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Abstract: Dispatching and cooperative trajectory planning for multiple autonomous forklifts in a
warehouse is a widely applied research topic. The conventional methods in this domain regard
dispatching and planning as isolated procedures, which render the overall motion quality of the
forklift team imperfect. The dispatching and planning problems should be considered simultaneously
to achieve optimal cooperative trajectories. However, this approach renders a large-scale nonconvex
problem, which is extremely difficult to solve in real time. A joint dispatching and planning method
is proposed to balance solution quality and speed. The proposed method is characterized by its fast
runtime, light computational burden, and high solution quality. In particular, the candidate goals of
each forklift are enumerated. Each candidate dispatch solution is measured after concrete trajectories
are generated via an improved hybrid A* search algorithm, which is incorporated with an artificial
neural network to improve the cost evaluation process. The proposed joint dispatching and planning
method is computationally cheap, kinematically feasible, avoids collisions with obstacles/forklifts,
and finds the global optimum quickly. The presented motion planning strategy demonstrates that the
integration of a neural network with the dispatching approach leads to a warehouse filling/emptying
mission completion time that is 2% shorter than the most efficient strategy lacking machine-learning
integration. Notably, the mission completion times across these strategies vary by approximately 15%.

Keywords: autonomous forklift; cooperative trajectory planning; joint dispatching and planning;
Hybrid A* search algorithm; artificial neural network

1. Introduction

The increasing demands in the logistics industry all over the world have driven re-
searchers and engineers to focus on developing intelligent transportation systems aimed
at enhancing logistics efficiency [1,2]. One prominent application in this domain is un-
manned warehouse systems [3]. As a typical component in an unmanned warehouse, an
autonomous forklift transports parcels more efficiently than one driven manually because
the former does not induce objective mistakes such as fatigue, anxiety, impatience, or
anger [4]. Multiple autonomous forklifts should work together when the delivery burden
is heavy [5]. Deploying multiple autonomous forklifts enhances delivery efficiency if the
inter-forklift cooperation potential can be maximized. The typical modules that influence
delivery efficiency include delivery task dispatch [6], cooperative trajectory planning [7,8],
and control [9]. This paper is focused on the dispatching and cooperative trajectory plan-
ning schemes.
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1.1. Related Work
1.1.1. Dispatching Methods for Multiple Forklifts

A complete multi-forklift delivery planning system consists of two functions: delivery
task dispatch and cooperative trajectory planning. Before cooperative trajectory planning,
the goal point of each forklift is assigned in the dispatching phase [10]. Weidinger et al. [6]
proposed a metaheuristic-based method in which assignment candidates are pruned a priori
to facilitate the solution process [11]. A similar idea was proposed by Zhang et al. [12] to
dispatch multiple automated guided vehicles (AGVs) in a matrix manufacturing workshop.
However, both methods run slowly; thus, they cannot meet the real-time computation
demand in a warehouse [6,12]. Lin et al. built a multi-AGV dispatching system via
network structure together with simplex decision variables; in this system, an evolutionary
algorithm minimizes the completion time of all AGVs in a formulated network optimization
problem. However, References [6,12,13] shared a common limitation of assuming a uniform
speed for AGVs. Moreover, the inter-vehicle collision avoidance problem is reduced to an
oversimplified constraint, ensuring solely nonoverlapping time intervals per stopover.

Furthermore, recent studies have focused on the task integration of one AGV in-
stead of considering how multiple AGVs cooperatively operate within the confined area.
Bao et al. [14] proposed a heuristic method based on an auction strategy for a multi-AGV
task dispatch scheme considering complex factors (such as pod repositioning). The con-
cerned dispatch scheme is inherently an optimization problem with complex cost terms
and constraints facilitated by the proposed auction strategy. Lee et al. [15] proposed a
two-stage dispatching method. In particular, the first stage deals coarsely with the delivery
efficiency and delivery flow balance by solving a bi-objective optimization problem. The
result indicates how the parcels to be picked can be clustered. At stage 2, vehicles are
dispatched to complete the clustered missions. Dividing the original scheme into two stages
largely reduces the number of dispatch candidates without losing the optimum. Machine-
learning-based dispatching methods have also been proposed [16]. The formulated reward
functions efficiently simplify the dispatch scheme, particularly when complex factors are
considered [17,18]. However, few vehicle kinematics is considered in [14,15], and the
dispatching phase is fully separated from the trajectory planning strategy. This approach
results in difficulties in maximizing overall delivery efficiency.

1.1.2. Cooperative Trajectory Planning Methods for Multiple Forklifts

Cooperative trajectory planning follows the aforementioned dispatching phase. The
prevalent cooperative trajectory planners are based on model predictive control [19], which
is highlighted by its fast feature while strictly satisfying safety-related constraints. The
artificial potential field method is similarly widely applied in trajectory planning, but it
may encounter difficulty finding paths through narrow passages [20].

Ma et al. [21] converted constrained time-varying nonlinear programming problems
to general unconstrained optimization problems by properly designing a penalty function.
Thereafter, a particle swarm optimization method was employed to plan the motion of
multiple robots sequentially in a double warehouse with two elevators. However, the
optimization phase, along with other methods based on optimization, can significantly
increase the computational burden [22–24], which can be reduced by forming model-based
paths because warehouses are generally structured.

Yang et al. [1] proposed a strategy in which a time-varying dynamic evaluation func-
tion is formed based on a network congestion diffusion model to quantify the degree of
road congestion. Hereafter, an improved A* search algorithm and a time window algo-
rithm were combined as a hierarchical planning method to search the idle path and avoid
collisions. A path planning framework was designed by Zhou et al. [25] to simultaneously
reduce the cost of operation and the path for AGVs in airport parcel loading scenarios. An
ant colony optimization method was used to optimize the parcel pickup sequencing by
ignoring other moving vehicles, while Dijkstra’s algorithm was employed to determine
the shortest route of each AGV. Zacharia et al. developed a joint routing and motion
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planning method for AGVs that addresses uncertainties in demands and travel times.
Their approach combines a scheduler for updating destination resources during navigation
and integrates a fuzzy-based genetic algorithm with A* search to handle capacity and
distance variations [26]. Nonetheless, the vehicle kinematics considered in [1,25,26] remain
oversimplified for industrial use even in the trajectory planning phase.

In other studies, the paths of vehicles were assumed to be predefined, and only the
longitude trajectories were investigated. Kneissl et al. [27] formulated a method in which
potential collision zones are continuously detected. Moreover, the right-of-way is granted
to the first arriving vehicle while all the other vehicles involved stop and wait. Dresner et al.
proposed confronting the analogous problem of conflict zones with a reservation-based
system; in this system, vehicles request and receive time slots from the intersection while
they pass [28]. Similarly, a discrete-event logic, which is comparable with a conventional
right-handed bidirectional traffic system, was designed by Guney et al. [29] to handle
the priorities of the AGVs in a warehouse dynamically. Thus, the need for computa-
tionally demanding heuristic searches is eliminated to ease strategy implementation in
real-life industrial applications. Furthermore, Digani et al. [30] proposed an obstacle-free
path generation method to deal with local deviations from the predetermined path. In
the proposed method, new paths are generated via polar spline curves. However, the
aisles in a warehouse cannot be fully exploited when certain traffic laws in [27–30] are
strictly enforced.

1.1.3. Joint Dispatching and Planning Methods for Multiple Forklifts

Most of the existing dispatching studies, e.g., [6,10–18], cannot accurately evaluate
the candidate choices, possibly preventing the downstream planning module from achiev-
ing global optimality [1,21–30]. Thus, combining the dispatching and planning phases
is naturally considered. The multi-agent path finding (MAPF) problem in its classical
form is an effective approach for simplifying complex warehouse scenarios and facilitat-
ing cooperative solutions for dispatching and planning. In the MAPF problem, time is
discretized into steps, allowing vehicles to either move or wait during each step [31]. Con-
sequently, it becomes challenging to plan trajectories for vehicles with varying velocities
or based on specific kinematic constraints. To address this limitation, researchers have
explored extensions of the MAPF problem to accommodate such complexities. Among
those extensions, Zhang et al. [32] designed a joint strategy to deal with an automatic
valet parking system, in which a travel-distance-related reward function combined with a
deep reinforcement learning technique was used to allocate the target parking spaces. The
parking lot was segmented into local regions, and a rule-based right-of-way assignment
strategy was applied to solve collisions and deadlocks. A simplified trajectory planning
algorithm based on the car-following model [33] served as a tool to solve the trajectories of
multiple AGVs when no potential collision was involved. A similar strategy was proposed
by Lee et al. [34] for a supply-chain-connected warehouse. In their work, a cloud-based
semiautomatic warehouse management system assigns tasks to mobile robots to optimize
resource allocation. A robot control system executes an improved A* search algorithm to
generate the path of each AGV. Then, potential collisions, named stay-on, head-on, and
cross-conflict, are identified and solved by following certain priority-based rules. Redis-
patchment of the AGV with low priority is triggered as the conflict cannot be prevented by
those basic rules.

With regard to joint strategies, the studies above [32,34] can deal with large-scale
AGV-based scenarios. However, these studies were concerned with vehicles possessing the
simple kinematics of unicycle (differential-drive) robots [35] and generally focused on the
construction of maneuverable systems, ignoring the overall optimal solutions concerning
warehouse operations. Furthermore, during the trajectory planning phase, they initially
planned only the paths and ignored other moving obstacles. Such considerations substan-
tially reduce the risk of collisions and simplify the evaluation of the traveling difficulties
pertaining to one potential task relative to the corresponding traveling distance. In other
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words, it remains unknown the specific trajectory pertaining to each AGV as the jointed
strategy is finished, and this trajectory is dependent on local scenes when conflict zones
are involved. Thus, the results become unreliable when such strategies are applied to
a warehouse of automated forklifts with complex kinematics. As a conclusion of this
subsection, it deserves to develop a joint dispatching and planning method to balance the
forks’ motion quality and reaction speed in an unmanned warehouse.

1.2. Motivations

This study aims to substantially improve the efficiency of cooperative operations
among multiple autonomous forklifts by seamlessly integrating the dispatching and coop-
erative trajectory planning phases. Our primary objective is to address the limitations of
existing dispatching methods, which often overlook low-level forklift kinematic capability.
To overcome this challenge, we opt for the implementation of a graph search process in this
phase. Moreover, to ensure a robust solution that avoids getting trapped in local optima, we
chose to incorporate a machine-learning-based technique. In the trajectory planning phase,
we recognize that optimization-based methods are computationally expensive. As such,
our secondary objective is to develop an alternative search algorithm that employs a model-
based approach. This algorithm is designed to be both velocity-aware and sequentially
solvable, striking a balance between accuracy and computational efficiency.

1.3. Contributions

The core contribution of this paper is the proposal of a joint framework, which is
promising to reduce the computational burden because all formulations involved are
explicitly expressed. Concretely, the dispatching stage can enhance the multi-vehicle
task solution quality because it considers the future trajectory pertaining to each forklift.
Moreover, the kinematically feasible and safe trajectory of each forklift can be quickly
generated through our proposed method at the trajectory planning stage, due to the
removal of optimization-based methods.

1.4. Organization

In the rest of this paper, Section 2 formulates the in-warehouse delivery problem.
Section 3 provides the score-based dispatching technique, in which ANN is applied to
avoid deadlocks in evaluating the cost of each candidate dispatching option. Section 4
introduces the trajectory planning method, namely a model-based velocity-aware hybrid A*
search algorithm. Section 5 integrates the two aforementioned methods to develop a joint
dispatching and cooperative trajectory planning framework, followed by Section 6, where
comparative simulation results are present. Conclusions are drawn in Section 7, finally.

2. Problem Statement

Forklifts are used to deliver goods between fixed picking stations and predetermined
shelf areas during delivery tasks in warehouses. The passages are generally designed to be
narrow, and they merely allow turning maneuvers with a minimum radius and the passing
of only two vehicles. Hence, conflicts arise when multiple forklifts cooperatively operate
within a single warehouse.

Within one subtask during the filling of one warehouse, there are two stages: first, the
initial pose and the final one should be assigned to one forklift as the dispatching stage;
second, the trajectory planning stage generates a trajectory by avoiding collisions with any
static or moving objects and satisfying the vehicle kinematics.

2.1. Warehouse Layout

A typical small warehouse layout is schematized in Figure 1. In this warehouse, six
separated shelf clusters, denoted as sd (d = 1, 2, · · · , 6), are placed and provide areas to
store goods. Continuous lines indicate shelf walls, through which forklifts cannot move.
Two firewalls, represented by rows of grey squares, are present between shelf cluster s1 and
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s3 as well as cluster s2 and s4. Meanwhile, four picking stations, marked with slender solid
rectangles and pr (r = 1, 2, 3, 4), are located in both extremities of the vertical and wide
passage in Figure 1. Four forklifts can enter the passage of each row of the shelf clusters, as
long as neither stored stacks nor other vehicles block the route.
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Figure 1. Schematic of a warehouse layout.

As presented in Figure 2, each shelf cluster has the capacity to accommodate varying
numbers of goods stacks with strategically positioned notches in the arrangement designed
to suit forklift kinematics during turns. This aspect will be elaborated on in Section 2.2.
Each stack is marked with a number in Figure 2 to represent the order in which a shelf
cluster can be filled. The shelf filling state and the vehicle state can be effectively expressed
by noting the covered grids when the warehouse is divided by the squares outlined by grey
dashed lines in Figure 2. In addition, when one forklift is unloading goods within a shelf
cluster, its fork side should point to the stack position (cf. upper left forklift schematic and
within shelf cluster s1 in Figure 1). Similarly, when one forklift is picking goods at a picking
station, the fork side should point to the station position (cf. upper forklift schematic and
picking station p1 in Figure 1).
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2.2. Kinematics of a Forklift Vehicle

As reported in Figure 3, a forklift can be described as a front-steering vehicle if the fork
part of the vehicle is treated as the rear side. The corresponding kinematic formulas write:

dx(t)
dt = v(t) · cos θ(t)

dy(t)
dt = v(t) · sin θ(t)

dv(t)
dt = a(t)

dθ(t)
dt = v(t)·tan φ(t)

l
dφ(t)

dt = ω(t)

(1)

where t is time; P, located at coordinate (x, y), indicates the mid-point of the rear wheel axis;
and θ, v, a, φ, and ω respectively denote the orientation angle, linear velocity pertaining to
point P, acceleration, steering angle of the front wheels, and steering rate. Furthermore, l
stands for the wheelbase length, m denotes the rear overhang length, n refers to the front
overhang length, and 2b is the car width. Given that the initial values as well as ω(t)
and a(t) are provided, the state variables can be calculated through integration over the
dynamic process.
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Meanwhile, a few boundaries are imposed on the state profiles over the entire simula-
tion period throughout all dynamic maneuvers:

|a(t)| ≤ amax
|v(t)| ≤ vmax
|φ(t)| ≤ φmax
|ω(t)| ≤ ωmax

(2)

where amax, vmax, φmax, and ωmax respectively indicate the upper limits of the corresponding
variables.

3. ANN-Combined Score-Based Dispatching Approach

Filling a warehouse in an orderly manner requires several forklifts to perform multiple
deliveries and return subtasks. In the current work, subtasks are assigned to different
vehicles sequentially. With regard to such subtasks, selecting which vehicle will be used
to plan the new trajectory and determining which goal coordinates the forklift is going
to should comprise the fundamental initialization. Therefore, a dispatching system is
necessary to solve these problems.

The dispatching approach (cf. Algorithm 1) utilizes the planned trajectories T of
all vehicles, along with map information map, and vector F representing filled stacks for
different clusters, as its inputs. The core of this approach lies within a while loop, wherein
the potential subtask undergoes iterative updates (with a preset maximum iteration number
iterdispatch) until it reaches an optimal state, as defined by the proposed method.
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Outside of the loop, the function rank() sorts all vehicles based on t, arranging them
in ascending order from first to last. This sorting process generates a ranking vector R
consisting of four vehicle indices. If f ail = 1, indicating a failure in the trajectory search
between Pi(xi, yi) at instant ti and Pf

(
x f , y f

)
, the corresponding vehicle is repositioned at

the end in R and flagged as having been selected as ncurrent. In the loop, the algorithm is
divided into two parts. The first one (lines 4 to 13) concerns the selection of the current
investigated vehicle with an index of ncurrent, and the second part (lines 14 to 30), featuring
a scoring system combined with the results of an ANN method, determines the goal coor-
dinate for the current subtask. Notably, Algorithm 1 is applied when the ANN correction
system, which is elaborated on in Section 3.2, is enforced.

Algorithm 1: ANN combined score-based dispatching algorithm[
ncurrent, Pi, Pf , ti

]
← Dispatch

(
T, F, f ail, Pi, Pf , map

)
1. Initialize α← 0 ;

2. R← rank
(

T, Pi, Pf , f ail
)

;

3. while iter < iterdispatch, do
4. if α = 0, then
5. [ncurrent, ti]← SelectInitialState(R) ;
6. else
7. if CheckSelection(R) > 0, then
8. [ncurrent, ti]← SelectAlteredState(R) ;
9. else
10. [ncurrent, ti]← SelectBackupState(R) ;
11. end if
12. end if
13. Pi = SetInitialPose(T, ncurrent, map);
14. if CheckDeliverTask(Pi) is true, then
15. Sd = PreAstarDeliver(Pi, F, map);
16. if max(Sd) > 0, then
17. Pf = SetFinalPose(Sd, map);
18. return;
19. else
20. α← 1 ;
21. end if
22. else
23. Sr = PreAstarReturn(Pi, map);
24. if max(Sr) > 0, then
25. Pf = SetFinalPose(Sr, map);
26. return;
27. else
28. α← 1 ;
29. end if
30. end if
31. end while
32. return;

3.1. Vehicle Selection and Initial Pose of a New Subtask

The function SelectInitialState() selects the vehicle, ranking the first one as ncurrent,
and sets ti, which is the initial instant of the trajectory to be planned, as the ending instant
of the last trajectory pertaining to ncurrent. Failure may occur in the determination of the
new trajectory for the fork ncurrent in the new subtask because other forklifts may block
the only corresponding route for a considerable time. Under such circumstances, a flag
variable α is set to 1, and all vehicles in R are checked to see if they have been selected as
ncurrent once for the current subtask by CheckSelection(). The function SelectAlteredState()
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is then utilized. In this function, the first motion-finished vehicle is discarded, and the
other forklifts are subsequently selected in turn as ncurrent on the basis of the rankings in R
until the trajectory can be formed. Furthermore, no trajectory can be successfully planned
for all forklifts at certain moments. In this case, SelectBackupState() is applied, in which
the vehicle that ranks last in R is selected, and the ti of the new trajectory is postponed
for a fixed time length of ∆ti relative to the end of the last subtask for vehicle ncurrent. The
vehicle ncurrent final stopping pose Pi(xi, yi, θi) is set as the initial pose of the new subtask
by function SetInitialPose().

3.2. Scoring System

A scoring system is applied to decide the goal coordinate of the new subtask. First,
the function CheckDeliverTask(Pi) is initially employed to ascertain whether the planned
trajectory involves heading to clusters or returning. The functions PreAstarDeliver() and
PreAstarReturn() are then applied separately depending on whether the goal is a rack
cluster or a picking station. In both functions, the grid networks, outlined by light colors in
Figure 2, indicate the nodes used to define the location of a vehicle and stacks. The resolu-
tion of such nodes is purposely reduced with the aim of lowering computation costs. Given
that the nodes are defined, a time dimension involved preliminary A* search algorithm,
whose expansion manner is presented in Figure 4, is used to generate preliminary trajec-
tories that link the starting pose Pi(xi, yi) at instant ti to each potential target coordinate.
Five patterns in total for this search algorithm are applied to vaguely indicate the possible
maneuvers a vehicle could perform. In particular, manner 5 in Figure 4 expands only in
the time dimension, representing the stopping condition of a virtual forklift. The time
consumed derived from this algorithm for a virtual vehicle represented by one node is then
applied as a parameter to evaluate the difficulty grades of reaching different goal poses.
Other vehicles and walls are treated as obstacles during the search. Notably, the orientation
angles θ for the initial and final poses are not required to be determined in such a system.
Thus, θ is not considered a dimension in this search for the sake of calculation simplification.
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In the function PreAstarDeliver(), the function Sd,0 is applied to evaluate the scores
pertaining to different target stack locations sd (cf. Figure 1) when a subtask with one stack
as the goal is considered. It writes:·

Sd,0 = C1Gd + Jd,0

Jd,0 =

{
H + C2 Id + C3 preliminary trajectory is planned

C4 preliminary trajectory planning is failed within iterpre
H = −∆tcover

Id =

{
t f ind − ti + C5 sd ∈ {s1, s2}

t f ind − ti sd ∈ {s3, s4, s5, s6}

(3)

where Gd denotes the number of stacks to be filled/emptied in the target shelf cluster sd in
order to balance the warehouse filling/emptying mission in different clusters. Jd,0 stands
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for the approximate difficulty to reach different goal coordinates in shelf cluster sd. C4 is a
negative constant applied when the goal in practice is not reachable. H indicates time length
∆tcover. ∆tcover counts the time units during which other vehicles occupy the shelf entrance
node (cf. the grey grid for the upper left forklift in s1 in Figure 1) of the goal pose within
a fixed time length ∆tentry after the virtual vehicle entering the rack passage. The reason
∆tcover is added as a parameter is that, in practice, the availability of the above-mentioned
node is critical during the planning of the final trajectory that considers kinematics. Id is a
function of the time length

(
t f ind − ti

)
consumed to arrive at the target in this preliminary

search. Notably, this function is built to normalize the results for different shelf clusters
because shelf clusters s1 and s2 are far from the picking stations, and delivering goods to
these locations consumes much time. Furthermore, a negative constant C4 is assigned to
Jd,0 when the target cannot be reached through the search within a predefined maximum
iteration number iterpre. Meanwhile, C1, C2,. . ., C5 are calibration parameters. Among
these, a substantial weighting coefficient, C1, is allocated to regulate the stacks filled in each
shelf cluster; aiming for balance, C2, C3, C4, and C5 are designed to quantitatively assess
scores with respect to time considerations. If Sd,0 ≤ 0 is derived within iterpre, the vehicle
kinematics-considered trajectory is difficult to find. Thus, the flag variable α is set to 1 in
the initialization cycle, where ANN is not enforced, and ncurrent should be reassigned.

Similarly, in the function PreAstarReturn(), only the time consumed with respect to
different picking stations pr (cf. Figure 1) in the A* search is used in the evaluation of Sr,
which is expressed as:

Sr =

{
Ir preliminary trajectory is planned
0 preliminary trajectory planning is failed within iterpre

(4)

When ANN is not enforced, the potential targets are initially scored solely by means
of Equations (3) and (4). The greater the functions to be evaluated are, the greater the
likelihood of subsequent trajectory planning is and the faster the entire warehouse can be
filled. In this case, arg max Sd,0 and arg max Sr are selected as the goal poses for delivery
and return subtasks, respectively.

3.3. ANN Correction Method

The function PreAstarDeliver() is employed to refine goal score evaluations through
a multilayer perceptron (MLP) network, which is elaborated upon as follows.

Figure 5 presents a typical MLP network of ANN with one hidden layer. Mathemati-
cally, with the trajectory planning states as known variables, the MLP network of the type
reported in Figure 5 can be expanded step by step as follows:

ŷ(w, W) = F(
m

∑
j=1

Wjhj(w) + W0) = F(
m

∑
j=1

Wjfj(
n

∑
i=1

wjizi + wj0) + W0) (5)

where wji and Wj denote the weights assigned to the connection of the neurons. Wo and
wj0 are linked to the bias, whose values are simply the constant 1.

The ANN correction in the current study is designed for the scoring system for the goal
pose determination of delivery subtasks. In the initialization phase of the ANN correction
system, excluding the filling balance parameter of Gd in Equation (3), {J1,0, J2,0, · · · , J6,0}
respectively denote the base values of the output elements in J = {J1,est, J2,est, · · · , J6,est} (cf.
ŷ in Figure 5) for six MLP networks. Among the six elements, the one whose corresponding
pose is selected as the target for vehicle kinematics-considered trajectory planning is further
fixed based on the corresponding trajectory variables. The values of the other elements
remain as unchanged as the results in Equation (3). Suppose that sd is the shelf cluster
investigated within a subtask. Given that the base value Sd,0 is derived with Equation (3), if
sd that corresponds to arg max Sd,0 is selected as the goal to determine the trajectory, then
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the trajectory with the goal of sd will be planned, and the corresponding element in J will
be derived with Equation (6) as follows:

Jd,est =


Jd,0 − C6(t f − ti − t + C7) trajectory is planned, and d ∈ {1, 2}
Jd,0 − C6(t f − ti − t + C8) trajectory is planned, and d ∈ {3, 4, 5, 6}

C5 trajectory planning is failed within iterpre
Jd,0 trajectory is not planned

(6)

where t f is the ending instant of the trajectory, t stands for the average value of the
time length pertaining to all previously derived trajectories, C6 is a calibrated constant
intended to balance Jd,0, and the latter solely accounts for time consumed to reach a goal
without factoring in the distance covered. C7 and C8 are respectively used to normalize the
difference in distances corresponding to various shelf clusters and the expected moving
time period of each subtask.
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Figure 5. Schematic of an MLP network.

Similar to the parameter Gd in Equation (3), the inputs (cf. z1, z2, · · · , zn in Figure 5)
of the ANN system are the number of stacks filled within each shelf cluster. A vector U with
six elements {u1, u2, · · · , u6 }, which correspond to six shelf clusters sd, is used. Suppose
that ud ∈ U is considered, it can be formulated as

ud =


Gd delivery subtask is linked
−Gd return subtask or subtasks of both types are linked

0 no subtask is linked
(7)

The integers other than 0 can represent the filling states of the shelf clusters, which
are associated with the currently moving forklifts. The vehicle motion states are also
observed. This input of the MLP network vaguely provides information associated with
the possible area the vehicles may be located in, given that each shelf cluster should be
filled by following certain orders. Furthermore, at least two shelf clusters are not connected
to any subtask because only four forklifts in the warehouse are employed. Evidently, these
shelf clusters have no impact on the trajectory planning, and this situation is in line with
the circumstances, where the investigated shelf group is filled. Thus, 0 is assigned to ud in
this case.

As the number of hidden neurons is set to 12 according to an empirical technique [36],
the MLP system used to score shelf cluster sd can be expressed in the form of Equation (5) as

Ĵd,est(wd, Wd) = F(
12

∑
j=1

Wd,jhj(wd) + W0) = F(
12

∑
j=1

Wd,jfj(
6

∑
i=1

wd,jiud,i + wd,j0) + W0) (8)
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The Levenberg-Marquardt method is then used to train the MLP and the values
assigned to the elements of W and w.

In the following warehouse filling cycles and the final dispatching system, the scoring
system described in Equation (3) is replaced by the expression below to determine the opti-
mal goal pose for vehicle ncurrent. Equation (9) is the final scoring equation of the discussed
dispatching system, wherein C9 and C10 act as the calibration constants. These constants
are determined via a trial-and-error approach to yield results. The MLP contributes without
excessively disrupting performance concerning warehouse filling/emptying time.{

Sd = C1Gd + Jd
Jd = C9 Jd,0 + C10 Ĵd,est(wd, Wd)

(9)

After the initialization cycle of warehouse filling (referring to Figure 6), the training
process can continue until Cy cycles are finished. In the following cycles, the MLP has
already been established depending on the data pertaining to the previous cycles, and the
saved values of W and w are used to estimate the values Ĵd,est() via Equation (8). Therefore,
the base values of the MLP outputs Jd,0 are replaced by Jd in Equation (9) when shelf
cluster sd is considered. The expression of the corresponding element in J for the following
cycles writes:

Jd,est =


Jd − C6(t f − ti − t + C7) trajectory is planned, and d ∈ {1, 2}
Jd − C6(t f − ti − t + C8) trajectory is planned, and d ∈ {3, 4, 5, 6}

C5 trajectory planning is failed within iterpre
Jd trajectory is not planned

(10)
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3.4. Final Pose Selection

The final pose of each subtask is determined using the SetFinalPose() function. For
subtasks with the purpose of delivery, the destination coordinate Pf

(
x f , y f

)
is chosen based

on the arg max Sd criterion; for return subtasks, the coordinate Pf

(
x f , y f

)
corresponding

to arg max Sr is selected. Finally, the corresponding θ information should be added to
complete the destination pose.

4. Improved Hybrid A* Search Algorithm

Hybrid A* algorithm [37] is an extension of the conventional 2D A* search algorithm
due to its consideration of kinematics during node expansions over time. Different from
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the original hybrid A* search, the velocity variation is considered, and the node expansion
manner is determined based on action purposes in the algorithm (cf. Algorithm 2) applied
in this study. Furthermore, this improved heuristic method directly determines trajectory
details throughout a subtask without an optimization stage.

Algorithm 2 is used to expand a parent node (Pp, tp) in one manner Nc through the
improved hybrid A* search with the target of Pf . Focusing on the motion of one vehicle,
Listopen is used to store the data pertaining to all nodes (Popen, topen), which has been
explored and can be further expanded. The information contains the corresponding parent
nodes, expansion manner (cf. Section 4.1), time expansion data (cf. Section 4.2), and costs
(cf. Section 4.4). On the contrary, the node (Pclosed, tclosed) cannot be expanded anymore and
is stored in Listclosed. Furthermore, the function DetectCollision() is discussed in Section 4.3.
In addition, the function AddNode() is used to add a node with its affiliating data into
Listopen or Listclosed.

Algorithm 2: Improved hybrid A* search algorithm[
σ, Listopen

]
← SearchAStar

(
T, Nc, Pp, Pf , tp, Listopen, Listclosed, map

)
1.

[
thigh,c, tmid,c, tzero,c

]
← FixMovingTime

(
Listopen, Pp, tp, Nc

)
;

2. Listopen ← SetCost
(

Listopen, Pp, tp, Nc
)

;
3. γ← DetectCollision

(
T, Nc, Pp, tp, Listopen, map

)
;

4. if (Pc, tzero,c) ∈ Listclosed , then
5. return;
6. end if
7. if (Pc, tzero,c) ∈ Listopen and γ = 0, then
8. if fc < fpre, then
9. Listopen ← ReplaceNode

(
Listopen, Pp, tp

)
;

10. end if
11. else
12. if γ = 0, then
13. Listopen ← AddNode

(
Listopen, Pc, tzero,c

)
;

14. if Pc = Pf , then
15. σ← 1 ;
16. return;
17. end if
18. else if γ = 1, then
19. Listclosed ← AddNode(Listclosed, Pc, tzero,c) ;
20. return;
21. end if
22. end if
23. return;

4.1. Node Expansion Method

This section elaborates on the various possible expansion manners denoted as Nall ,
with each individual possibility represented by Nc. The drivable area is initially mapped
with the above-discussed grid networks (cf. Figure 2). The dimensions of the grid should
be skillfully coupled with the size of the vehicle, with the aim of reducing occupied cells
during a certain action and enhancing the utility rate of the space. The case demonstrated
in Figure 7 is a well-designed example. In this case, one vehicle covers two grid cells.
Thus, on a 2D space domain, the orientation angle θ involved in forklift movements can be
easily described. In addition, through one maneuver, the vehicle body occupies a small
number of grids. This can reduce the possibility of interference with other forklifts during
motion planning.
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Figure 7. Node expansion manners of improved hybrid A* algorithm: (a) Stopping and going straight;
(b) lane changing and turning.

As reported in Figure 7a,b, the nodes expanding manners Nall in the space domain
can be divided into eleven patterns, which are summarized as four categories covering
all possible maneuvers a forklift may intend to conduct. These include stopping, going
straight (cf. semitransparent solid rectangles in Figure 7a), lane changing (cf. rectangles
with diagonal stripes in Figure 7b), and turning (cf. solid rectangles in Figure 7b).

As far as the expanding manners are concerned, when v remains 0, one vehicle stops.
As v is other than 0 with steering angle φ = 0, one fork can go or reverse straight. Figure 8
demonstrates one modeled forklift path depicted by consecutive outlines, when the vehicle
goes upward and turns to the left from the right lower side to the center left. Through this
maneuver, φ is varied to gain an identical final location relative to grids as the initial state,
despite the change of π/2 in θ. Under such circumstances, the consecutive motions can be
easily established. Meanwhile, the modeled maneuver of reverse turning to the left can
also be noted in Figure 8, when the initial and final body outlines are exchanged.
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Figure 8. Path of turning.

Similar to turning actions, a typical lane-changing maneuver is also modeled and
outlined in Figure 9. The forklift goes forward and changes to the left lane, which is shown
on the top row in Figure 9. The other possible node-expanding paths of turning and lane
changing are modeled by mirroring or rotating the examples reported in Figs. 8 and 9.
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The smoothness of the modeled paths can be enhanced by adopting advanced tech-
niques, and the identical heuristic trajectory search rule of this work can also be applied to
the newly modeled paths.

4.2. Velocity Planner

The velocity planner determines the node expansion rule in the time domain and the
potential node arrival instants. When one maneuver starts or finishes, the vehicle speed
solely falls into one of three determined constants (vhigh, vmid and vzero), which correspond
to high speed, mid speed, and zero speed. Figure 10 reports all possible velocity selections
linked to the start and end of the maneuvers. vhigh can only be selected with the expansion
pattern of going straight to fulfill the kinematic constraints given by Equations (1) and (2).
The stop maneuver is an expansion of finite value solely on the time domain, it follows that
only vzero can be applied to this action.
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Figure 10. Velocity selections when one maneuver starts or ends.

The velocity level over one maneuver can only be linked to itself or an adjacent one,
although all maneuvers can be arbitrarily linked along a trajectory. In other words, during
one maneuver, the vehicle speed can maintain or alter among those three velocities, but
the direct change between vzero and vhigh is illegal. For instance, if the vehicle finishes a
series of going straight actions with speed vzero, its ending velocity of the last second action
should then be vmid or vzero. Likewise, if turning follows going straight with an original
velocity vhigh, the speed of the last going straight maneuver should reduce to vmid to gain
an initial velocity vmid for turning.

Following the velocity selection rules, all possible speed variations through one ma-
neuver are shown in Figure 11. It is noteworthy that the link of vhigh→Going straight→vzero
and the opposite link are infeasible. Thus, 16 connection choices in total are applicable.
Furthermore, velocity is merely an intermediate state used to determine a time dimension
expansion, although it is a vital parameter for motion planning. The detailed velocity time
history during one maneuver can be modeled by applying varied techniques to obtain
the required initial and finishing speeds. In the current work, deceleration or acceleration
along one action between the same velocity levels is modeled with identical time lengths,
with the aim of simple calculation. The number of time expansion selections (cf. Te with
e ∈ {1, 2 · · · , 12} in Table 1) thus reduces to 12.
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Table 1. Node expansion selections in time domain.

Abbreviation Description

T1 vzero→ Going straight→ vzero
T2 vzero→ Going straight→ vmid or vmid→ Going straight→ vzero
T3 vmid→ Going straight→ vmid
T4 vmid→ Going straight→ vhigh or vhigh→ Going straight→ vmid
T5 vhigh→ Going straight→ vhigh
T6 vzero→ Turning→ vzero
T7 vzero→ Turning→ vmid and vmid→ Turning→ vzero
T8 vmid→ Turning→ vmid
T9 vzero→ Lane changing→ vzero
T10 vzero→ Lane changing→ vmid or vmid→ Lane changing→ vzero
T11 vmid→ Lane changing→ vmid
T12 vzero→ Stop→ vzero

The function FixMovingTime() determines time expansion data based on Table 2,
which is elaborated as follows. When planning a trajectory, the maximum feasible velocities
are consistently selected for all maneuvers with zero speed supplied to the start and end of
the trajectory. With regard to one node expansion, three values of thigh,p, tmid,p and tzero,p
are initially saved in the parent node as the possible start instant of the maneuver, and
these respectively correspond to ending velocities of vhigh, vmid, and vzero, if they exist.
In the cases where vhigh is not reachable, the value stored in thigh,p will be the minimum
time length during the maneuver, with ending velocity vmid. Consequently, thigh,p = tmid,p.
Similar result of tmid,p = tzero,p is obtained when the maximum realizable ending velocity
is vzero. As the parent node is initialized, values of thigh,c, tmid,c, and tzero,c are derived and
saved for the child node with the identical manner for the parent node. Furthermore, the
starting velocity of a new expansion may be imposed as vzero, combined with the node
expansion type of the previous maneuver. A stopping flag µ is then set as 1. Such a case
happens when an expansion of stop occurs or moving direction of a vehicle is reversed.
In the rest of the working conditions, the flag µ remains 0. Notably, a node is of four
dimensions, x, y, θ, and t; among them, t is an index used in the graph search, and more
than one value stored in one index could complicate the problem. Consequently, only the
vzero-related time instant tzero is stored as the node index.

Table 2. Model-based approach for saving time consumption data.

Current Maneuver µ=0 µ=1

Stop -
tzero,c ← tzero,p + T12
tmid,c ← tzero,p + T12
thigh,c ← tzero,p + T12

Going straight

if thigh,p = tmid,p, then
tzero,c ← tmid,p + T2
tmid,c ← tmid,p + T3
thigh,c ← tmid,p + T4

else
tzero,c ← tmid,p + T2
tmid,c ← thigh,p + T4
thigh,c ← thigh,p + T5

tzero,c ← tzero,p + T1
tmid,c ← tzero,p + T2
thigh,c ← tzero,p + T2

Turning
tzero,c ← tmid,p + T7
tmid,c ← tmid,p + T8
thigh,c ← tmid,p + T8

tzero,c ← tzero,p + T6
tmid,c ← tzero,p + T7
thigh,c ← tzero,p + T7

Lane changing
tzero,c ← tmid,p + T10
tmid,c ← tmid,p + T11
thigh,c ← tmid,p + T11

tzero,c ← tzero,p + T9
tmid,c ← tzero,p + T10
thigh,c ← tzero,p + T10
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Meanwhile, each node stores three ending time instants. Thus, one algorithm should
be applied to select the exact ending instant of each node. This algorithm first chooses
the minimum time thigh of each maneuver over the path. The deceleration phase is then
imposed on the last two nodes of the trajectory, and the corresponding tmid and tzero are in
turn assigned to these two nodes as the maneuver-finishing time instants. As the above
methods are implemented from the start to the end of the initialized trajectory, a few
modifications are imposed to fix the node time indices t in certain circumstances. For
instance, when µ = 1, the maximum achievable ending time tp for the former maneuver
node is determined by selecting the value of tmid,p. In this case, the ending velocity of
this maneuver turns to be vmid. Meanwhile, in the same combination of maneuvers, if a
previous maneuver exists and tpp > tmid,pp, tmid,pp is assigned to tpp, as the prior maneuver
cannot achieve a higher velocity.

4.3. Collision Detection Strategy

The pseudocode of the collision detection function DetectCollision() is recorded in
Algorithm 3. A variable γ is used as a flag to indicate the validity of the node expansion
as well as the type of collisions that may have occurred. When the current expansion Nc
is valid, γ is set as 0. γ = 1 means that at least the ending pose of the expansion risks
colliding, and γ = 2 signifies that the invalidity is only found in the link between the
starting and final locations. This algorithm consists of two parts, which separately refer to
collisions that occurred with ending and intermediate pose of the vehicle. As regards both
circumstances, collisions should be avoided throughout t ∈

[
tmid,p, tzero,c

]
.

Algorithm 3: Collision detection algorithm

γ← DetectCollision
(
T, Nc, Pp, tp, Listopen, map

)
1. Initialize γ← 0 ;
2. Pc ← FindEndingPose

(
Pp, Nc

)
;

3. Pin ← FindIntermediatePose
(

Pp, Nc
)

;
4. if CheckStaticCollision(Pc, map) is true, then
5. γ← 1 ;
6. return;
7. end if

8.
[
tzero,c, tmid,p

]
← FixParkingTime

(
Pp, tp, Listopen, Nc

)
;

9. [Listcur,1]← FindFinalGrids
(

Pp, Nc
)

;

10. [Listother]← FindObstaclesGrids
(

T, tzero,c, tmid,p

)
;

11. if CheckDynamicCollision(Listcur,1, Listother) is true, then
12. γ← 1 ;
13. return;
14. end if
15. if CheckStaticCollision(Pin, map) is true, then
16. γ← 2 ;
17. return;
18. end if
19. [Listcur,2]← FindIntermediateGrids

(
Pp, Nc

)
;

20. if CheckDynamicCollision(Listcur,2, Listother) is true, then
21. γ← 2 ;
22. return;
23. end if
24. return;

Static obstacles correspond to the walls of the shelves and warehouse, and the related
collision detection method is expressed on lines 4 to 7 in Algorithm 3. FindEndingPose()
is used to obtain the current pose Pc(xc, yc, θc) based on the parent pose Pp

(
xp, yp, θp

)
and

the current expansion manner Nc. The function CheckStaticCollision() is applied to check
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if collisions with static obstacles exist. This check is first judged by identifying the validity
of the final pose. When it comes to maneuvers of turning and lane changing, an additional
intermediate pose (cf. thick dashed rectangular in Figures 8 and 9), obtained through
FindIntermediatePose(), should be further examined (cf. lines 15 to 18 in Algorithm
3). Focusing on the collision avoidance constraints formulation between the point Qj
(j = 1, · · · , Nobs and Nobs denotes the obstacle point number) and the current investigated
vehicle featuring vertexes A, B, C and D. A collision forms when Qj enters the rectangle
ABCD. The restriction that Qj is located outside of the rectangle ABCD can be formulated
by applying a triangle-area-based criterion [38],

S4Pi AB + S4Pi BC + S4PiCD + S4Pi DA > S�ABCD (11)

where S∆ indicates the triangle area, and
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refers to the rectangle area. Applying Equation (11)
to every node expansion with respect to every obstacle point, the static obstacle collision
judgement is yielded.

Dynamic obstacles in the current study are only forklifts, whose motions have been
saved in T, and the function FixParkingTime() is applied to find tmid,p in Listopen and
tzero,c by calling Table 2. As reported in Figures 8 and 9, the highlighted grids indicate
the approximate area occupied during the movements of turning and lane changing.
Similarly, the covered grids pertaining to other maneuvers in the same category can be
determined by mirroring or rotating the highlighted grids (cf. Figures 8 and 9). The
functions FindFinalGrids() and FindIntermediateGrids() are respectively used to record
the covered grids of the final pose Pc and the intermediate pose Pin for the current node
expansion patterns.

Without loss of generality, let us focus on the collision avoidance constraint formulation
between the vehicle ncurrent and the vehicle nk (ncurrent, nk = 1, · · · , 4 and ncurrent 6= nk).
The function FindObstaclesGrids() is first utilized to search for the covered grids by the
vehicles nk, whose trajectories are not being planned, with respect to time. It is possible
that no actions of the forklift nk have been determined during the period when the current
maneuver of vehicle ncurrent could occupy. Under such circumstances, the grids that the
vehicle nk finally parks are treated as the covered ones.

Finally, CheckDynamicCollision() is used to detect if Listcur,1 or Listcur,2 is going to
simultaneously cover the grids already stored in Listoth over the valid time. Notably, during
the collision detection, the current action is virtually regarded as the final maneuver with
vzero set as the finishing velocity with tzero,c selected, thus an equal or longer time length
of this maneuver in actual operation is considered. This treatment can enhance the safety
performance to certain extents.

Notably, referring to Algorithm 3, the types of failure through an expansion have been
noticed when one expansion has failed. This provides a tool to distinguish if one child node
should be closed or skipped because that failure can be simply due to the intermediate
trajectory of the action is interfered, while the corresponding child node could be valid in
other situations.

4.4. Trajectory Cost Function

The function SetCost() is explained in this section. With regard to one node expansion,
the cost function f is the sum of two parts, as reported in Equation (12),

f = g + C11h (12)

in which g stands for the cumulative cost from the initial pose to the current pose and h
indicates the estimated cost from the child node of the current expansion to the target node
of the trajectory being defined. C11 is a calibrated weighting aimed at achieving a balance
between the computational resources used for searching and the resultant trajectory’s
quality. In total, it is expected that one forklift complete a delivery or return subtasks
subjected to the minimum travelling time of

(
t f − ti

)
. Meanwhile, times of turning,



Electronics 2023, 12, 3820 18 of 26

lane changing, and speed inverse maneuvers should be minimized in order to reduce
unnecessary movements, which may decrease the traffic capacity of the passages.

As far as the function of trajectory to the goal is concerned, Equation (13) is applied.
We used the Manhattan distance plus another function of θc. Both the distance and the
angle are evaluated in times of certain characteristic dimensions.

h =
∣∣xg − xc

∣∣/∆x +
∣∣yg − yc

∣∣/∆y +
∣∣θg − θc

∣∣/(π/2) (13)

where ∆x = ∆y, indicating the grid side length; xg, yg, and θg correspond to the goal space
coordinates; xc, yc, and θc refer to the coordinates of the current expansion child node.

The passed trajectory cost function that characterizes the time consumed from the
starting pose of the trajectory to the current one writes:{

g = tzero,c − ti + p
p = pturn ·mturn + plane ·mlane + pinv ·minv

(14)

where pturn, plane, and pinv respectively indicate the predefined penalties pertaining to
single time of turning, lane changing, and speed inverse. mturn, mlane, and minv denote the
cumulative number of corresponding maneuvers from the initial pose to the current child
node along the trajectory being defined.

In addition, if one node originally stored in Listopen is reached a second time with a
reduced value of fc during a node expansion compared to the previous saved fpre for the
same nodes, the function ReplaceNode() is used to switch the parent node to the parent
node of current expansion, with the aim of reducing calculation time length and optimizing
the trajectory being planned.

5. Joint Dispatching and Cooperative Trajectory Planning Framework

The trajectories of forklift vehicles in the warehouse are sequentially determined in
the complete cooperative operative algorithm (cf. Algorithm 4). Generally, the dispatching
technique is first applied to select the current vehicle index as well as the goal coordinate in
the space domain for the current trajectory planning subtask. Subsequently, an improved
hybrid A* search algorithm is used to determine all details pertaining to the newly planned
trajectory T. The above methods are repeated until all stack locations in the warehouse are
filled, as the warehouse filling state F is being updated.

The function CheckFilling() is used to derive the number of unfilled stacks. The
function FindInitialPose() is then applied to find the parent node

(
Pp, tp

)
for the next

expansion with minimum cost f found in Listopen and to simultaneously remove this node
from Listopen.

A maximum number of iterations itersearch in the improved hybrid A* algorithm is
induced to break the endless iterations that may derive a trajectory involving an unaccept-
able waiting period. The improved hybrid A* search algorithm is finished by satisfying
any one of the three criteria, which are, respectively, the goal coordinate reached as a new
child node, the iteration number exceeding itersearch, and no node saved in Listopen. Among
them, only the first criterion indicates the trajectory of the current subtask is successfully
planned, and a corresponding flag σ is thus set as 1 to declare this success.

The function GenerateTraj() is employed to generate the trajectory with the newly
planned trajectory by backtracking from Pf to Pi with t f ,zero as the ending instants. During
the backtracking, the maximum realizable velocities of the intermediate nodes are selected
based on the manner depicted in Figure 11 and Table 2.

Finally, the function UpdateFillingState() updates F as the stack located at Pf

(
x f , y f , θ f

)
has been filled.
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Algorithm 4: Cooperative operation algorithm

[T, F]← OperateCooperative(T, F, itersearch, map)

1. while CheckFilling(F) > 0

2.
[
ncurrent, Pi, Pf , ti

]
← Dispatch

(
T, F, f ail, Pi, Pf , map

)
;

3. σ← 0;
4. f ail ← 0 ;
5. thigh,p ← ti, tmid,p ← ti, tzero,p ← ti;
6. Listopen ← (Pi, ti), Listclosed ← ∅ ;
7. while Listopen 6= ∅ or iter ≤ itersearch or σ 6= 1, do
8. [Listopen, Pp, tp]← FindInitialPose

(
Listopen

)
;

9. Listclosed ← AddNode
(

Listclosed, Pp, tp
)

;
10. for each Nc ∈ Nall , do

11.
[
σ, Listopen

]
← SearchAStar

(
T, Nc, Pp, Pf , tp, Listopen, Listclosed, map

)
;

12. end for
13. end while
14. if σ = 1, then

15. T← GenerateTraj
(

Pi, Pf , ti

)
;

16. F← UpdateFillingState(T) ;
17. else
18. f ail ← 1;
19. end if
20. end while
21. return;

6. Numerical Experiments

Simulations of filling and emptying missions were conducted on the MATLAB 2021b
platform, utilizing the parametric settings reported in Table 3. Each warehouse filling or
emptying mission began with fully empty or filled initial conditions, respectively. The
motion planning for each forklift in the simulation environment solely takes into account
obstacles such as warehouse walls and other forklifts.

Table 3. Parametric settings regarding model and approach.

Parameter Description Setting

n Forklift front overhang length 0.3 m

m Forklift rear overhang length 1 m

l Forklift wheelbase 1.5 m

2b Forklift width 1 m

[lbx, ubx] Horizontal boundaries of map [−18, 18] m[
lbx, uby

]
Vertical boundaries of map [−12, 12] m

resolxy
Node resolution for search

algorithms 2 m

iterpre Maximum iteration in the time dimension involved A* search 500

iterdispatch
Maximum iteration of

redispatching 10

itersearch
Maximum iteration in the

improved A* search 5000

{C1, C2, · · · , C11} Calibration parameters {6, 1.5, 80,−40, 6, 0.5,−4, 2, 0.5, 0.5, 3}

{T1, T2, · · · , T12}
Modeled time lengths of

maneuvers {4, 2, 1.25, 0.75, 0.5, 8, 5, 3, 12, 8, 5, 1} s



Electronics 2023, 12, 3820 20 of 26

Table 3. Cont.

Parameter Description Setting

pturn Penalty for turning maneuver 4

plane
Penalty for lane changing

maneuver 6

pinv
Penalty for speed inverse

maneuver 6

∆ti
Time postponed when one
trajectory planning is failed 10 s

∆tcover Time in Equation (3) 20 s

∆tentry
Time length after the virtual vehicle entering the rack

passage to evaluate ∆tcover
20 s

{tclaim, tunload} Time period for picking goods and unloading goods {5, 5} s

The simulation results are divided into two parts. The first part focuses on assessing
the consistency of the motion planning strategy by presenting three short-time trajectories
for multiple forklifts. In the second part, various dispatching strategies were benchmarked
using different scores specifically designed for the current warehouse scenario. This evalu-
ation was conducted to determine the performance and efficiency of different dispatching
strategies in the given warehouse scenario.

6.1. On the Performance of the Trajectory Planning Technique

Figure 12 reports how forklift 1 returns to a picking station from shelf cluster s1, where
it has just unloaded goods. Before the start of the scenario, forklifts 2 and 4 are in the
same state of return, and forklift 3 is unloading in shelf cluster s4. When the scene in
Figure 12 starts, forklift 1 accelerates and decelerates to reverse to the entrance of shelf
cluster s1. At the meantime, forklift 4 turns and heads to the picking station p4, leaving
the crossing of the wide passages empty. With the purple square showing the newly filled
stack, forklift 3 leaves shelf cluster s4 and enters s3 to finish turning round. When it is
inside of s3, forklift 1 goes through the passage between s3 and s4. Subsequently, forklift
1 reverses and turns to the picking station p2, and forklift 3 then enters the wide passages to
return to the assigned picking station, which is p3. Finally, forklift 2 is the first vehicle that
arrives at the crossing area of wide passages with the goods picked. During the scenario,
all trajectories are directly determined by means of the approach elaborated on in Section 4.
The least priority is dynamically offered to the newly departed vehicle. For instance, in this
scenario, forklift 3 initially has the lowest priority. Thus, it should judge if there is enough
time for the vehicle to turn around. Therefore, if the time is limited, vehicle 3 would wait at
the entrance of s4, until the passing of forklift 1.

Figure 13 shows how the last stack is filled. Because there is nowhere to be filled
hereafter, forklift 3 is parked in one picking station, and forklift 1 heads to picking station
s4 and stops. Initially, forklift 4 has just finished one unloading process, then it enters shelf
cluster s2 to turn over. After forklift 4 leaves s2, forklift 2 enters the shelf cluster to complete
the last delivery subtask. Meanwhile, forklift 4 accelerates, decelerates, and turns to picking
station s3 for final parking.

Figure 14 shows a scenario where the trajectory decision for forklift 3 encounters a
failure. In this case, forklift 1 reaches shelf s4 to unload goods, while forklift 3 completes
its unloading process earlier than forklift 1. Consequently, forklift 3 should be assigned a
higher priority to plan the trajectory based on function rank(). However, at this moment,
forklift 1 remains stationed at the entrance of shelf s4, obstructing the passage for forklift
3. As a result, a decision failure occurs, leading to an update in the trajectory planning
priority stored in R. Only after the completion of the trajectory planning for forklift 1 can
the trajectory planning for forklift 3 proceed accordingly.
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6.2. On the Performance of Dispatching Strategies

Table 4 benchmarks five distinct dispatching strategies for both filling and emptying
tasks. It is worth noting that these dispatching methods are applicable only to specific
coupling scenarios between grids and vehicle maneuvers, as they incorporate a preliminary
A* search during the dispatching process.

Table 4. Benchmark of the different dispatching strategies.

Strategy Name
Filling Emptying

Decision
Failure Times

End
Time (s)

Decision
Failure Times

End
Time (s)

ANN combined
strategy 38 2388.25 27 2597.25

Comprehensive
strategy 38 2441.00 21 2658.25

Greedy strategy 135 2768.75 75 3419.00

Traffic jam
removing
strategy

120 2709.00 51 3117.75

Balance strategy 55 2557.75 35 2660.50

The approaches differ in the assignment methods pertaining to delivering subtasks.
While the decision failure times in Table 4 indicate the number of times ncurrent or ti is
changed without a solid trajectory decided throughout the entire warehouse filling mission,
the end time is the finishing timing of the same task. Among the strategies, ANN combined
determines the goal through arg max(Sd) (cf. Sd in Equation (9)) when the coefficients of
the MLP are determined. Comprehensive strategy applies Sd,0 in Equation (3), and the
target is determined based on arg max(Sd,0). The other three strategies only concern a few
parameters in Equation (3). Greedy, traffic jam removal, and balance strategies select the
goal pose through arg max(Id), arg max(Jd,0), and arg max(Gd), respectively.

As reported in Table 4, the end time of the emptying task is approximately 10%
longer than that for filling tasks. However, the occurrence of decision failure times is
generally lower. This indicates that during emptying tasks, instances of a forklift obstructing
routes and blocking other vehicles for extended periods are rare. Yet, with the current
configuration of iterpre and itersearch, all vehicles might experience longer wait times on
average during each subtask.

The ANN combined strategy is the optimal method in terms of end time for both
filling and emptying tasks, requiring approximately 2% less time than the comprehensive
strategy. However, it does exhibit comparable or even slightly greater decision failure
times when compared to the comprehensive strategy. In general, a reduction in the first
parameter can reduce the computation burden of the hardware by performing fewer useless
calculations in searching a trajectory. The second parameter directly shows the efficiency
of the cooperative operation of multiple forklifts. Notably, the ANN approach applied to
train the dispatching system only concerns the efficiency of planning a trajectory for the
current vehicle. Therefore, it is possible that some stacks in only one shelf cluster are left to
be filled by selecting the best solution multiple times. In this case, multiple forklifts have to
cooperatively fill one shelf cluster, and the waiting period of each vehicle must increase.
Therefore, both the decision failure times and the end time may sharply increase.

In Figures 15–18, the sequence in which the warehouse is filled with different methods
is reported. The colored blocks plotted in the schematic warehouse stand for the stacks
filled during different periods (red for the first quarter of time, blue for the second, green for
the third, and cyan for the last). It is observed that the filling of different shelf clusters for
the ANN combined strategy (cf. Figure 15) in different quarters of the period is balanced to
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a certain extent. There are, respectively, 35, 37, 34, and 30 stacks filled during each quarter.
Particularly in the last quarter of the period, similar numbers of stacks filled are distributed
within all six shelf clusters, and this provides a possibility for a feasible and fast solution to
filling the warehouse.

Electronics 2023, 12, x FOR PEER REVIEW 24 of 27 
 

 

 
Figure 15. Filling sequence of ANN combined strategy. 

By excluding the MLP of ANN, a comprehensive strategy is also capable of assigning 
subtasks to each forklift explicitly. Although the performance is slightly worse than the 
ANN combined one, it does not require the data pertaining to previous cycles. Figure 16 
demonstrates the filling sequence for this approach. Similar to that of the ANN combined 
approach, the filling state of the shelf clusters in the warehouse is relatively balanced 
throughout the period. A few seconds are added in terms of the end time for this strategy 
without the fine adjustment of the MLP. 

 
Figure 16. Filling sequence of comprehensive strategy. 

 
Figure 17. Filling sequence of traffic jam removing strategy. 

1st quarter
2nd quarter
3rd quarter
4th quarter

1st quarter
2nd quarter
3rd quarter
4th quarter

1st quarter
2nd quarter
3rd quarter
4th quarter

Figure 15. Filling sequence of ANN combined strategy.

Electronics 2023, 12, x FOR PEER REVIEW 24 of 27 
 

 

 
Figure 15. Filling sequence of ANN combined strategy. 

By excluding the MLP of ANN, a comprehensive strategy is also capable of assigning 
subtasks to each forklift explicitly. Although the performance is slightly worse than the 
ANN combined one, it does not require the data pertaining to previous cycles. Figure 16 
demonstrates the filling sequence for this approach. Similar to that of the ANN combined 
approach, the filling state of the shelf clusters in the warehouse is relatively balanced 
throughout the period. A few seconds are added in terms of the end time for this strategy 
without the fine adjustment of the MLP. 

 
Figure 16. Filling sequence of comprehensive strategy. 

 
Figure 17. Filling sequence of traffic jam removing strategy. 

1st quarter
2nd quarter
3rd quarter
4th quarter

1st quarter
2nd quarter
3rd quarter
4th quarter

1st quarter
2nd quarter
3rd quarter
4th quarter

Figure 16. Filling sequence of comprehensive strategy.

Electronics 2023, 12, x FOR PEER REVIEW 24 of 27 
 

 

 
Figure 15. Filling sequence of ANN combined strategy. 

By excluding the MLP of ANN, a comprehensive strategy is also capable of assigning 
subtasks to each forklift explicitly. Although the performance is slightly worse than the 
ANN combined one, it does not require the data pertaining to previous cycles. Figure 16 
demonstrates the filling sequence for this approach. Similar to that of the ANN combined 
approach, the filling state of the shelf clusters in the warehouse is relatively balanced 
throughout the period. A few seconds are added in terms of the end time for this strategy 
without the fine adjustment of the MLP. 

 
Figure 16. Filling sequence of comprehensive strategy. 

 
Figure 17. Filling sequence of traffic jam removing strategy. 

1st quarter
2nd quarter
3rd quarter
4th quarter

1st quarter
2nd quarter
3rd quarter
4th quarter

1st quarter
2nd quarter
3rd quarter
4th quarter

Figure 17. Filling sequence of traffic jam removing strategy.



Electronics 2023, 12, 3820 24 of 26Electronics 2023, 12, x FOR PEER REVIEW 25 of 27 
 

 

 
Figure 18. Filling sequence of balance strategy. 

Figure 17 exhibits the filling sequence of the traffic-jam-removing strategy. The dif-
ference between this method and the greedy strategy is that the previous one simultane-
ously considers 𝐻 in Equation (3). One stack in shelf cluster 𝑠2 is filled in the first quarter 
of the period, and both the decision failure times and the end time pertaining to the traffic 
jam removal approach reduce compared to the greedy strategy. Thus, a simple additional 
function of 𝐻 can slightly further characterize the difficulty of the trajectory planning. 
Meanwhile, because the filling sequences of these two strategies are similar, the figure 
pertaining to the greedy method is omitted. As shown in Figure 17, it basically evenly fills 
shelf clusters 𝑠4, 𝑠5, and 𝑠6 in the first quarter of the period. The majority of stacks in 𝑠1 
and around a third of stacks in 𝑠2 are filled in the last quarter. Considering four vehicles 
cooperatively delivering goods, violations between trajectories evidently arise, and the 
times of failure in trajectory decisions and the waiting time can increase markedly. 

The filling sequence of the balance strategy is plotted in Figure 18. The filling of dif-
ferent shelf clusters is nearly perfectly balanced. Evidently, this strategy can better arrange 
the trajectories to fill the last few stacks of the warehouse compared to any other approach. 
Therefore, the number of stacks filled during the last quarter of the warehouse filling cycle 
is comparable to that during other periods. In particular, when the 5th, 14th, and 23rd 
stacks of shelf clusters 𝑠3  and 𝑠4  (cf. Figure 2) are being filled, the paths between the 
shelf clusters (𝑠1 and 𝑠2) in the left side of the warehouse (cf. Figure 1) and picking sta-
tions are cut. Meanwhile, the first delivery vehicle reaching these certain stack locations 
between shelf clusters 𝑠3  and 𝑠4  can simultaneously block the routes to certain shelf 
clusters. This phenomenon also appears in shelf clusters 𝑠5 and 𝑠6 when the identical 
stack indexes are considered. Those are the unique conflicts that arose to cause the failure 
decisions and the lengthening of the end time for the balance strategy. 

7. Conclusions 
This study presents a joint dispatching and cooperative trajectory planning frame-

work. In this framework, the dispatching method applies a time dimension involved A* 
search, which is used to score different goal poses during a delivery subtask. ANN is sim-
ultaneously implemented to evaluate the difficulties for a forklift to arrive at a goods un-
loading pose from a picking station. In addition, the stacks to be filled pertaining to dif-
ferent shelf clusters are used as the third parameter to balance the shelf filling states, with 
the aim of avoiding deadlocks at the final stage of the mission. 

As far as the trajectory planning approach within the framework is concerned, a 
model-based improved A* search algorithm is used to sequentially determine the trajec-
tory of each vehicle without further optimization-based techniques. The node expansion 
manners are determined on the basis of the purpose of a maneuver, and the speed per-
taining to the start and end of a maneuver is divided into stages. 

Figure 18. Filling sequence of balance strategy.

By excluding the MLP of ANN, a comprehensive strategy is also capable of assigning
subtasks to each forklift explicitly. Although the performance is slightly worse than the
ANN combined one, it does not require the data pertaining to previous cycles. Figure 16
demonstrates the filling sequence for this approach. Similar to that of the ANN combined
approach, the filling state of the shelf clusters in the warehouse is relatively balanced
throughout the period. A few seconds are added in terms of the end time for this strategy
without the fine adjustment of the MLP.

Figure 17 exhibits the filling sequence of the traffic-jam-removing strategy. The differ-
ence between this method and the greedy strategy is that the previous one simultaneously
considers H in Equation (3). One stack in shelf cluster s2 is filled in the first quarter of
the period, and both the decision failure times and the end time pertaining to the traffic
jam removal approach reduce compared to the greedy strategy. Thus, a simple additional
function of H can slightly further characterize the difficulty of the trajectory planning.
Meanwhile, because the filling sequences of these two strategies are similar, the figure
pertaining to the greedy method is omitted. As shown in Figure 17, it basically evenly fills
shelf clusters s4, s5, and s6 in the first quarter of the period. The majority of stacks in s1
and around a third of stacks in s2 are filled in the last quarter. Considering four vehicles
cooperatively delivering goods, violations between trajectories evidently arise, and the
times of failure in trajectory decisions and the waiting time can increase markedly.

The filling sequence of the balance strategy is plotted in Figure 18. The filling of
different shelf clusters is nearly perfectly balanced. Evidently, this strategy can better
arrange the trajectories to fill the last few stacks of the warehouse compared to any other
approach. Therefore, the number of stacks filled during the last quarter of the warehouse
filling cycle is comparable to that during other periods. In particular, when the 5th, 14th,
and 23rd stacks of shelf clusters s3 and s4 (cf. Figure 2) are being filled, the paths between
the shelf clusters (s1 and s2) in the left side of the warehouse (cf. Figure 1) and picking
stations are cut. Meanwhile, the first delivery vehicle reaching these certain stack locations
between shelf clusters s3 and s4 can simultaneously block the routes to certain shelf clusters.
This phenomenon also appears in shelf clusters s5 and s6 when the identical stack indexes
are considered. Those are the unique conflicts that arose to cause the failure decisions and
the lengthening of the end time for the balance strategy.

7. Conclusions

This study presents a joint dispatching and cooperative trajectory planning framework.
In this framework, the dispatching method applies a time dimension involved A* search,
which is used to score different goal poses during a delivery subtask. ANN is simultane-
ously implemented to evaluate the difficulties for a forklift to arrive at a goods unloading
pose from a picking station. In addition, the stacks to be filled pertaining to different shelf
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clusters are used as the third parameter to balance the shelf filling states, with the aim of
avoiding deadlocks at the final stage of the mission.

As far as the trajectory planning approach within the framework is concerned, a model-
based improved A* search algorithm is used to sequentially determine the trajectory of
each vehicle without further optimization-based techniques. The node expansion manners
are determined on the basis of the purpose of a maneuver, and the speed pertaining to the
start and end of a maneuver is divided into stages.

Different dispatching strategies are benchmarked. The ANN combined strategy shows
the best performance in warehouse filling efficiency, but the decision failure times of
this method are comparable to those of the comprehensive strategy. Meanwhile, it is
observed that the balance of the filling state pertaining to shelf clusters is as important as
the evaluation of the goal-reaching difficulties. Furthermore, the trajectories of multiple
vehicles in a short time are presented. It is shown that although the priority of a vehicle
during one subtask is predefined, the vehicles are capable of cooperatively and continuously
finding feasible trajectories.

In the future, our joint strategy will be tested in a downsized unmanned warehouse
setup. Additionally, we aim to implement a zonal shutdown feature for enhanced safety
in case pedestrians enter the area. We also plan to integrate a forklift failure detection
mechanism to enable uninterrupted warehouse operations even in the presence of a few
malfunctioning forklifts.
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