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Abstract: Facial expression recognition (FER) in the wild has attracted much attention in recent
years due to its wide range of applications. Most current approaches use deep learning models
trained on relatively large images, which significantly reduces their accuracy when they have to infer
low-resolution images. In this paper, a residual voting network is proposed for the classification of
low-resolution facial expression images. Specifically, the network consists of a modified ResNet-18,
which divides each sample into multiple overlapping crops, makes a prediction of the class to which
each of the crops belongs, and by soft-voting the predictions of all the crops, the network determines
the class of the sample. A novel aspect of this work is that the image splitting is not performed before
entering the network, but at an intermediate point in the network, which significantly reduces the
resource consumption. The proposed approach was evaluated on two popular benchmark datasets
(AffectNet and RAF-DB) by scaling the images to a network input size of 48 × 48. The proposed
model reported an accuracy of 63.06% on AffectNet and 85.69% on RAF-DB with seven classes in
both cases, which are values comparable to those provided by other current approaches using much
larger images.

Keywords: facial expression recognition; emotions; low resolution; AffectNet; RAF-DB; voting

1. Introduction

In recent years, the need to recognize a person’s emotions has increased, and there has
been a growing interest in human emotion recognition across various fields, including brain–
computer interfaces [1,2], assistance [3], medicine [4], psychology [5,6], and marketing [7].
Facial expressions are one of the primary nonverbal means of conveying emotion and play
an important role in everyday human communication. According to a seminal paper [8],
more than half of the messages related to feelings and attitudes are contained in facial
expressions. Emotions are continuous in nature. However, it is common to measure them
on a discrete scale. Ekman and Friesen [9] identified six universal emotions based on a
study of people from different cultures. This study showed that people, regardless of
their culture, perceive some basic emotions in the same way. These basic emotions are
happiness, anger, disgust, sadness, surprise, and fear. Over time, critics of this model have
emerged [10], arguing that emotions are not universal and have a high cultural component;
nevertheless, the model of the six basic emotions continues to be widely used in emotion
recognition [11].
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In the last few decades, facial expression recognition (FER) has come a long way
thanks to advances in computer vision and machine learning [12]. Traditionally, feature-
extraction algorithms such as scale-invariant feature transform or local binary patterns and
classification algorithms such as support vector machines or artificial neural networks have
been used for this task [13–15]. However, the current trend is to use convolutional neural
networks (CNNs), which perform feature extraction and classification at the same time [16].
FER datasets can be divided into two main categories, depending on how the samples were
obtained: laboratory-controlled or wild. In lab-controlled datasets, all images are taken
under the same conditions. Therefore, there are no variations in illumination, occlusion, or
pose. Under these conditions, it is relatively easy to achieve high classification accuracy
without resorting to complex models; in fact, in some datasets, such as CK+ or JAFFE, 100%
of the images can be correctly classified [17,18]. On the other hand, in-the-wild datasets
contain images taken under uncontrolled conditions, such as those found in the real world.
In this scenario, the classification accuracy is significantly lower than that obtained in
laboratory-controlled datasets [19,20].

FER in-the-wild datasets typically contain images of many different sizes [21], which
are typically scaled to 224 × 224 to feed a neural network. The main drawback of training a
CNN on images of this size is that, as the network infers lower-resolution images, classi-
fication accuracy drops significantly [20]. There are many applications where obtaining
high-resolution images of human faces is not feasible, for example when trying to determine
the emotional state of multiple people simultaneously in large spaces such as shopping
malls, parks, or airports. In these situations, each person is at a different distance from the
camera, resulting in images of different resolutions. As highlighted in a survey [22], these
circumstances present a variety of challenges, including occlusion, pose, low resolution,
scale variations, and variations in illumination levels. In addition, they underscore the
importance of the efficiency of FER models when processing images of multiple people
in real-time.

In these scenarios, a network trained on low-resolution images can be more robust
because the network is less dependent on fine details that are not present in low-resolution
images, thus increasing its ability to generalize. In addition, working with smaller images
reduces the computational cost and bandwidth required to transfer the images from the
cameras to the computer where they are processed. CNNs that work with low-resolution
images are lighter because the features occupy less memory, making it possible to use
methods such as ensemble learning, which is not widely used in deep learning due to its
high computational complexity [23]. Ensemble learning methods combine the results of
multiple machine learning estimators with the goal of obtaining a model that generalizes
better than the estimators of which it is composed [24]. Assembling n CNNs means
multiplying by n the number of trainable parameters of the model and the size of the
features of each image in the network.

To illustrate the problem more clearly, let us consider a possible application scenario,
such as a smart campus proposal, where FER is used to quantify the degree of user
comfort [25]. This environment uses a network of wireless cameras that send video to
servers that recognize people’s faces and predict their emotions in real-time. In this
environment, it is not possible to control the distance of building occupants from the
camera, their position, or possible occlusions. In addition, there can be hundreds or even
thousands of people in this type of environment, which means managing a huge flow of
data. In this context, the resolution of the images is a fundamental variable: the lower
the resolution of the images, the lower the workload of the system is. For this reason, the
use of lightweight models specifically designed for processing low-resolution images in
real-world conditions is of interest.

This paper proposes a model for facial expression recognition from low-resolution
images based on a residual network and a voting strategy. This model tries to improve
the generalization capability of the neural network by combining different classification
results, as is done in ensemble methods, but without increasing the complexity of the model
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excessively. For this purpose, instead of using n networks to obtain n votes (predictions),
n patches of each image are taken and fed into a single network, which provides the n
votes based on which the class of the image is determined. Thus, the number of trainable
parameters of the model remains constant regardless of the number of votes. If the image is
partitioned into multiple patches before entering the network, the size of the image features
is multiplied by n. To address this problem, our work explored different intermediate
points in the network where partitioning can be performed. The closer the splitting point is
to the network exit, the smaller the dimensionality of the image features and, consequently,
the smaller the space required to store them. In this paper, the proposed approach was
implemented on a residual network, although theoretically, this approach could be used
with virtually any CNN.

The main contributions of this paper can be summarized as follows:

• Integration of a voting mechanism: A voting mechanism is integrated into a residual
network architecture to improve the accuracy of facial expression recognition in low-
resolution images.

• Retention of model size: The proposed voting approach does not increase the number
of trainable parameters regardless of where the image is split. This differs from
conventional ensemble model implementations, which tend to increase the number of
trainable parameters.

• Examination of split points: The method is evaluated by performing image splitting
at different points in the network to determine the impact on network accuracy and
forward pass size after applying the model. The closer the split point is to the network
output, the lower the dimensionality of the image features and, thus, the smaller the
space required to store them.

• Experimental evaluation: Extensive experiments were performed on two public bench-
mark datasets (AffectNet and RAF-DB) to validate the effectiveness of the proposed
method. The images of these datasets were resized to 48 × 48 px, which makes the
proposed method very robust to variations in image resolution. The results showed
that it is possible to reduce the resolution of the images used to train FER models
without significant loss of accuracy.

The rest of this paper is organized as follows. In Section 2, several existing algorithms
for FER in the wild are discussed. The materials and methods used in this work are
presented in Section 3. Section 4 contains the experimental results. Finally, Section 5 draws
the conclusions of the study.

2. Related Work
2.1. Facial Expression Recognition in the Wild

Many of today’s FER methods use a conventional CNN as the backbone and add
attention modules to it to improve classification accuracy [26–28]. These modules are used
to force the CNN to learn and focus more on important information instead of learning
useless background information. For example, an occlusion-aware FER system using a
CNN with an attention mechanism has been developed [19]. The authors divided the
resulting feature vector of the last convolutional layer of a CNN into 24 regions of interest
using a region decomposition scheme and trained an attention mechanism module capable
of learning a low weight for a blocked region and a high weight for an unblocked and
informative region with them. In a recent paper, a multi-headed cross-attention network
was proposed that achieved state-of-the-art performance on three public FER in-the-wild
datasets [29]. In this network, the attention module implements spatial and channel
attention, which allows capturing higher-order interactions between local features. A
CNN was also trained with multiple patches of the same image, and an attention module
was added to the network output [30]. This model achieved state-of-the-art results on
four public FER in-the-wild datasets. Our method has in common that each sample is
split into multiple patches in both methods. However, in our approach, the splitting is
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performed within the CNN, which significantly reduces the size of the image features
within the network.

Nevertheless, there are other approaches that achieve high performance in FER in
the wild without relying on attentional mechanisms. For example, a novel multitask
learning framework that exploits the dependencies between these two models using a
graph convolutional network has recently been proposed [31]. The results of their exper-
iments showed that their method can improve the performance over different datasets
and backbone architectures. In addition, a paper proposed three novel CNN models with
different architectures and performed extensive evaluations on three popular datasets,
demonstrating that these models are competitive and representative in the field of FER in
the wild research [32]. A very recent paper introduced a few-shot learning model called
the convolutional relation network for FER in the wild, which was trained by exploiting a
feature similarity comparison among the sufficient samples of the emotion categories to
identify new classes with few samples [33].

Another approach that has proven to be state-of-the-art in FER is transformer-based
methods. Inspired by transformers used in natural language processing, vision transform-
ers (ViTs) have been proposed as an alternative to CNNs for various computer vision
problems such as image generation [34] or classification [35]. In this approach, images
are divided into multiple samples, and this sequence of images is used as the input to the
model. Compared to CNNs, ViTs are more robust for classifying images that have noise or
are magnified, but these models are generally more computationally expensive [36].

However, the pure structure of ViTs, which does not reflect local features, is not
suitable for detecting subtle changes between different facial expressions, and therefore,
the performance of these models for FER may be inferior to those based on CNNs. In order
to exploit the advantages and minimize the limitations of both approaches, hybrid models
combining ViTs and CNNs for FER have been developed in recent years. Huang et al. [37]
proposed a novel framework with two attention mechanisms for CNN-based models and a
token-based visual transformer technique for image classification of facial expressions in
the wild. With this model, they achieved state-of-the-art performance on different datasets
without the need for additional training data. With the same goal, Kim et al. [38] proposed
a hybrid approach with a ViT as the backbone. By introducing a squeeze module, they
were able to reduce the computational complexity by reducing the number of feature
dimensions, while increasing the FER performance by simultaneously combining global
and local features. Similarly, Liu et al. [39] used a CNN to extract local image features and
fed a ViT with a positional embedding generator to model correlations between different
visual features from a global perspective. With this hybrid model of only 28.4 million
parameters, they surpassed the state-of-the-art in FER with occlusion and outperformed
other models with hundreds of millions of parameters.

In addition, Ma et al. [40] proposed a model using two ResNet-18 for parallel feature
extraction from the original image and an image obtained by local binary patterns. To model
the relationships between features, they used a visual transformer, where features from
both networks are merged. However, the improvement in accuracy provided by this model
implies a significant increase in computational load compared to other approaches, since
this model uses between 51.8 and 108.5 million parameters in the different implementations
described in this work. What our proposal has in common with transformer-based methods
is that both approaches divide the images into several patches in order to improve the
accuracy of emotion recognition. However, in transformer-based models, each patch
contains only a small part of the face, which forces working with a large number of samples
and, consequently, increases the computational complexity. In contrast, in our approach,
almost the entire face is contained in each sample, which reduces the number of samples
required and makes the model robust to image translations.
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2.2. FER in the Wild from Low-Resolution Images

In real-world applications, some or all of the images may be low-resolution. Under
these conditions, the accuracy of models trained on high-resolution images is significantly
reduced. FER in the wild from low-resolution or variable-resolution images is a less-
explored area. However, in recent years, several approaches have been proposed to
address this problem. Yan et al. [41] proposed a filter-based subspace learning method that
outperformed the state-of-the-art on posed facial expression datasets, but the results were
significantly worse on in-the-wild image datasets. The authors argued that this method has
a learning capacity superior to some CNN-based methods. However, it requires the image
to be converted to gray scale, which can result in the loss of valuable information. Another
approach that has proven effective is the use of denoising techniques on low-resolution
images to increase classification accuracy [42].

On the other hand, super-resolution-based methods have shown promising results
in this field [43,44]. Super-resolution algorithms are generative models used to obtain
high-resolution images from small images. The output of these models can be used as the
input to any CNN that works with high-resolution images, such as those described in the
previous subsection. The main drawback of these methods is the computational cost, since
adding a generative model before the classifier means increasing the memory needed to
process the image and the number of floating-point operations. While conventional CNNs
typically require less than 10 giga floating-point operations per second (GFLOPs) to process
an image, super-resolution-based models can require thousands of GFLOPs [43].

Another approach that has shown promising results in this area is knowledge distilla-
tion [45], which basically consists of transferring knowledge from heavy models trained on
high-resolution images to lighter models operating on low-resolution images. For example,
Ma et al. [46] obtained high accuracy rates in FER of resolution-degraded images with a
model in which they used the knowledge of different levels of features of a teacher network
to transfer it to a lighter student network. O. Huang et al. [47] proposed a feature-map-
distillation (FMD) framework in which the size of the feature map of the teacher and
learner networks was different. With this approach, they achieved better results on several
recognition tasks than with twenty state-of-the-art knowledge-distillation methods.

3. Materials and Methods

The notations and symbols used in this article are shown in Table 1.

Table 1. Notations and symbols used in this article.

Notation Description

conv 2D convolutional layer; applies sliding convolutional filters to 2D input.

adaptive avg pool 2D adaptive average pooling layer; computes the kernel size required to generate a
specified output dimensionality from the given input.

b Batch size; the number of input samples processed simultaneously during training
or inference.

fc Fully connected layer; applies a linear transformation to the input vector through a
weights matrix.

num_channels Number of output channels; representing the depth of feature maps produced by
a layer.

x Batch of input images; a multi-dimensional array containing the input image data.
xpatches List that stores patches extracted from the images; used for further processing.
img Individual image in the batch of images.
hold, wold Original height and width of img.

hnew, wnew
Height and width of the image after calculating new dimensions based on a
specific ratio.

xstart, xend, ystart, yend Coordinates representing the position of a patch in the image.

patch Extracted image patch with dimensions hnew by wnew, representing a smaller region
of the input image.

mirrored_img Image horizontally mirrored.

xfinal
The final result contains all patches of the original and mirrored images, concatenated
along the batch size dimension.
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3.1. Network Architecture

Our work used the ResNet-18 architecture for ImageNet [48] as a baseline, with slight
modifications to adapt it to smaller images (see Figure 1). ResNet-18 is a lightweight and
robust architecture that has demonstrated its superiority over other heavier architectures
in computer vision tasks [48]. This model has been widely used as the backbone for
various models that have reached the state-of-the-art in FER in the wild [49–53]. The skip
connections in ResNet-18 allow faster convergence during training by providing shortcuts
for gradient flow. This leads to faster training and often better generalization, especially
when dealing with complex datasets. In addition, this model has a relatively simple and
easily manipulated structure that allows the splitting and voting strategy presented in this
paper to be easily incorporated at various points in the architecture.

In the original architecture, designed for images of 224 × 224 px, the first convolutional
layer used a kernel of size 7 × 7 and a stride of two, followed by a max-pooling layer
to reduce the dimensionality quickly. In our network, the input images had a size of
48 × 48 px, so it was not necessary to reduce the dimensionality so quickly. Therefore, we
chose a 3 × 3 kernel in the first layer with a stride of one and removed the max-pooling
layer. Otherwise, the baseline architecture was identical to the original.

We believe that the 7 × 7 kernel size in the original architecture may be excessive for
48 × 48 px images and may result in a loss of fine-grained features. The use of a 3 × 3
kernel is congruent with the ResNet approach for CIFAR, which is designed to work with
32 × 32 px images. On the other hand, the decision to eliminate the max-pooling layer was
due to the fact that, for images with an input size of 48 × 48, the dimensionality at this
point of the network is already low without the need to perform any pooling operation. In
the original architecture, this layer allows reducing the dimensionality from 112 × 112 to
56 × 56. In our case, however, the dimensionality is 48 × 48.

From the baseline architecture, three variants were developed by introducing a voting
strategy. For this purpose, each image entering the network was cut into five overlapping
square patches; the side dimension of each patch was 5/6 of the image side dimension, and
one patch was taken at the center of the image and one at each corner of the image (see
Figure 2). Once the patches were obtained, a copy of the patches was made and mirrored
horizontally. In this way, 10 sub-images were obtained from each image. The pseudocode
of the image division process is shown in Algorithm 1.

Accurately recognizing facial expressions in real-world situations is challenging due
to the variety of lighting conditions, poses, backgrounds, and occlusions. By dividing the
image into multiple overlapping slices, we sought to increase the robustness and stability
of the model by forcing it to work with incomplete and off-center images. This approach
yields different predictions from the same image, as if it were an assembler model, but
without the need for ten different neural networks. The choice of a 5/6 ratio for image
cropping is based on the observation that this ratio preserves most of the facial area relevant
to facial expressions in most images, while eliminating less-informative regions. In addition,
the dimensions of the images produced by each module within the baseline architecture
are all divisible by six, which simplifies the cropping procedure.
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Figure 1. Modified ResNet-18. Note: “b” denotes batch size.
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Figure 2. Image cropping.
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Algorithm 1 Image patch generation

1: Input: Batch of images: x of shape (batch_size, num_channels, height, width)
2: Output: Patches: xpatches of shape (batch_size × 10, num_channels, new_height,

new_width)
3: Initialize an empty list xpatches
4: for each image img in batch x do
5: Get dimensions of img: hold = height(img), wold = width(img)
6: Calculate new dimensions: hnew = 5

6 × hold, wnew = 5
6 × wold

7: for each patch position do
8: Calculate patch coordinates: xstart, xend, ystart, yend for the current position
9: Extract patch: patch = img[:, :, ystart : yend, xstart : xend]

10: Add patch to xpatches
11: end for
12: Mirror img horizontally: mirrored_img = horizontal_flip(img)
13: for each patch position do
14: Calculate patch coordinates for mirrored image
15: Extract patch from mirrored image
16: Add mirrored patch to xpatches
17: end for
18: end for
19: Concatenate patches along the batch dimension: xfinal = concatenate(xpatches, dim = 0)

Cropping before entering the network would significantly increase the size of the
image features within the network. For this reason, in this work, cropping was performed
at an intermediate point in the network where the dimensionality is lower. Specifically,
three points were examined (see Figure 3), namely the output of Modules 1, 2, and 3. The
output of the fully connected (FC) layer of the network provided the predictions of each of
the 10 crops into which the image had been divided. The final prediction of the class to
which the image belonged was obtained by calculating the average of these 10 predictions
(soft voting). The closer the cropping point was to the input of the network, the larger the
size of the images within the network (forward pass) and, consequently, the smaller the
number of images that could be processed per batch in both training and inference. Table 2
shows the estimated forward pass sizes per image of the proposed architecture, depending
on where in the network the image was divided into 10 crops. Included also in the first row
is the forward pass size that the baseline architecture would have if the image were split
before entering the network. In this case, the effective forward pass size would be 70 MB
because it would have to be multiplied by 10 since 10 sub-images would be used to predict
each sample.

The forward pass size was measured by calculating the space occupied by the tensors
on the graphics card before and after inserting a batch of images and dividing this value
by the number of images in each batch. The occupied space was measured using the
torch.cuda.memory_allocated() function of PyTorch [54].

Table 2. Estimated forward pass size and giga floating-point operations per second (GFLOPs) of
different ResNet-18 architectures.

Architecture Input Size Forward Pass Size (MB) GFLOPs

Baseline 40 × 40 7.00 0.87
Baseline 48 × 48 10.08 1.26
Cropping after Module 1 48 × 48 40.34 6.66
Cropping after Module 2 48 × 48 23.34 4.85
Cropping after Module 3 48 × 48 14.84 3.05
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Figure 3. Variants of the baseline ResNet-18 with the addition of the voting strategy. (a) Cropping
after Module 1. (b) Cropping after Module 2. (c) Cropping after Module 3. Note: “b” denotes batch
size.

3.2. Datasets

To evaluate the proposed method, two popular FER datasets in the wild were used,
namely AffectNet [55] and RAF-DB [56]. These datasets contain images of different sizes
taken under challenging conditions with occlusions and variations in illumination and
pose. Both datasets are highly imbalanced. Figure 4 shows the distribution of images in the
original training set of the two datasets above.

3.2.1. AffectNet

AffectNet contains more than 440,000 facial images collected from the Internet by
querying various search engines with 1250 emotion-related keywords in six different
languages. Approximately 291,651 of these images were manually annotated for the
presence of eight facial expressions (fear, happiness, sadness, neutral, anger, surprise,
disgust, and contempt). In this work, the contempt expression was not used, so there was a
total of 287,401 images, divided into two subsets, and 500 images of each class belonged to
the validation set and the rest to the training set. Since the test set was not published by the
authors, the validation set was used as the test set, and we created a new validation set by
randomly taking 500 images from each class of the training set.
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Figure 4. Class distribution of the training sets of the RAF-DB and AffectNet datasets.

3.2.2. RAF-DB

The RAF-DB dataset contains 29,672 manually annotated images collected from the
Internet, which are divided into two subsets according to the type of annotation: (i) basic
expressions and (ii) compound expressions. Here, only the subset of basic expressions was
used, which includes six basic emotions (fear, happiness, sadness, anger, surprise, and
disgust) and the neutral emotion. The subset of basic expressions was further divided into
two subsets: training and testing, with 12,271 and 3068 images, respectively. Since we did
not have a validation set, we created one by taking 10% of the images from the training set.

3.3. Implementation Details

The experiment was conducted on a workstation with the following hardware specifi-
cations: Intel(R) Core(TM) i7-10700KF processor, 32 GB DDR4 3600 MHz RAM, NVIDIA
GeForce RXT 2070 Super graphics card. All networks were implemented using the PyTorch
library [54]. All images were resized to 48 × 48 before entering the network. During
training, online data augmentation was performed to increase the generalization capacity
of the network and to avoid overfitting. The following transformations were randomly
applied to the images in the training phase:

• Resized crop: A part of the image was cropped and resized to its original size.
• Color jitter: The brightness, contrast, and/or saturation of the image were randomly

altered.
• Translation: The image was scrolled horizontally and/or vertically.
• Rotation: The image was randomly rotated with respect to its center.
• Erase: A random rectangular area of the image was erased.

The AffectNet dataset is highly imbalanced. However, the validation set of this dataset
(which we used as the test set) is balanced. Therefore, in training, we downsampled the
majority classes and oversampled the minority classes to improve the average accuracy of
the model. In the case of RAF-DB, both the training and test sets are unbalanced, although,
for a real application, it would be more useful to train the model by balancing the dataset,
as was performed in AffectNet. It was decided not to do this because most of the work we
compared our model to used overall accuracy rather than average accuracy as a metric to
evaluate their models. Balancing the dataset for training can reduce the overall accuracy of
the classifier, so we feel that comparing it to other works that did not balance it would not
be fair.

Training the networks with AffectNet was performed from scratch, while training
with RAF-DB, which contains approximately 18-times fewer images, was performed by
initializing the networks with the AffectNet weights. The Adam [57] optimizer was used to
train all networks in both datasets. The initial learning rate was 0.0002 and was reduced
after each iteration by multiplying it by 0.65 for AffectNet and by 0.95 for RAF-DB. The
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cross-entropy between the FC layer output and the image labels was used as the loss
function in the model optimization. The FC layer output was used instead of the soft voting
result to increase the robustness of the model, as it was forced to learn to correctly classify
the different crops into which the image had been divided, rather than just the whole image.
All models were trained with a batch size of 135. For the AffectNet dataset, the model was
trained on twenty epochs and, for the RAF-DB dataset, on forty epochs.

For both datasets, the best model was selected based on the classification accuracy
on the validation set (created by taking images from the original training set). Once the
best model was determined, it was re-trained using the images from the training and
validation sets and then evaluated using the images from the test set to obtain the final
classification results.

3.4. Evaluation of Results

Accuracy is defined as the ratio of the number of samples correctly classified to the
total number of samples (see Equation (1)).

accuracy =
number of correct predictions

total number of predictions
(1)

Overall accuracy is not the most-appropriate metric to evaluate a classifier on an
imbalanced dataset, since its value depends mainly on the results obtained on the majority
classes. However, it is the most-commonly used metric to evaluate the performance of a
classifier in the field of FER. In this work, it was decided to use this metric to evaluate the
model, since it allowed us to compare the results with almost all the works that used the
same datasets as here. In addition to the overall accuracy, confusion matrices were used
to evaluate the performance of the classifiers. Confusion matrices allowed us to visualize
when one class was confused with another, allowing us to work with different types of
errors separately. Specifically, normalized confusion matrices were used, i.e., matrices
in which the columns of the actual classes were divided by the total number of images
contained in each class. In this way, the classification accuracy of each class was obtained
on the diagonal of the matrix.

4. Results and Discussion

Table 3 shows the classification results on the validation set. The introduction of the
voting strategy improved the classification results with respect to the baseline architecture
in both datasets. The best results were obtained by cropping after the first module of the
network. However, similar results were obtained by cropping after the second module,
and in this case, the size of the forward pass was much smaller. The results suggest that the
closer the image splitting was performed to the network input, the better the classification
accuracy. Furthermore, it was observed that the soft voting strategy gave better results than
the hard voting strategy in all cases.

Table 3. Classification accuracy of the validation set of the different architectures studied (highest
accuracy is in bold).

Architecture
AffectNet RAF-DB

Soft Voting Hard Voting Soft Voting Hard Voting

Cropping after
Module 1 63.69% 63.14% 85.88% 85.06%

Cropping after
Module 2 63.51% 62.34% 85.31% 84.90%

Cropping after
Module 3 62.80% 62.34% 85.31% 84.73%

Baseline 62.29% 83.76%
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Once it was determined that cropping after Module 1 produced the best classification
results, the final model was retrained using the images from the training and validation
sets. The accuracy was 63.06% for AffectNet and 85.69% for RAF-DB. Figures 5 and 6 show
the confusion matrices of our model evaluated on the test set of the above datasets.
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Figure 5. Confusion matrix of the original validation set of the AffectNet database.
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In the AffectNet dataset, the best-classified emotion was happiness with an accuracy
of 86.40%. The accuracy of the other classes ranged from 55.60% to 60.40%. As in the
previous dataset, the class with the highest accuracy in RAF-DB was happiness, in this case
with 92.93%. In this dataset, the three classes with the worst accuracy coincided with the
three classes with the lowest number of images (see Figure 4). This is probably because the
RAF-DB dataset was not balanced during the training of the network, as was performed
with AffectNet.

In both datasets, the worst-classified class was disgust, with 17.2% of the AffectNet
images with this label being mistaken for anger and 10% of those with anger being assigned
to disgust. The difficulty in recognizing disgust may be due to the fact that this facial
emotion often shares visual features with other expressions, such as anger. In RAF-DB,
on the other hand, there are not many false positives for disgust, but there are many false
negatives; about 30% of the disgust images were assigned to neutral or sad. This pattern
was also observed for fear, where the false positives did not exceed 5%, while the false
negatives were more than 40%.

These results are consistent with those obtained in most of the works listed in
Tables 4 and 5, where happiness was always the best-classified emotion and disgust was
usually the worst-classified. Considering that happiness is the easiest facial expression
for humans to recognize, it is expected that images with this facial expression will be
better labeled and, therefore, easier for the machine to recognize. When interpreting the
data, it is important to note that the images in these datasets were obtained from Internet
search engines, and it is not possible to know for certain what emotions the people in these
images were experiencing. These datasets were labeled by human annotators, and there
were discrepancies between the annotators’ responses for quite a few images, especially
in the case of AffectNet, where the degree of inter-annotator agreement for eight facial
expressions was 60.7%.

Next, we compared the best results obtained with several state-of-the-art methods on
AffectNet and RAF-DB. For AffectNet with seven classes, we did not find any work using
an image size like ours, so the comparison with other works is not entirely fair. As shown
in Table 4, a classification accuracy of 63.06% was obtained, which is 3.4% lower than the
state-of-the-art, but higher than the accuracy obtained by some recent models using much
larger images than ours.

Table 4. Comparison with the state-of-the-art methods on AffectNet dataset (seven classes) in terms
of accuracy (highest accuracy is in bold).

Method Years Image Size Accuracy

CNNs and BoVW [58] 2019 224 × 224 63.31%
gACNN [19] 2019 224 × 224 58.78%
HERO [49] 2019 224 × 224 62.11%
SNA-DFER [59] 2020 112 × 112 62.70%
ResNet-50 [60] 2020 100 × 100 61.57%
SAANet [61] 2020 224 × 224 63.71%
GCN [31] 2021 227 × 227 66.46%
ACSI-Net [50] 2022 256 × 256 65.83%
MAFT [51] 2022 224 × 224 65.17%
FG-AGR [62] 2023 224 × 224 64.91%

Baseline (ours) 2023 48 × 48 61.97%
Voting (ours) 2023 48 × 48 63.06%

On the other hand, for RAF-DB, the E-FCNN [44] and RCAN [43] methods were
evaluated on images of a similar size to ours and reported similar results to those obtained
with the proposed approach (see Table 5). However, these two methods are based on
super-resolution, which means that the neural networks were trained on images larger
than those used for inference. In contrast, in the proposed method, the training images are
the same size as the test images.
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Table 5. Comparison with the state-of-the-art methods on the RAF-DB dataset in terms of accuracy
(highest accuracy is in bold).

Method Year Image Size Accuracy

gACNN [19] 2019 224 × 224 85.07%
E-FCNN [44] 2020 50 × 50 84.62%
IFSL (SVM) [41] 2020 32 × 32 76.90%
ResNet-50 [60] 2020 100 × 100 87.00%
SCAN and CCI [63] 2021 224 × 224 89.02%
ACSI-Net [50] 2022 256 × 256 86.86%
MAFT [51] 2022 224 × 224 88.75%
RCAN [43] 2022 50 × 50 85.76%
MATF [52] 2022 100 × 100 88.52%
EAC [53] 2022 224 × 224 89.99%
FG-AGR [62] 2023 224 × 224 90.81%

Baseline (ours) 2023 48 × 48 84.32%
Voting (ours) 2023 48 × 48 85.69%

Regarding the number of trainable parameters, our model is one of the lightest
with 11.17 million parameters, both for the baseline architecture and for the architec-
tures where the splitting and voting strategy was implemented. Most of the papers listed
in Tables 4 and 5 did not report the number of trainable parameters or the GFLOPs of the
model. Only a recent paper reported 35.74 million parameters and 3686 GFLOPs [43]. How-
ever, considering only the network used as the backbone in each paper, it can be observed
that most of the models used more trainable parameters than those used in our approach.

For example, some approaches [19,49,58,61] used VGG architectures for feature extrac-
tion with significantly more trainable parameters than the modified ResNet-18 we used.
On the other hand, other works [60,63] used a ResNet-50 as their backbone, an architecture
that has about 25 million trainable parameters in its usual implementation. The ResNet-18
architecture is one of the most-widely used [49–53]. These approaches use this architecture
as a feature extractor. ResNet-18 uses 11.69 million parameters in its usual implementation,
but these papers used this architecture as a feature extractor and added other elements at
the end of the network, so the total number of parameters of the complete model can be
significantly higher.

5. Conclusions

In this paper, a residual voting network was proposed for the classification of low-
resolution facial expression images. The introduction of the voting strategy into the network
improved the accuracy of the baseline model without significantly increasing the number
of trainable network parameters. Different intermediate points in the network at which
images could be cropped were examined, and it was observed that the closer the point
was to the input of the network, the greater the improvement in accuracy compared to
the baseline architecture. However, the size of the forward pass also increased. Based on
the above, the best point for cropping will depend on the application. It will be a matter
of selecting the closest possible point to the network input, depending on the available
computational resources.

In addition, the proposed method was compared with some of the more-recent ap-
proaches. The experimental results obtained showed that our method was able to achieve
classification accuracies similar to those reported by other methods using images larger
than ours. Therefore, we concluded that it is possible to use low-resolution images for
training FER models without a significant reduction in classification accuracy.

The method presented in this paper, with slight modifications to adapt it to the output
dimensions of the different layers of the network, can be applied to almost any CNN.
Therefore, it will be necessary in the future to study the usefulness of this method in other
network architectures and in other classification or even regression tasks.

A possible future research direction is to explore the feasibility of applying this method
to networks operating at the standard 224 × 224 image size. Although the proposed method



Electronics 2023, 12, 3837 15 of 17

does not increase the number of trainable model parameters, it does increase the memory
requirements. Investigating its performance on larger images could provide valuable
information about its versatility and feasibility for other applications. Another promising
research direction is the integration of this model into a ViT architecture. Both approaches
share the partitioning of the image into multiple patches, suggesting that the creation of a
hybrid model may be feasible.

Although the proposed model is intended for FER, it may also be interesting to explore
whether it can improve the performance of the base model in other image-processing tasks.
This research could help determine the true potential and usefulness of the model. In
conclusion, the adaptability and performance of the proposed method gives rise to several
avenues for future research.
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