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Abstract: In order to reduce the peak–valley difference of the power grid load, reasonably arrange
users’ electricity consumption time and realize the intelligent management of the power grid, we
construct a user electricity consumption information acquisition system based on unmanned aerial
vehicles (UAVs) by using a sensor network. In order to improve the service quality of the system
and reduce the system delay, this paper comprehensively considers the factors that affect the user’s
electricity consumption information collection system, such as the UAV trajectory, the unloading
decision of the data receiving point and so on. Therefore, this paper puts forward an effective iterative
optimization algorithm for joint UAV trajectory and unloading decisions based on a deep Q network
(DQN), in order to obtain the optimal UAV trajectory and unloading decision design, acquire the
optimal solution to minimize the time delay of the monitoring system and maximize the service
quality of the user electricity information collection system, thus ensuring the stable operation of
the user electricity information collection system. In this paper, different complexity algorithms
are used to solve this problem. Compared with the greedy algorithm, the proposed algorithm,
CDQN, improves the system service quality by approximately 2% and reduces the system delay
by approximately 16%, so that the user’s electricity consumption information can be analyzed and
processed faster.

Keywords: sensor network; system service quality; delay time; information acquisition

1. Introduction

In power grid system management, the power grid load is often unbalanced. The
question of how to balance the power grid load and reduce the gap between the peaks
and valleys of the power grid load is of great research significance. Peak-shaving and
valley-filling technology is applied in the power grid management system. The peak-
shaving and valley-filling technology arranges the power generation and time reasonably
according to the user’s electricity consumption and law and balances the power grid load.
Therefore, the question of how to obtain the user’s electricity consumption information
is very important. The existing user information collection technology can easily pro-
duce local optimal solutions, which makes the monitoring results inaccurate. A real-time
monitoring method for power grid users’ energy consumption data based on the Internet
of Things has been proposed [1]. In industrial production, the consumption of electric
energy is very large. Most enterprises have the problem of repeated monitoring of energy
consumption, so the optimization of energy consumption monitoring points is of great
significance, and monitoring points are selected according to the fluctuation coefficients
of energy efficiency [2]. In order to overcome the complexity of sensor equipment in data
acquisition, transmission, storage and analysis, and to achieve the purpose of condition
monitoring, estimation and control, a load monitoring system for chemical enterprises has
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been proposed to collect energy consumption data and analyze energy consumption, and
an Elman neural network based on the sparrow search algorithm was proposed to predict
the change and distribution trends of electricity consumption in the future production
cycles of enterprises [3]. The above literature summarizes the latest applications in the field
of sensing and state acquisition in modern industry.

Unmanned aerial vehicles (UAVs) have the advantages of high flexibility, low costs
and easy implementation, so a UAV auxiliary network is considered an attractive solution
with seamless coverage and high disaster tolerance [4]. The limited coverage of Mobile
Edge Computing (MEC) needs to explore cooperation with UAV. UAVs can be combined
with wireless sensor networks, and a certain model architecture can be built for it to
complete the key tasks of computing in the future [5]. A dRA framework based on a
dual depth Q network has been proposed, which can maximize the energy efficiency
(EE) and total network throughput in a UAV auxiliary ground network [6]. A method
to analyze the coverage probability of a UAV-assisted cellular network with incomplete
beam alignment has been proposed, the influence of beam alignment error on coverage
probability was studied, and the expression of coverage probability under line-of-sight and
non-line-of-sight conditions was derived [7]. Considering the constraints of anti-collision
and communication interference between UAVs, a joint optimization problem of aircraft
communication scheduling, UAV power allocation and UAV trajectory optimization was
proposed to maximize system throughput [8]. By considering the interference between the
ground base station and the UAV, a UAV trajectory optimization problem was proposed to
maximize the sum rate of edge users [9].

The question of how to reduce the complexity of model construction, plan the flight
trajectory of UAVs and reduce flight energy consumption is a problem worthy of consider-
ation. Therefore, many systems first optimize the trajectory of the UAV, and then consider
other issues to reduce the complexity of the objective function. The communication area is
divided into multiple sectors and assigned to each UAV, and then the order of communica-
tion areas that UAVs pass through is determined and the number of UAVs that maximize
the time that UAVs stay in the communication area is deduced [10]. A simple circular
UAV trajectory was proposed. Under this trajectory, the UAV’s flight radius and speed are
jointly optimized to maximize energy efficiency [11]. In order to prolong the running time
of unmanned aerial vehicles (UAVs) and the related network life, the problems of joint area
division and UAV trajectory scheduling optimization were put forward [12]. By optimizing
the trajectory of the UAV, the task completion time of the UAV is minimized, and, at the
same time, the connection quality constraint of the UAV link specified by the minimum
received signal-to-noise ratio target is obeyed [13]. A cooperative scheme of unmanned
aerial vehicles (UAVs) was proposed, i.e., heuristic UAV replacement, which allows UAV
relays to work individually one by one to maximize end-to-end throughput [14].

Based on the above description, this paper designs a secure communication system
to collect users’ electricity consumption information. The system collects users’ electricity
consumption information through sensors and sends it to the data receiving point, which
sums up the received information and decides whether to upload the information to the
UAV for analysis or local analysis. The frequency division multiple access (FDMA) method
is used to connect data acquisition points with unmanned aerial vehicles. Therefore, the
novelty and contributions of this paper can be highlighted in the following aspects.

(1) This paper analyzes the factors that affect the stable operation of the user’s elec-
tricity consumption information acquisition system, such as the unloading decision, UAV
running trajectory and so on. In order to reduce the system delay and improve the ser-
vice quality of the user electricity information acquisition system, a joint UAV trajectory
and unloading decision algorithm (CDQN) is proposed. The optimal UAV trajectory and
unloading decision design are obtained.

(2) In this paper, a multi-constraint hybrid programming for the joint optimization
problem is proposed, and an effective iterative algorithm based on DQN is proposed, so as
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to obtain a good solution to reduce the system delay and maximize the system service qual-
ity, thus ensuring the stable operation of the user electricity information collection system.

(3) The unloading decision is a 0-1 integer optimization problem. Different complex-
ity methods are proposed to solve this problem, and their performance differences are
compared through simulation, so that they can be selected according to actual needs.

The paper is organized as follows. In Section 2, we provide a summary of the related lit-
erature. In Section 3, we outline the system model. Section 4 discusses the formulation and
solution of the related problems. In Section 5, we analyze the system through simulation.
Lastly, in Section 6, we present a detailed analysis and discussion of the entire article.

2. Related Work

In order to further improve the service quality of the system, an optimization algorithm
can be used to obtain the optimal solution of the problem. For complex optimization problems,
convex optimization can solve the optimal solutions of most problems, and for non-convex
problems, it can still be solved by convex optimization algorithms, so convex optimization
algorithms are still widely used. The UAV path is discretized into n line segments. Because
this problem is not convex in the original form, successive convex approximation (SCA) is
used to solve the joint problem of UAVs in trajectory design, task unloading and caching [15].
Large-scale and non-convex task scheduling problems are decoupled into a main problem
and three subproblems. Among them, the task unloading of the main unloading problem is
transformed into a typical knapsack problem to solve, and the sub-problem of computing
resource allocation is solved by the Lagrange multiplier method [16]. Spatial and temporal
variables are decoupled and solved hierarchically. In order to avoid collision, the lower
layer solves spatial variables and uses ready-made convex optimization to deal with the
strong sensitivity of polynomial coefficients and constraints. The upper layer optimizes
the time variables, and the gradient of the time distribution is used to optimize the time
distribution together with the gradient descent method [17]. Joint service caching, task
unloading, communication and computing resource allocation and UAV layout optimization
are established. This problem is a mixed integer nonlinear programming problem, which is
decomposed into four sub-problems by block coordinate descent, and then the approximate
optimal solution is obtained by an iterative algorithm of successive convex approximation [18].
A secure communication scheme of a non-orthogonal multiple access UAV-MEC system
for flight eavesdroppers is proposed. According to the channel coefficient, transmission
power, CPU calculation frequency, local calculation and UAV trajectory, successive convex
approximation and block coordinate descent are used to solve this problem [19].

In order to deal with these problems better, evolutionary algorithms can be used to solve
complex optimization problems, including particle swarm optimization, genetic algorithm,
the ant colony algorithm and so on. Under the constraints of a deadline, waiting time and
energy, an effective heuristic method of task assignment is proposed to generate feasible flights
for each UAV. Finally, the Pareto-based index is introduced to evaluate the performance of the
comparison algorithm [20]. A two-level joint optimization method has been proposed. In the
outer layer, the particle swarm optimization algorithm combined with a genetic algorithm
operator (PSO-GA) is used to optimize UAV deployment, aiming at minimizing the average
task response time by jointly optimizing UAV deployment and calculating unloading [21]. A
parallel particle swarm optimization algorithm based on a graphics processor was proposed to
balance the cluster size and determine the shortest path along these clusters, while minimizing
the flight time and energy consumption of the UAV [22]. A heuristic algorithm was proposed
to minimize energy consumption and task execution delays, which consists of task allocation,
differential evolution assistance and non-dominated sorting steps [23]. A heuristic algorithm
based on particle swarm optimization (PSO) is proposed to jointly optimize task scheduling
and UAV flight paths [24]. A large-scale path loss fuzzy C-means algorithm was proposed to
predict the optimal positions of the UAVs [25].

In order to obtain the optimal solution faster and better, we can often yield unexpected
results by simplifying the optimization problem and solving it. Under the constraints of the
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average energy consumption of UAVs and the stability of the data queue, the problem was
expressed as multi-stage stochastic optimization, and the multi-stage stochastic problem
was transformed into a deterministic problem per slot with much fewer optimization
variables by Lyapunov optimization [26]. An iterative subchannel allocation and speed
optimization algorithm was proposed to jointly solve the subchannel allocation and UAV
speed optimization problem [27]. A new method based on rolling optimization (RHO) was
proposed, which greatly reduces the number of optimization variables and the computa-
tional complexity for each problem [28]. Binary constraints of mixed integer non-convex
optimization problems were transformed into a series of equivalent equality constraints,
and a penalty-based algorithm was proposed to obtain suboptimal solutions [29]. A clonal
selection algorithm was proposed, which clones the rechargeable UAV into several non-
rechargeable virtual UAVs and searches the trajectory for each virtual UAV to reduce the
computational complexity of mixed integer linear programming [30].

3. System Model

As shown in Figure 1, in order to better implement the technology of peak shaving
and valley filling, this paper constructs a power grid energy consumption monitoring
system, so as to monitor the power consumption of users in real time. The power grid
energy consumption monitoring system is realized by the sensor network, which deploys
multiple sensor nodes to monitor users’ voltage, current, power consumption time and
other information. The sensor nodes transmit the collected user information to the ground
data receiving point, and the ground data receiving point uploads the user information to
realize real-time data processing and analysis, so as to make better use of the peak-shaving
and valley-filling technology, reasonably arrange users’ power consumption time, reduce
the power grid load trough, fill the power grid load trough and balance the power grid load.

Figure 1. Power grid user electricity consumption information acquisition system.

The power grid energy consumption monitoring system constructed in this paper
includes m different data receiving points and unmanned aerial vehicles, and the data
receiving point set record isM = {1, · · · , m, · · · , M}. The sensor transmits the collected
user information to the ground data receiving point, which receives and sorts out the
received user information. The UAV starts from the starting point, flies along a certain
trajectory and is connected with the ground users during the flight. The ground users
consider whether to upload the local information to the UAV for calculation or to calculate
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locally. In particular, the power grid energy consumption monitoring system constructed in
this paper focuses on the collection of users’ electricity consumption information, ignoring
the process of transmitting users’ information from sensor nodes to ground data receiv-
ing points, focusing on the process of collecting information from data receiving points,
analyzing and calculating data and introducing edge computing technology assisted by
drones to realize real-time data analysis and preprocessing. Considering the heterogeneity
of computing resources and communication resources, we assume that the communication
bandwidth of UAV is B. In time slot t, the unloading decision from data receiving point
m to the UAV is expressed as ρm,u

t ∈ {0, 1}. When ρm,u
t = 1, the data receiving point m

chooses to upload data to the UAV, and if ρm,u
t = 0, the data receiving point chooses to

process them locally.

3.1. Communication Model

The coordinate of the m-th user is expressed as (xm, ym); before the UAV communicates
with the data acquisition point, the UAV keeps flying at a fixed height h from the ground
during the flight, and the coordinates of the UAV are expressed as (Xt, Yt), so the distance
between the m-th data acquisition points and the UAV can be expressed as

dm,u
t = H2 + (Xt − xm)

2 + (Yt − ym)
2 (1)

For the air-to-ground channel, it is assumed that there is nothing in the line-of-sight
(LoS) path from the UAV to the ground. In addition, due to the long distance between the
ground data receiving points, the interference between the ground data receiving points
can be ignored. Therefore, it can be reasonably assumed that the channel from the UAV
to the ground data receiving point is the LoS channel. Using a simple channel model, the
channel gain is controlled by the LoS link, so the channel power gain between the m-th
data acquisition point and the UAV can be written as

hm,u
t =

|g0|2

(dm,u
t )

2 (2)

where dm,u
t represents the distance between the drone and the data acquisition points m in

the time slot t. g0 is the reference channel gain, and the reference distance is 1 m, which
obeys the complex Gaussian distribution, i.e., g0 ζ(0, 1) .

In the task unloading stage, the UAV adopts the directional antenna method and
orthogonal frequency division multiplexing technology to reduce the interference between
the data acquisition points and UAV. hm,u

t is the channel gain of data acquisition point m and
the UAV. According to the Shannon formula theorem, the achievable uplink transmission
rate of data acquisition point m and the UAV can be expressed as

rm,u
t = B log2

(
1 +

pmhm,u
t

σ2

)

= B log2

1 +
pm|g0|2

σ2
(

H2 + (Xt − xm)
2 + (Yt − ym)

2
)
 (3)

where B is the communication bandwidth of the UAV, pm is the uplink transmission power
of data acquisition point m and σ2 is the power spectral density of additive Gaussian
white noise.

3.2. Time Delay Model

For each data acquisition point m ∈ M , there is a task amount Nm
t = {Dm

t , Cm
t }

that needs to be completed in each time gap, where Dm
t is the data amount of the task

generated by the data acquisition point, and Cm
t is the number of CPU revolutions required

to calculate the 1-bit task.
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For each time slot t, the task amount Dm
t can be arbitrarily divided into local calculation

and UAV-side calculation. It is worth noting that in the construction of the system model in
this paper, the processing of power grid user information is emphasized, and the timely
processing of information data is very important for the stable operation of the system.
Therefore, this paper considers the local processing delay required to process information
and the transmission delay of uploading information from the data receiving point to
the UAV.

When the local processing of the data receiving point is relatively idle, the collected user
information can be calculated on the local side according to the principle of proximity—at this
time, ρm,u

t = 0. In order to effectively use the local time delay of the data acquisition point,
the time delay of data acquisition point m in local task calculation is as follows:

Tm
loc =

(1− ρm,u
t )Dm

t Cm
t

f m
t

(4)

where f m
t is the frequency of local calculation of the data acquisition point.

When the local computing is busy, if the user information is still unloaded to the
local computing, it will take a long time to allow the data acquisition point to establish
communication with the UAV and then upload a certain amount of tasks to the UAV for
calculation. A UAV assisted by a sensor network can alleviate the conflict between devices,
and, at this time, ρm,u

t = 1. In time slot T, the communication delay in uploading some
tasks to the UAV at data acquisition point m can be written as

Tm,u
t,up =

ρm,u
t Dm

t
rm,u

t

=
ρm,u

t Dm
t

B log
(

1 + pm |g0|2
σ2(H2+(Xt−xm)2+(Yt−ym)2)

) (5)

where rm,u
t indicates the transmission rate of user m in the t time slot.

3.3. System Service Quality Model

In order to improve the service quality of the whole user electricity information
collection system and reduce the system delay, this paper puts forward a system service
quality model. First, the data acquisition point is connected with the UAV, and then the
data acquisition point decides whether to unload the data to the UAV for data analysis
and processing. In particular, the position of each data acquisition point is fixed, while the
trajectory of the UAV is variable, and the service quality of the system is mainly determined
by the transmission rate between the UAV and data acquisition point. The greater the
transmission rate, the more data the UAV will process and analyze, and the higher the
service quality of the user electricity information collection system. In order to measure
the service quality of the system, we use the Φ(·) function as a measure. The Φ(·) function
maps the rate to the utility function of the system quality of service, which is defined
as follows:

∑
m

Φ(rm,u
t ) (6)

where the service quality of the system is the sum of the service quality of all data acquisition
points, and Φ(·) reflects the influence of data acquisition point m on the service quality of
the system. The greater rm,u

t is, the higher the service quality of the system is.

4. Problem Formulation and Proposed Solution

The core aim of this paper is to reduce the system delay and improve system service
quality. Therefore, this paper considers the optimization problems that affect the system
delay and service quality, including the trajectory of the UAV and the unloading decision.
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The data acquisition point collects and sorts out the information transmitted by the sensor
and then uploads the information to the drone for analysis and processing. On this basis, a
multi-constraint hybrid optimization problem based on the UAV trajectory and unloading
decision is proposed in this paper. The convex optimization algorithm is used to solve
the optimization problem of the unloading decision, and a DQN is used to solve the
optimization problem of the UAV trajectory. Through many explorations of the agent, until
the trajectory and unloading decision of the UAV are fixed, the objective function value of
the problem P converges, and finally the trajectory and unloading decision of the UAV are
obtained. Therefore, through the above scheme, we can state that a high-quality suboptimal
solution has been obtained.

4.1. Problem Building

In this part, we construct the joint unloading decision and the optimization problem
of the UAV’s trajectory to minimize the system delay and maximize the service quality of
the system to complete all the tasks of the UAV. Note that the unloading decision of all
data acquisition points is ρ , and the trajectory of the UAV is (X, Y); then, the optimization
problem is as follows:

P : max
(X,Y)

∑
t

∑
m

Φ(rm,u
t )−w

(
Tm

t,loc + Tm,u
t,up

)
= max

(X,Y),ρ
∑

t
∑
m

Φ(rs
t )−w

(1− ρm,u
t )Dm

t Cm
t

f m
t

− w
ρm,u

t Dm
t

rm,u
t

(7)

s.t. C1: ρ ∈ {0, 1}
C2 :(X0 , Y0) = q0, (XT, YT) = qT

(8)

w is the proportion of system delay in the objective function. From the problem P, we can
conclude that the higher the transmission rate between the data acquisition point and the
UAV, the higher the service quality of the system. For the unloading decision, the lower
the unloading decision, the longer the local calculation time, and the higher the unloading
decision, the longer the uploading task time of the data collection point. Constraint (1)
restricts the data acquisition point to choose whether to unload the task or not to unload it
to the UAV; Constraint (2) restricts the starting and ending positions of the UAV.

From the above, the problem P is a mixed optimization problem and a non-convex
optimization problem, because the problem P contains a non-concave objective function.
In particular, the problem of UAV trajectory optimization is a non-convex optimization
problem, which cannot be solved directly by standard convex optimization technology.

4.2. Trajectory Optimization of UAV

When solving problem P, in order to improve the service quality of the system, it is
necessary to optimize the trajectory of the UAV according to the state of the UAV at each
moment. The following equation relates to the trajectory optimization of the UAV:

P1 : max
(X,Y)

∑
t

∑
m

Φ(rm,u
t )− w

(
Tm

t,loc + Tm,u
t,up

)
= max

(X,Y)
∑

t
∑
m

Φ(rm,u
t )− w

(
(1− ρm,u

t )Dm
t Cm

t
f m
t

+
ρm,u

t Dm
t

rm,u
t

)
= max

(X,Y)
∑

t
∑
m

Φ(rm,u
t )− w

ρm,u
t Dm

t

B log2

(
1 + pm |g0|2

σ2(H2+(Xt−xm)2+(Yt−ym)2)

)
− w ∑

t
∑
m

(1− ρm,u
t )Dm

t Cm
t

f m
t

s.t. (X0 , Y0) = q0, (XT, YT) = qT (9)
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By combining the above equations with the basic knowledge of convex optimization,
it can be deduced that the problem P1 is a non-convex optimization problem and cannot be
solved by traditional convex optimization techniques. It can be solved by transforming the
non-convex problem into a convex problem or by using deep reinforcement learning.

In the following, we will first give the definition of Markov decision making based
on UAV path planning and optimize the motion direction of the UAV at every time gap n.
By a tuple {s, a, τ, r, s_}, s is the system state, a is the movement action and r is a reward
function. Therefore, the MDP problem can be defined as follows.

(1) s: In time slot n, the system state is defined as the coordinate set of the UAV at the
current moment (Xt, Yt).

(2) a: In time slot n, the UAV can move in one direction, which is mainly represented
by u,d,h,e.

(3) s_ : In time slot n + 1, the next state of the system is defined as the UAV coordinate
set at the next moment (Xt+1, Yt+1).

(4) r: In order to solve the problem P, we use the target value of the problem P as the
reward function R, which is defined as

r = Φ(rs
t )−w

(
Tm

t,loc + Tm,u
t,up

)
(10)

In order to speed up the convergence of the algorithm, when the UAV receives data,
the flight energy consumption of the UAV is used as the penalty function, and the penalty
function is as follows:

ϕ(a) = βet (11)

Because of the randomness of agents, it is difficult to model the state transition
probability τ. Because the action space and state space in the MDP problem are discrete,
we use the DQN method to make decisions and divide the Q value into the state value
and action value, which avoids overestimating the Q value and further improves the
learning performance.

4.3. Unloading Decision Optimization

When the UAV reaches a position, the unloading decision between the data acquisition
point and the UAV is optimized, and the optimization formula is as follows:

P2:min
ρ

∑
t

∑
m

w
(

Tm
t,loc + Tm,u

t,up

)
= min

ρ
∑

t
∑
m

w
(
(1− ρm,u

t )Dm
t Cm

t
f m
t

+
ρm,u

t Dm
t

rm,u
t

)
s.t. ρm,u

t ∈ {0, 1} (12)

The optimization problem of unloading decision ρ mentioned above is an integer
optimization problem. The unloading decision can be relaxed and changed from an integer
optimization problem of 01 to a continuous optimization problem between 0 and 1. After
relaxing the unloading decision ρ, the following equation can be obtained:

P2:min
ρ

∑
t

∑
m

w
(

Tm
t,loc + Tm,u

t,up

)
= min

ρ
∑

t
∑
m

w
(
(1− ρm,u

t )Dm
t Cm

t
f m
t

+
ρm,u

t Dm
t

rm,u
t

)
s.t. ρ ∈ [0, 1] (13)

It can be concluded that the optimization problem of the unloading decision is convex
and can be solved by a convex optimization algorithm.
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In the process of learning, the agent iterates the unloading decision and the trajectory
of the UAV until it finds a high-quality suboptimal solution.

We propose an iterative algorithm with low complexity, which aims at minimizing the
system delay and maximizing the service quality of the system. Firstly, the trajectory of the
UAV is randomly initialized to obtain the position of the UAV, and the unloading decision is
solved by the convex optimization algorithm. Then, the solution is obtained by calculating
the system delay and the system service quality from the obtained unloading decision.
After repeated iterations of the agent, until the unloading decision and the trajectory of
the UAV do not change, and the target value converges to the predefined accuracy, we can
state that we have found a suboptimal solution to this problem. The specific algorithm
process is shown in Algorithm 1.

Algorithm 1 Convex optimization and DQN (CDQN)

1: Initialize UAV status, user unloading decision.
2: repeat
3: repeat
4: Initialize UAV starting point (X0, Y0) and t = 0.
5: Convex optimizer solves the user unloading decision ρt by Equation (13).
6: Obtain the next position of the UAV (Xt+1, Yt+1) and the current reward rt+1.
7: Convex optimizer solves the user unloading decision ρt+1 by Equation (10).
8: until The drone reaches the finish line.
9: The agent returns to the starting point for training and learning.

10: until The target no longer changes.

5. Analysis of Simulation Results

The simulation results show that the proposed algorithm is effective. In the simulation,
we assume a sensor-based user electricity information acquisition system, in which the
positions of data acquisition points are randomly deployed in a certain range. The CDQN
algorithm proposed in this paper is simulated and compared with the FD, relax and random
algorithms.

5.1. Simulation Parameters

The simulation parameters are shown in Table 1 below.

Table 1. Simulation parameters.

Variable Parameter Value

w Proportional parameter of time delay 10
S Distribution area 480 × 240
f m
t Frequency of local calculation of data acquisition point 1 × 108

C Local computing resources 500
Dm

t User data volume 3v6
pm Data transmission power 20 mW

5.2. Simulation Result Analysis

Figure 2 shows the convergence of the algorithm proposed in this paper. As can be
seen from the figure, from the beginning, the convergence curve of the algorithm proposed
in this paper rises with the increase in the iteration times. After a period of iteration,
the UAV trajectory and unloading decision will not change, and then the algorithm will
gradually converge. From the convergence curve of the algorithm, it can be seen that the
CDQN algorithm proposed in this paper converges after 200 iterations, so we can conclude
that the CDQN algorithm proposed in this paper can also obtain high-quality approximate
suboptimal solutions. Because the solution obtained by reinforcement learning is often
not the optimal solution, there is a certain gap between the results obtained in this paper
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and the optimal solution, but the CDQN algorithm proposed in this paper also obviously
improves the performance.

Figure 2. The convergence curve of the algorithm proposed in this paper.

Figure 3 shows the target values of the system under different algorithms. For UAVs,
under the constraint of the UAV trajectory, they will always reduce the transmission delay
as much as possible and improve the service quality of the system, so UAVs will choose
data receiving points close to the maximum communication rate as much as possible. As
can be seen from the figure, under the same constraint conditions, the target value of the
CDQN algorithm is the largest, followed by the relax algorithm, and there is little difference
between the FD algorithm and random algorithm. For the relax algorithm, in the process
of optimizing the unloading decision, the unloading decision is relaxed, and the unloading
decision is changed from 0 or 1 to any value between 0 and 1, so the data access point
will upload data to the UAV for calculation according to a certain unloading ratio, and the
remaining data will be kept for calculation at the local end. The CDQN algorithm proposed
in this paper iteratively solves the unloading decision and UAV trajectory many times until
the obtained results remain unchanged. The random algorithm optimizes the problem and
does not comprehensively consider the unloading decision, so the data uploaded to the
drone are uncertain. Therefore, the CDQN algorithm can reduce the system delay as much
as possible, thus greatly improving the system service quality.

Figure 4 shows the system quality of service under different algorithms. The service
quality of the CDQN algorithm system is the highest, and it is not notably different from
the FD algorithm proposed in this paper, because the FD algorithm uses the UAV trajectory
based on the CDQN algorithm, and the UAV trajectory is related to the transmission rate
between the UAV and the data acquisition point. The better the UAV trajectory, the higher
the service quality of the system, so the service quality of the CDQN algorithm system is
not notably different from the FD algorithm. The relax algorithm and random algorithm
use a fixed UAV trajectory. It can be seen that in the CDQN algorithm proposed in this
paper, the performance of the UAV trajectory obtained by the DQN algorithm is better. The
CDQN algorithm proposed in this paper optimizes the trajectory and unloading decision of
the UAV as a whole, maximizes the service quality of the system, reduces the system delay
and optimizes the objective function value of the problem. Therefore, it can be concluded
that the CDQN proposed in this paper improves the performance of the system and is more
accurate, which is very important for the realization of the solution.
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Figure 3. Target convergence of different algorithms.

Figure 4. System quality of service of different algorithms.

Figure 5 shows the influence of different algorithms on the system delay. The system
delay of the CDQN algorithm proposed in this paper is the smallest, followed by the relax
algorithm, and there is little difference between the FD algorithm and random algorithm.
The CDQN algorithm proposed in this paper relaxes the unloading decision, changes the
unloading decision from 0 or 1 to any value between 0 and 1 and then uses the convex
optimization algorithm to find the optimal unloading decision. The FD algorithm adopts the
path planned by the CDQN algorithm proposed in this paper and uses the greedy algorithm to
solve the unloading decision problem of the data acquisition points, so as to shorten the time
of uploading information from the data acquisition points to the UAV as much as possible,
which makes the unloading decision unable to balance the transmission delay and calculation
delay, resulting in a further delay increase. The relax algorithm relaxes the constraint of the
unloading decision problem, so the system delay of the relax algorithm is lower than that of
the FD algorithm and random algorithm, but the CDQN algorithm has a lower system delay.
The random algorithm is random and unstable. It can be seen that the CDQN algorithm
proposed in this paper is more accurate and stable than the other algorithms. It can be seen
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from the above that the CDQN algorithm proposed in this paper effectively reduces the
transmission delay of the system.

Figure 5. System delay of different algorithms.

6. Conclusions

This paper mainly considers a user electricity information collection system, and
the intelligent management of the user electricity information collection system needs to
process and analyze the data uploaded by the data receiving point in time. In order to
improve the service quality of the system and reduce the system delay, this paper uses a
UAV auxiliary system to analyze and process the data. For the target problem constructed in
this paper, the DQN algorithm and convex optimization algorithm are iteratively combined
to solve the joint optimization problem, in which DQN solves the trajectory problem of
the UAV and the convex optimization algorithm solves the unloading decision problem
of the data acquisition points. The simulation results show that compared with other
algorithms, the CDQN algorithm can effectively improve the system service quality and
reduce the system delay, thus improving the sensor utilization. In future work, we will
strive to further improve the accuracy of the algorithm and reduce its complexity in order
to improve the algorithm. In addition, a more realistic background will be considered in
the optimization problem.
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