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Abstract: How to rapidly adapt to new tasks and improve model generalization through few-shot
learning remains a significant challenge in meta-learning. Model-Agnostic Meta-Learning (MAML)
has become a powerful approach, with offers a simple framework with excellent generality. However,
the requirement to compute second-order derivatives and retain a lengthy calculation graph poses
considerable computational and memory burdens, limiting the practicality of MAML. To address
this issue, we propose Evolving MAML (Evo-MAML), an optimization-based meta-learning method
that incorporates evolving gradient within the inner loop. Evo-MAML avoids the second-order
information, resulting in reduced computational complexity. Experimental results show that Evo-
MAML exhibits higher generality and competitive performance when compared to existing first-order
approximation approaches, making it suitable for both few-shot learning and meta-reinforcement
learning settings.

Keywords: meta-learning; few-shot learning; meta-reinforcement learning

1. Introduction

Meta-learning aims to rapidly learn new tasks by leveraging prior knowledge from
related tasks [1,2]. A popular optimization-based meta-learning method is Model-Agnostic
Meta-Learning (MAML) [3], which tries to identify initialization parameters that are sensi-
tive to related tasks, thereby enhancing generalization ability. MAML-based meta-learning
algorithms have seen a variety of successful applications [4,5] in enhancing generalization
and addressing various learning issues throughout the years. For example, researchers
have concentrated on studying generalization bounds and convergence rates to support
clarity-aware minimization [6]. Others have investigated the application of evolutionary
approaches to compute second-order gradients and increase algorithm performance [7].
Furthermore, researchers looked at the initial conditions for training agents in order to
improve few-shot learning [3,8,9]. Furthermore, the combination of MAML with reinforce-
ment learning has shown good performance in a variety of control tasks [10].

Despite the appealing properties of MAML, its meta-learning process depends on
the computation of higher-order derivatives, resulting in a significant computational and
memory burden and potentially encountering gradient disappearance. These limitations
hinder the learning of tasks that involve multi-step inner loop optimization. To tackle
these issues, Nichol et al. [11] proposed Reptile, a first-order approximation meta-learning
method to avoid solving high-order derivatives. However, Reptile has not been widely
used in meta-reinforcement learning, and is only effective for few-shot classification prob-
lems. Subsequently, the implicit differentiation-based MAML (iMAML) [12] approach
significantly increases computational efficiency by eliminating the requirement of back-
propagation across the entire inner loop. However, iMAML assumes that the model has
already converged in the inner loop, which limits its practical applicability. In the field
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of few-shot classification, the UNICORN-MAML [13] approach outperforms many con-
temporary few-shot classification algorithms without sacrificing the simplicity of MAML.
Furthermore, by incorporating evolutionary strategies with MAML, meta-reinforcement
learning produces more flexible and effective algorithms that remain competitive with
current approaches [14,15]. Although these methods have demonstrated success in their
respective fields, they lack the generality to simultaneously excel in both few-shot learning
and in meta-reinforcement learning similar to MAML while achieving good performance.

To address these limitations, we propose Evolving MAML (Evo-MAML), an efficient
meta-reinforcement learning framework with evolving gradient. Specifically, Evo-MAML
utilizes an inner-loop evolutionary update in the initial model to estimate the meta-gradient.
Our approach leverages first-order gradient, thereby avoiding the need to extend the
computational graph for Hessian-free updates, as evolution does not rely on gradient.
Our experimental results demonstrate that Evo-MAML achieves competitive performance
in typical few-shot learning and meta-reinforcement learning environments, surpassing
existing first-order approximate meta-learning algorithms. Additionally, Evo-MAML with
evolving gradient significantly reduces computational resource requirements by eliminating
the computation of second-order derivatives, resulting in a lightweight and highly efficient
framework.

Our contributions:

1. We present Evolving MAML (Evo-MAML), a novel meta-learning method that incor-
porates evolving gradient. Evo-MAML addresses the challenges of low computational
efficiency and eliminates the need to compute second-order derivatives.

2. Theoretical analysis and empirical experiments demonstrate that Evo-MAML exhibits
lower computational complexity, memory usage, and time requirements compared
to MAML. These improvements make Evo-MAML more practical and efficient for
meta-learning tasks.

3. We evaluate the performance of Evo-MAML in both the few-shot learning and meta-
reinforcement learning domains. Our results show that Evo-MAML competes favor-
ably with current first-order approximation methods, highlighting its generality and
effectiveness across different application areas.

The rest of the paper is structured as follows. Section 2 presents an overview of current
research on meta-learning and meta-reinforcement learning along with corresponding
considerations. Section 3 formulates the issue of meta-learning and meta-reinforcement
learning and presents the implementation of our method Evo-MAML, emphasizing the
utilization of the evolving method for meta-learning. Section 4 provides performance
demonstrations of the effectiveness and efficiency of our proposed approach, followed by
Section 5, which examines the strengths and limitations of our approach. Finally, Section 6
concludes the work.

2. Related Works

Meta-learning, which enables agents to quickly adapt to new tasks based on previ-
ously accumulated knowledge, has gained significant attention in recent years [16]. By
performing meta-learning on a set of related tasks, agents can extract common information
as meta-knowledge. The meta-training process equips the agent with the ability to rapidly
resolve new tasks with only a small number of samples, avoiding the need to start learning
from scratch. The goal of meta-learning is to train a good initial model that can efficiently
adapt to new tasks.

Recently, meta-learning has been embodied in several ways, including metrics [17,18], neu-
ral network-based approaches [19–21], and Bayesian approaches [22–24]. Another branch
uses optimization-based architectures [12,25,26] or attempts to learn the whole system,
either by initializing parameters [27] or via evolution [7,14,28]. In this work, we primarily
focus on optimization-based meta-learning, with a particular emphasis on MAML [3],
which is one of the most popular algorithms in this category. MAML learns an effective
model initialization through outer loop optimization and quickly adapts to new tasks
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through the inner loop, demonstrating good performance in few-shot learning scenarios.
However, Antoniou et al. [8] highlighted the challenges associated with stabilizing MAML
training and achieving high generalization, namely, that it requires meticulous hyperparam-
eter searching and incurs substantial training and inference costs. Additionally, Alireza et al.
[29] analyzed the issues arising from the computation of Hessian-vector products required
by MAML. In light of these concerns, our work aims to develop a computationally efficient
first-order approximation method for MAML. Leveraging the evolutionary method, which
avoids the estimation of second-order derivatives and does not require backpropagation,
we propose a novel approach to estimate the second-order derivative of MAML.

In meta-reinforcement learning, MAML can be combined with reinforcement learning.
The meta-policy can quickly adapt to new tasks through a few gradient descent updates.
However, meta-reinforcement learning with MAML presents challenges such as high
computational complexity and memory consumption. To address this, Nichol et al. [11]
introduced Reptile, a first-order approximation method that significantly improves com-
putational efficiency. Nevertheless, Reptile is primarily suitable for few-shot learning and
exhibits subpar performance in meta-reinforcement learning settings. Addressing the
difficulties associated with estimating the second derivative, Song et al. [14] proposed the
Evolution Strategies MAML (ES-MAML) algorithm, which replaces the gradient descent
process of the inner loop with the evolutionary method; their approach has demonstrated
promising results in meta-reinforcement learning. Our work similarly tackles the problem
of second-order derivative estimation. Differing from ES-MAML, we leverage evolving
gradient solely in the final step of the inner loop, eliminating the need for backpropa-
gation. Our method achieves competitive performance in both few-shot learning and
meta-reinforcement learning, offering simplicity, efficiency, and ease of implementation.

3. Proposed Method

In this section, we elaborate on the problem formulation and propose a meta-learning
method that incorporates evolving gradient.

3.1. Problem Formulation

We aim to find a well-initialized θ that will lead to a good adaptation of θ on the
unseen new task Ti after a few gradient descent steps. As a representative optimization
meta-learning method, MAML [3] leverages few-shot samples to learn new tasks. The
primary objective is to minimize the expected loss across all tasks, i.e.,

min F(θ) := Ei∼p[ fi(θ − α∇ fi(θ))], (1)

where the loss function fi quantifies the performance of the initial model θ on task Ti, α is
the inner loop step size, p is the probability distribution over tasks T , and T = {Ti}i∈I
denotes the set of all tasks. To address the computational cost associated with computing
exact gradient for each task, MAML employs the stochastic gradient descent (SGD) method.
During each gradient step, a batch size Bk of tasks is selected; the update process involves
optimization within the inner and outer loops. The inner loop leverages a support set of
examples STi for each task Ti, which facilitates inner loop updates. Conversely, the outer
loop employs a query set of examples QTi for outer loop updates.

In the inner loop, the stochastic gradient ∇ fi(θk, STi ) is used to compute a model θi
k+1

corresponding to each task Ti through a single step of SGD:

θi
k+1 = θk − α∇ fi(θk, STi ). (2)

We then define the meta-gradient gi as

gi := (I − α∇2 fi(θk, QTi ))∇ fi(θ
i
k+1, QTi ). (3)
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In the outer loop, the meta-model is computed using the updated models {θi
k+1}

B
i=1

for all tasks in Bk. We compute the meta-model by performing the update

θk+1 = θk − βk
1
B ∑

i∈Bk

gi, (4)

where βk denotes the outer loop step size. Additionally, the gradient ∇ fi(θ
i
k+1, QTi ) is

evaluated using the query set QTi .
In the case of meta-reinforcement learning, the task can be formulated as a Markov

Decision Process (MDP), denoted by the tuple Tp = (Sp, A(s), πp(s), πp(s′|s, a), rp(s, a)).
In this tuple, Tp represents the specific task, Sp corresponds to the state space of the agent,
and A(s) is a function that determines the action based on the current state. The probability
distribution of the initial state is denoted by πp(s), while πp(s′|s, a) represents the conditional
probability of transitioning from state s to state s′ given action a. The reward function is
rp(s, a), which captures the immediate reward associated with the current state and action.

The objective in meta-reinforcement learning is to find a meta-policy θ that can rapidly
adapt to solve an unseen task T ∈ T through a single gradient step with respect to T. The
optimization goal can be defined as follows:

max
θ

J(θ) := ET∼P(T )[Eτ′∼PT (τ′ |θ′)[R(τ
′)]], (5)

where the meta-policy θ := θ + η∇θEτ∼P(T )(τ|θ)[R(τ)] with a step size η > 0. Here, PT(·|ϑ)
denotes the distribution over trajectories, which is dependent on the policy ϑ and the given
task T ∈ T . The process of obtaining the gradient solution for the meta-reinforcement
learning objective function is as follows:

∇θ J(θ) = ET∼P(T )[Eτ′∼PT (τ′ |θ′)[Aθ′R(τ′)∇θU(θ, T)]], (6)

with Aθ′ := ∇θ′ logPT(τ
′|θ′) and with ∇θU(θ, T) denoting the derivation of the meta-

policy.

3.2. Evolving MAML Algorithm

Our objective is to address the optimization-based meta-learning problem described in
Equation (1) by employing an iterative gradient-based algorithm of the form
θ = θ − β 1

B ∑ gmeta. The gradient descent update can be expanded using the chain rule, as
illustrated by

θk+1 = θk − βk
1
B ∑

i∈Bk

(I − α∇2 fi(θk, QTi ))∇ fi(θ
i
k+1, QTi ). (7)

In practice, the gradient ∇ fi(θ
i
k+1, Qi

o) can be easily obtained through automatic dif-
ferentiation. However, the primary challenge lies in computing the Hessian ∇2 fi(θk, QTi ),
which is defined as an optimization problem. To tackle this update problem, estimating the
meta-gradient in Equation (3) poses significant computational and memory burdens due
to the involvement of a gradient in the inner loop in a backwards order [3]. This becomes
particularly challenging when a large number of gradient steps are required.

To overcome these difficulties, we propose the utilization of an evolutionary
method [7] to estimate the meta-gradient, eliminating the need for calculating the second-order
gradient or storing a longer calculation graph, significantly improving efficiency.

Specifically, we first consider an approximate solution to the inner optimization prob-
lem, which can be obtained by performing k steps of gradient descent, then perform
evolutionary learning. We apply random perturbations ε ∈ RM ∼ N (0, σI) to the model
θi

k+1 to generate P variants of the current model, denoted as θi
p = θi

k+1 + εp. We then
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calculate the training losses of these P variants. Next, we determine the evolutionary model
using the following formula

θi
σ = w1θi

1 + w2θi
2 + · · ·+ wPθi

P, (8)

where the weights are denoted as w1, w2, . . . , wP = softmax([− fi(θ
i
1, STi ),− fi(θ

i
2, STi ), . . . ,

− fi(θ
i
P, STi )]/τ). The temperature factor τ rescales the losses to adjust the scale of weight

changes. The evolving gradient gevo is defined as

gevo := ∇ fi(θ
i
σ, QTi ). (9)

Finally, we compute the meta-gradient gevo of the test loss fi(θ
i
σ, QTi ) and evaluate

the evolutionary updated model θi
σ on a minibatch drawn from the query set QTi . The

evolutionary gradient algorithm [7] is particularly well-suited for solving this problem, as
it eliminates the need for second-order gradient in the inner loop and avoids the explicit
formation or storage of the Hessian matrix. This stands in contrast to typical methods
that employ gradient-based updates in the inner loop, perform differentiation through
it (in forward mode or reverse mode), or even apply the implicit function theorem [12].
The overall framework of Evo-MAML is shown in Figure 1. Algorithm 1 provides a
comprehensive practical algorithm for our approach.

Algorithm 1: Evolving Model-Agnostic Meta-Learning (Evo-MAML)
Input: Distribution over tasks T , noise σ, temperature τ, number of perturbation

models P, inner step size α, outer step size βk
1 Randomly initialize θ
2 while not done do
3 Sample batch of tasks Ti ∼ T
4 for all Ti do
5 Sample B datapoints (x(i), y(i)) from Ti
6 Update θi

k+1 = θk − α∇ fi(θk)

7 Sample P noise factors εp ∼ σsign(N (0, I)) and create θi
p = θi

k+1 + εp

8 Evolutionary update using Equation (8)
9 Compute the meta-gradient gevo with Equation (9)

10 end
11 θk+1 = θk − βk

1
B ∑i∈Bk

gevo

12 end

Notably, our approach differs significantly from ES-MAML [14] in the way that agents
are updated. While ES-MAML utilizes the evolutionary gradient as the update method for
the inner loop, we only employ the evolutionary gradient in the final update step of the
inner loop. Moreover, the evolutionary method [7] that we employ is completely distinct
from ES-MAML. Furthermore, our method exhibits better generality in the field of few-shot
classification and meta-reinforcement learning. In Section 4, we compare our Evo-MAML
method with existing first-order approximate meta-learning methods.
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Figure 1. An overview of our Evolving MAML approach. Our method is based on a bi-level loop.
In the inner loop, the model θi

k+1 undergoes three steps of SGD followed by the application of
perturbations, resulting in P perturbed models. Subsequently, an evolutionary update is performed
to obtain an evolutionary model denoted as θi

σ and the evolving gradient gevo is computed. The
yellow box in the figure indicates the training loss of the corresponding model. The outer loop is
responsible for learning the evolutionary gradient across tasks, which enables the redirection of
learning in the inner loop.

3.3. Theoretical Analysis

We conducted an analysis to illustrate how the evolving gradient can effectively reduce
the memory and time costs, as demonstrated in Formula (10):

gevo = ∇ fi(θ
i
σ, QTi )E∇ fs(θ

i
p, STi ). (10)

In this formula, the first term ∇ fi(θ
i
σ, QTi ) is obtained through backpropagation,

E = [ε1, ε2, . . . , εP] represents the randomly sampled perturbations, and the last term
∇ fs(θi

p, STi ) is derived from the softmax derivatives ∇ fs and training losses fs(θi
p, STi )

of the P perturbation models θi
p. Compared to MAML, which computes higher-order

gradient using backpropagation, our Evo-MAML method eliminates this step, resulting in
a shortened computational map and reduced memory cost.

In Table 1, we compare Evo-MAML to MAML, which is the most relevant and widely-
used method [3]. MAML necessitates the computation of higher-order gradient and the
associated longer computational graphs due to its requirement for backpropagation through
gradient nodes. Consequently, MAML incurs increased memory and time costs. In contrast,
Evo-MAML eliminates the need for higher-order gradient, avoids large matrices, and signif-
icantly reduces the expansion of the computational graph. While current techniques [3] rely
on longer computational graphs, Evo-MAML effectively shortens the graph and reduces
memory costs by circumventing this requirement.

Table 1. Comparison of meta-gradient approximation of Evo-MAML and MAML.

Algorithm Meta-Gradient Approximation

MAML [3] (I − α∇2 fi(θk, QTi ))∇ fi(θ
i
k+1, QTi )

Evo-MAML (ours) ∇ fi(θ
i
σ, QTi )E∇ fs(θi

p, STi )

4. Experiments and Results

In our experimental evaluation, we aim to empirically answer the following research
questions (RQs):
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• RQ1: Does Evo-MAML yield better results in few-shot learning problems compared
to MAML?

• RQ2: Does Evo-MAML exhibit improved performance in meta-reinforcement learning
tasks?

• RQ3: How do the computational and memory requirements of Evo-MAML compare
to those of MAML?

To address RQ1 and RQ2, we utilize the Omniglot [30] and MiniImagenet [31] datasets,
which are widely used in few-shot meta-learning. Additionally, we employ standard meta-
reinforcement learning tasks. Regarding RQ3, we provide an answer through a theoretical
analysis. To further validate our findings, we conduct numerical simulations.

4.1. Experimental Settings

In this section, we present the practical setup of Evo-MAML for evaluating two types
of meta-learning experiments. First, Section 4.1.1 provides details on the comparison algo-
rithms employed in the few-shot learning experiments, along with our model architecture
and hyperparameter configurations. Subsequently, Section 4.1.2 elaborates on our model
architecture and hyperparameter settings for the meta-reinforcement learning problem.

4.1.1. Few-Shot Learning Settings

In few-shot learning challenges, we put the following methods to the test:

• MAML [3]: the standard model-agnostic meta learning.
• First-Order MAML [3]: first-order approximation version of MAML.
• Reptile [11]: update using only the first derivative.
• iMAML [12]: using implicit differential to solve the meta-gradient.

We employed the same four-layer CNN architecture as MAML to perform meta-
training with a complete sample batch size (e.g., twenty for twenty-way one-shot) on the
meta-training dataset. Subsequently, the model was evaluated using the meta-test dataset.
In the Omniglot experiment, we set the inner and outer loop learning rates to 0.4 and
0.001, respectively. For the twenty-way problem, we sampled 32 tasks in batches, while
for the five-way problem we sampled 16 tasks in batches. The perturbation parameter and
temperature coefficient were both set to 0.01. In the MiniImagenet experiment, we set the
inner and outer loop learning rates to 0.05 and 0.002, respectively. We trained Evo-MAML
with 15 inner loop steps in both meta-training and meta-testing. For the five-way one-shot
setting, we used four tasks for batch sampling and two tasks for five-way one-shot batch
sampling.

4.1.2. Meta-Reinforcement Learning Settings

We utilized the same model architecture as in the original paper [3]: a two-layer MLP
with 100 hidden units in each layer. The adapted batch size was set to 10, the meta-batch
size was 20, and we performed three inner loop update steps with an inner learning rate of
0.1. Additionally, we conducted twenty trajectories for inner loop adaptation. Evo-MAML
was trained with three different random seeds, and the mean and standard deviation of the
results were reported.

We followed the same process as for MAML to construct the experimental tasks. In
evolutionary learning, we uniformly set the number of perturbation models to P = 2 for
all tasks. For the few-shot learning tasks, the perturbation parameter and temperature
parameter were set to 0.001 and 0.5, respectively. In the meta-reinforcement learning tasks,
they were set to 0.01 and 0.05, respectively. All experiments were performed using a
PyTorch implementation, and the models were trained on a single NVIDIA Titan RTX GPU.

4.2. Results

In this section, we conduct a comparative evaluation of our proposed method and
analyze its computational efficiency and memory consumption in the context of few-shot
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learning problems and meta-reinforcement learning problems. Section 4.2.1 evaluates the
performance of our proposed method on few-shot classification problems and compares
it with previous first-order approximate meta-learning algorithms. Then, Section 4.2.2
examines the performance of Evo-MAML on a meta-reinforcement learning problem
and compares it to other evolution-based meta-reinforcement learning methods. Finally,
Section 4.2.3 demonstrates the efficiency of Evo-MAML through computational time and
memory consumption experiments.

4.2.1. Performance on Few-Shot Learning

To investigate RQ1, we evaluated our method on two popular few-shot classification
datasets: Omniglot [30] and MiniImagenet [31]. Table 2 presents the baseline performance of
standard MAML [3], first-order MAML [3], Reptile [11], MAML with implicit gradient [12],
and Evo-MAML. The results demonstrate that Evo-MAML achieves significantly improved
accuracy compared to the original MAML method while remaining competitive with other
first-order approximation methods. Furthermore, the performance of MAML, First-Order
MAML, and Reptile is quite similar across all tasks. Implicit MAML [12] performs slightly
better on Omniglot compared to other methods, and performs similarly to Reptile on
MiniImagenet. For a fair comparison, we employed the same convolution architecture as in
the cited works. However, it is worth noting that architecture tuning can lead to improved
results for all algorithms [13]. Therefore, our method has the potential to achieve higher
accuracy on few-shot classification tasks.

Table 2. Few-shot classification meta-learning with Omniglot and MiniImagenet characters. The
results obtained by Evo-MAML are competitive with existing meta-learning models. Confidence
intervals for tasks are displayed at 95%. For the five-way and twenty-way tasks, Evo-MAML used 15
and 20 SGD steps, respectively.

Algorithm Omniglot [30] MiniImagenet [31]
5-Way 1-Shot 5-Way 5-Shot 20-Way 1-Shot 20-Way 5-Shot 5-Way 1-Shot 5-Way 5-Shot

MAML [3] 98.70 ± 0.40% 99.90 ± 0.10% 95.80 ± 0.30% 98.90 ± 0.20% 48.70 ± 1.84% 63.11 ± 0.92%
First-Order
MAML [3] 98.30 ± 0.50% 99.20 ± 0.20% 89.40 ± 0.50% 97.90 ± 0.10% 48.07 ± 1.75% 63.15 ± 0.91%

Reptile [11] 97.68 ± 0.04% 99.48 ± 0.06% 89.43 ± 0.14% 97.12 ± 0.32% 49.97 ± 0.32% 65.99 ± 0.58%
iMAML [12] 99.50 ± 0.26% 99.74 ± 0.11% 96.18 ± 0.36% 99.14 ± 0.1% 49.30 ± 1.88% 66.13 ± 0.37%
Evo-MAML

(ours) 99.61 ± 0.31% 99.76 ± 0.05% 97.42 ± 0.01% 99.53 ± 0.10% 50.58 ± 0.01% 66.73 ± 0.04%

4.2.2. Performance on Meta-Reinforcement Learning

To evaluate the proposed Evo-MAML method and address RQ2, we conducted experi-
ments on continuous control tasks in the Navigation2D and MuJoCo environments [32],
which serve as common benchmarks for meta-reinforcement learning algorithms [33].

In the Navigation2D exploration environment, the agent is represented as a point
on a 2D square and receives a reward equal to its distance from a set goal point on
the square at each time step. In our evaluation, we compare the adaptation of the
meta-policy to an entirely new position with up to three steps of gradient updating,
with 20 samples per update. Figure 2 depicts the various exploration policies learned
by MAML and Evo-MAML. The results reveal that after the three-step update, the
meta-policy learned by Evo-MAML is more exploratory in all directions and can adapt
to the new task faster.
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Figure 2. Comparison of the Navigation2D task exploration behaviors of MAML and Evo-MAML.
After three-step updating, Evo-MAML can be adapted to new tasks more quickly.

Next, we compare the average returns of Evo-MAML and three other optimization-
based meta-learning algorithms in three MuJoCo environments. The reward functions
for these settings (the walking direction for Ant-Fwd-Back and Walker-Fwd-Back and the
target velocity for Walker-Vel) all differ from each other. We compare Evo-MAML with
three representative meta-reinforcement learning algorithms: ES-MAML [14], based on an
evolutionary strategy; E-MAML [28], another method that tries to circumvent the problem
of meta-gradient estimation in MAML using evolutionary methods; and standard MAML
[3]. To create a fair comparison, the maximum episode duration for all tasks was set to 200,
the same as MAML.

Figure 3 illustrates that Evo-MAML outperforms the current first-order approximation
meta-reinforcement learning approaches in all three environments in terms of average re-
turns. Our Evo-MAML approach achieves comparable performance to the other algorithms,
although its performance declines somewhat in the Walker-Vel environment. This decline
may be attributed to the increased number of tasks and their similarity, which could lead
to weakened meta-learning ability and slower policy convergence. The average returns
obtained using evolving gradient are significantly better than MAML, with the asymptotic
performance of Evo-MAML reaching approximately 2.23 and 1.37 times that of MAML in
the Ant-Fwd-Back and Walker-Fwd-Back environments, respectively, although they are
only slightly improved in the Walker-Vel environment. In summary, our method is more
suitable for tasks with low similarity, such as navigating in completely opposite directions.

IterationsIterations IterationsIterations

Figure 3. The meta-learning curves corresponding to different first-order approximation methods
combined with MAML. The final asymptotic performance of the proposed Evo-MAML approach
consistently outperforms other methods.

4.2.3. Performance on Computation and Memory

For RQ3, we compared the computational efficiency and memory usage of Evo-MAML
with the standard MAML in both few-shot classification problems and continuous control
problems. To ensure a fair comparison, the same number of training steps were set for each
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period of the algorithm. The experimental results depicted in Figure 4 demonstrate the
compute and memory trade-offs for MAML and Evo-MAML on four types of classification
tasks using the Omniglot dataset, as well as on three control tasks in meta-reinforcement
learning environments. The results indicate that our approach significantly reduces mem-
ory and time costs, realizing savings of at least 29.85% on memory usage and improving
runtime by over 20%. When calculating higher-order gradient, MAML expands the com-
putational graph for backpropagation, which directly increases both memory and time
costs. In contrast, Evo-MAML only utilizes a set of weights for implementation, leading to
a significant improvement in computational efficiency. Overall, these experiments confirm
that Evo-MAML is suitable for meta-learning in various domains, including few-shot clas-
sification and meta-reinforcement learning, while providing significantly reduced memory
and time consumption.
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Figure 4. Comparison of the computation and memory of MAML and Evo-MAML in meta-learning
and meta-reinforcement learning. The mean and standard deviation are reported across experiments
with different test datasets. Evo-MAML is significantly more efficient in terms of both memory usage
and time per iteration.

5. Discussion

Table 1 and Figure 4 theoretically and experimentally illustrate the superior efficiency
of the proposed method in terms of both computation time and memory compared to
MAML. Additionally, Table 2 demonstrates that Evo-MAML achieves higher classification
precision in few-shot classification problems, particularly on the MiniImagenet dataset.
Furthermore, Figures 2 and 3 show that Evo-MAML exhibits improved asymptotic per-
formance in meta-reinforcement learning problems, indicating its technical superiority.
However, it is important to acknowledge that Evo-MAML does have certain limitations
in terms of learning. For instance, in meta-reinforcement learning problems Evo-MAML
exhibits subpar sample efficiency during the early stages of training. Specifically, while
Evo-MAML displays superior performance only after approximately 300 training iterations
in the case of the Ant-Fwd-Back tasks, achieving comparable performance in the Walker-Vel
environment requires around 600 iterations.

6. Conclusions

In this paper, we have presented a novel meta-learning framework utilizing evolv-
ing gradient which is able to effectively tackle the challenge of estimating second-order
derivatives in optimization-based meta-learning. By employing the evolutionary update
method, our proposed approach is able to estimate meta-gradient without the need to
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calculate higher-order derivatives. Notably, our approach avoids the expansion of compu-
tation graphs, resulting in enhanced computational efficiency and reduced memory burden.
Our findings demonstrate that the proposed method achieves competitive performance
in the domains of few-shot learning and meta-reinforcement learning. Moreover, across
all experiments we consistently observed significant improvements in time and mem-
ory efficiency. Future research directions include extending our proposed framework to
multi-agent meta-reinforcement learning environments. In high-dimensional multi-agent
scenarios, where the dynamics may be unknown or too complex to model, the light weight
and good efficiency of Evo-MAML could provide more flexible performance. Furthermore,
upgrading the evolutionary update method in the inner loop using a state-of-the-art evolu-
tionary strategy may lead to better gradient estimation and further improve on our results.
Additionally, we anticipate further exploration of the optimization-based meta-learning
framework on larger models and problem domains. By addressing these avenues, we
aim to enhance the applicability and effectiveness of the proposed approach in real-world
scenarios.
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