsatisfied ones. These packets are then shared with
roadside units (RSUs) through a push-based beacon message dissemination system. The
interaction between intermediate nodes and RSUs, particularly in terms of communication
and data sharing, is elaborated below:

Vehicle to RSU Communication

The existing NDN content propagation is a pull-oriented content retrieval. To extend
the scope of current NDN from a pull-based content retrieval to a push-based content
propagation, beacon message propagation has been proposed in the literature [48,49],
where nodes can broadcast messages to neighboring nodes without considering interest
packets. Considering the push-based beacon message dissemination in VNDN, we design
a network architecture as depicted in Figure 3, where an intermediate node receives an
interest packet from the content consumer and queries RSU about the legitimacy of the
content consumer. Based on the reputation of the content consumer, the intermediate
vehicles decide to accept or reject the interest request.

Figure 3. Vehicle to RSU communication.

To classify content consumers as attackers or legitimate vehicles, the RSUs employ an
ML algorithm to distinguish them effectively. Figure 4 depicts our network architecture,
where a consumer sends an interest packet to request data from the intermediate node.
Subsequently, the intermediate node sends the interest packet (satisfied or unsatisfied)
to the RSU. The RSU then performs ML classification to classify content consumers as
attackers or legitimate vehicles.
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Figure 4. Proposed network architecture.

3.2. ML Classification-Based Attack Detection

This section aims to assess the performance of ML algorithms in distinguishing be-
tween legitimate and attacker nodes using a publicly available dataset simulated in ndnSIM.
The main objective of this analysis is to leverage ML classification techniques using bi-
nary classification on the dataset, differentiating between attackers and legitimate vehicles.
Our study primarily focuses on identifying and characterizing the behavior of content
consumer vehicles through the utilization of ML algorithms and performance metrics,
including accuracy, precision, recall, and F1 score, to evaluate the accuracy of the models.

3.2.1. Dataset Collection

Selecting a suitable dataset for attack detection is one of the most crucial tasks. Consid-
ering the relevance and suitability of the dataset, we obtained a simulation-based dataset
from a publicly available source [50], implemented using the ndnSIM simulator [51] for
IFA detection. The dataset comprises 10 essential features organized in a CSV file, namely
InInterests, OutInterests, DropInterests, InData, OutData, InSatisfiedInterest, OutSatisfied-
Interest, PITSize, PITSizeInt, and Attack. This dataset uses tree and DFN topology for
simulating IFA. Notably, the ‘Attack’ feature is the target variable, indicating an attacker’s
presence (designated by the value 1) or a non-attacker scenario (denoted by the value 0).
The traces in the dataset contain 24,660 interest requests with attack and legitimate packets.

3.2.2. Data Preprocessing

The preprocessing in ML has a significant role in enhancing the quality and suitability
of the data. We involved various steps in data preprocessing, including feature selection,
data clearing, removing noise, dataset splitting, and applying cross-validation. Considering
the importance of preprocessing, this research initially consolidated all the individual CSV
dataset files into a single CSV file. Secondly, we removed missing and duplicate records
from the dataset. To ensure the reliability of our proposed model, we randomly shuffled
the dataset with 70% as training and 30% as testing and applied a 10-fold cross-validation
technique. This approach effectively demonstrated the accuracy of our ML approach in
detecting and predicting the legitimacy of vehicles.
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3.2.3. Classification

In order to measure the efficiency of various ML algorithms, we evaluated and com-
pared the performance of five ML classifiers on training and testing datasets. During
training, these classifiers learned the underlying patterns and relationships between the
input features and the corresponding class labels. This learning process enabled the models
to learn and understand the dataset’s intricacies. The selection of ML classifiers in this
study, namely DT, K-nearest neighbor (KNN), random forest (RF), Gaussian naïve Bayes
(GNB) and logistic regression (LR), was made with careful consideration of their unique
characteristics and their alignment with the objectives of interest flooding attack (IFA)
detection in the context of VNDN. These classifiers were selected based on their aptitude
for addressing the challenges associated with identifying abnormal patterns in interest
propagation, a fundamental requirement for effective IFA detection in VNDN. The rationale
for specific classifier selection is mentioned below:

• DT: The DT [52] is a significant method for reaching conclusions based on a set of rules
derived from a tree-like structure. We selected DT due to its outstanding capabilities
in capturing nonlinear relationships and handling categorical features often utilized
in VNDN datasets. Its interpretability offers insights into the decision-making process,
aiding in understanding detected attack patterns. The tree comprises two nodes: a
decision node and a leaf node. Decision nodes determine the attribute that needs to
be selected for further analysis, while leaf nodes represent the final class outcome.
The DT employs a top-down approach to provide results. The root is placed at the
top of the tree, which acts as the initial decision node. DT uses the information gain
technique to select each subsequent DT node, ensuring that each part of the tree selects
the most informative attributes. This enables DT to classify and predict results based
on the input data characteristics and patterns.

• KNN: The KNN algorithm [53] is the most used ML classifier, popular for its effec-
tiveness in dealing with large datasets. KNN is deemed a suitable ML classifier for
recognizing local clustering, which is an essential trait for detecting attack occurrences
that might exhibit spatial proximity. It is a simple and flexible classifier that can be
applied to regression and classification purposes. The KNN involves categorizing the
latest data points by assigning them to the most common class among their K-nearest
neighbors in the training set. The KNN then provides the majority class label or the
average value of those neighbors. Considering the appropriate value of K is essential
and depends on the specific characteristics of the dataset, making KNN a versatile
and adaptive choice for various ML scenarios.

• RF: RF [54] combines multiple base models to make predictions. Given the potential
noise and outliers in VNDN data, RF’s ability to handle such variations becomes
crucial. This approach is often called “bootstrapping and aggregation”, where the
majority vote of the base models on the test data determines the final result. In the RF
approach, the data are fed to the base models using row sampling with replacement, a
method known as bagging.

• GNB: GNB [55] is a simple yet effective classification method that employs Bayes’
theorem for predicting the class of unlabeled data points. We selected GNB for
its efficiency in high-dimensional data handling and probabilistic nature, allowing
it to capture the likelihood of feature co-occurrences relevant to IFA scenarios. It
calculates the prior probabilities of different classes and utilizes this information to
make predictions on new, unseen data. One of the key assumptions of GNB is the
independence of features, which means that it assumes each feature contributes to
the classification independently of other features. This independence assumption
simplifies the computation and makes GNB computationally efficient. Due to its
simplicity and efficiency, GNB is particularly well-suited for applications with many
features and is commonly used in various ML tasks.

• LR: The LR [56] is a statistical method used for predicting the probability of categorical
variables, especially in two-class classification problems. It is a well-established binary
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classification technique for IFA detection. It utilizes a logistic function to calculate an
event’s likelihood.

3.2.4. Model Evaluation

Model evaluation plays a pivotal role in assessing the performance and efficacy of
an ML model. It assesses the model’s ability to generalize to unseen data and accurately
predict desired outcomes. Throughout the evaluation process, we utilized several metrics,
including accuracy, precision, recall, and the F1 score, to thoroughly assess our model. In
particular, during the evaluation phase for classifying “Positive Reputation” samples, we
focused on four key performance metrics:

• True positive (TP): represents the count of positive samples correctly classified.
• False positive (FP): indicates the count of samples incorrectly classified as positive.
• True negative (TN): refers to the count of negative samples correctly classified.
• False negative (FN): signifies the count of samples incorrectly classified as negative.

By scrutinizing these metrics, we obtained valuable insights into the model’s accuracy
in distinguishing between positive and negative instances. This comprehensive evaluation
allowed us to identify potential areas for improvement. Below are the corresponding
mathematical models for each algorithm:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2× (Precision× Recall)

Precision + Recall
(4)

3.3. Attack Prevention System

Upon successful IFA detection using ML techniques, the subsequent crucial step
is preventing such attacks. To achieve this, we propose Algorithm 1, which empowers
intermediate vehicles to make informed decisions regarding interest requests from content
consumers. Leveraging the results obtained from ML classification, Algorithm 1 allows the
vehicles to selectively accept or reject these requests based on the legitimacy of the content
consumer, thereby mitigating the IFA attack and enhancing network security and reliability.

Our proposed algorithm outlines a verification process for incoming Ipkts at an in-
termediate node. When an intermediate node receives an interest request, it queries the
content consumer’s reputation from RSU. The algorithm takes Ipkts as the input variable,
representing the interest packet received from the content consumer. If Ipkts has a value of
1, the algorithm identifies the consumer as an attacker and discards the interest packet. if
Ipkts has a value of 0, the algorithm further verifies the interest packet. Additionally, the
algorithm shares information about this content transmission with the RSUs Additionally,
the algorithm shares information about this content transmission with the RSUs. This veri-
fication mechanism ensures the network efficiently handles incoming interest packets from
content consumers. It promptly discards attacker vehicle interest requests. By employing
this mechanism, the network prevents attacker vehicles. Figure 5 depicts our proposed IFA
prevention system in VNDN.



Electronics 2023, 12, 3870 11 of 19

Algorithm 1 Interest packet verification mechanism.

Require: IPkt
1: Query RSU
2: if IPKT = 1 then
3: Discard IPkt
4: end if
5: if IPkt = 0 then
6: Check CS
7: if Cnt ∈ CS then
8: Create a DPkt
9: Send DPkt to the CC

10: Share information with RSU
11: else
12: if Cnt ∈ PIT then
13: Add interface
14: Remove IPkt
15: Share information with RSU
16: else
17: Add entry in the PIT
18: Forwarded IPkt to FIB
19: Share information with RSU
20: end if
21: end if
22: end if

Figure 5. IFA prevention mechanism.

4. Experimental Results and Discussion

Our experimental evaluation comprises two main components: IFA detection and
prevention in VNDN. In the first part, we present the outcomes of IFA detection, where we
provide the evaluated results of various ML classifiers. Subsequently, we present the IFA
prevention results in the second part. This division allows us to comprehensively analyze
our ML-based approach’s effectiveness in identifying and mitigating IFA attacks within the
VNDN environment.
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4.1. ML Evaluation Results

To achieve our objectives, we evaluated various ML algorithms based on the behavior
of content consumers. The results of our proposed model, including precision, recall, and
F1 score, are presented in Table 3. To further assess the performance of each ML algorithm,
we employed precision-recall curves and receiver operating characteristic (ROC) curves for
visualization. The precision and recall curves are commonly used for evaluating binary
classification performance. On the other hand, the ROC curve illustrates the trade-off
between precision and recall values, with a larger area under the curve indicating higher
values for both metrics. A high precision value corresponds to a low false positive rate,
while a high recall value corresponds to a low false negative rate. Our findings demonstrate
that RF performed exceptionally well in detecting IFA attackers, achieving outstanding
accuracy in our experiments.

Table 3. ML classifier performance.

ML Classifiers Precision Recall F1 Score

DT 0.85 0.87 0.86
KNN 0.87 0.81 0.84
RF 0.91 0.87 0.89
NB 0.99 0.57 0.72
LR 0.98 0.57 0.72

Visualized Results

To achieve the visual performance of our ML models, we employed visualization
techniques using accuracy calculation and ROC analysis. Initially, we utilized precision-
recall and ROC curves to evaluate the trade-off between precision and recall in binary
classification. Notably, the area under the curve (AUC) revealed exceptional performance
in the RF classifier that achieved the highest AUC value. The RF outperforms other ML
classifiers in accurately classifying IFA attackers and legitimate vehicles. Figures 6–10
show the precision–recall curve performances for DT, KNN, GNB, and LR classifiers,
respectively. Finally, Figure 11 presents the consolidated and comparative evaluation,
providing a comprehensive view of the performances of different ML classifiers in tackling
IFA detection.

Figure 6. Decision tree accuracy.
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Figure 7. K-nearest neighbor accuracy.

Figure 8. Random forest accuracy.

Figure 9. Gaussian naïve Bayes accuracy.
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Figure 10. Logistic regression.

Figure 11. Consolidated accuracy.

In pursuing robust and accurate IFA detection, our study meticulously examined the
performance of five distinct classifiers. Through a systematic classification approach, we
observed compelling variations in accuracy across these classifiers. As depicted in the
consolidated results in Figure 11, the RF classifier emerged as the front-runner, achieving
an accuracy of 94%. On the other hand, KNN exhibited a commendable accuracy of 90%.
The remaining classifiers exhibited accuracy in the 80s range. These consolidated ROC
results collectively shed light on the multifaceted landscape of IFA detection in VNDN.

4.2. IFA Prevention Results

To validate our proposed IFA prevention system in VNDN, we conducted simula-
tions using an Intel Desktop Core i7 CPU operating at 2.6 GHz, with 16 GB of RAM, and
running on the Windows 10 operating system. In our simulation, we randomly consid-
ered 10 content consumers with attacks (1) and legitimate (0). Our proposed algorithm
classified attackers and legitimate information as illustrated in Figure 12, where attackers
are identified with red and the legitimate source is identified with green. On the other
hand, the existing NDN system could not consider the legitimacy of content consumers
and received every interest packet, as shown in Figure 13. Thus, our proposed prevention
system identifies the legitimacy of vehicles, followed by an ML-based detection system.
Thus, our proposed network architecture classifies the attacker vehicles first and prevents
them from violating the PIT and CS of intermediate vehicles.
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Figure 12. IFA prevention mechanism results.

Figure 13. Default NDN mechanism results.

Figure 12 depicts the efficiency of our proposed IFA prevention system. In this vali-
dation scenario, both legitimate and malicious interest requests are simulated by content
consumers. Leveraging the capabilities of our devised algorithm, the intermediate vehicle
undertakes a pivotal role in this endeavor. A distinctive dichotomy emerges in the depicted
visualizations: The algorithm adeptly identifies and rejects invalid content requests, visu-
ally represented by the prominent red indicators, while conversely accepting valid content
consumers through green color. These visual representations underscore the system’s
capability to discriminate between legitimate and unauthorized interest propagation, reaf-
firming the effectiveness of our proposed approach. In addition, we measured the efficiency
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of the default content acceptance at an intermediate node, as shown in Figure 13, where an
intermediate node accepted every interest packet without considering the reputation of the
content producer.

4.3. Discussion

The experimental results presented in the previous section provide valuable insights
into the effectiveness of our ML-based approach for classifying IFA in VNDN. In this
discussion, we delve into the implications of these findings, highlight the strengths and
limitations of our approach, and contextualize our results within the broader landscape
of vehicular network security. The first component of our evaluation focused on IFA
detection, where various ML classifiers were employed to classify content consumers
as attackers or legitimate entities. We measured the efficiency of classifiers in terms of
precision, recall, and F1 score. These metrics collectively indicate the classifier’s ability to
identify malicious and benign entities within the network accurately. The high area under
the curve (AUC) value obtained by RF reinforces its effectiveness, while the comparative
visualization in Figure 11 provides a comprehensive view of the performance differences
across different ML classifiers. Notably, RF’s accuracy of 94% showcases its superiority
in IFA detection compared to other classifiers. The highest accuracy in detecting IFA
reflects our algorithm’s ability to discern between malicious and benign entities. In contrast,
the existing NDN system’s limitations in evaluating content consumer legitimacy are
illustrated in Figure 13. This highlights the significance of our proposed prevention system
in enhancing the network security by identifying attackers and preventing their interference
with the PIT and CS of intermediate vehicles.

5. Conclusions

The IFA is one of the most vulnerable attacks in VNDN. The IFA targets intermediate
nodes, flooding them with unsatisfying interest requests and saturating network resources,
particularly the PIT. This research paper aims to address IFA challenges in VNDN. To
cope with IFA in VNDN, the study explored the potential of ML classifiers for detecting
the IFA with high accuracy. In this connection, we employed five ML classifiers on a
publicly available dataset implemented on the ndnSIM simulator. The study compared
their accuracy in identifying IFA vehicles. The findings demonstrated that RF achieved
an accuracy of 94% in detecting IFA. This highlights the effectiveness of the proposed IFA
detection technique, which empowers VNDN to classify attacker vehicles and proactively
prevent them from violating the network. On the other hand, our proposed IFA preven-
tion system classified and prevented attackers with 100% accuracy. The implications of
this research are significant, as it contributes to enhancing the security and reliability of
vehicular named data networking. Future work may explore further improvements in
ML-based detection methods and investigate the application of other ML algorithms to
tackle additional security concerns in VNDN. Ultimately, these advancements will foster
the development of more resilient and secure VANET architectures, thus promoting the
continued growth and success of intelligent transportation systems.

6. Future Work

The proposed research work exploited ML classifiers using a batch learning-based
system, whereas deep learning (DL) classifiers can be applied using an incremental learning
system, and detailed comparative measures can be considered in the future. Moreover,
this study is limited to evaluating the legitimacy of content consumer vehicles, whereas
intermediate vehicles can be attackers. Thus, the legitimacy of intermediate vehicles can be
determined in future research.
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